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ABSTRACT Nowadays, problems such as greenhouse effect and air pollution become increasingly promi-
nent. The power generation process should pay attention to the fuel cost and reduce the pollution to
the environment. In this paper, an arithmetic optimization algorithm (AOA) based on Cauchy mutation
trigonometric function search is proposed to solve the combined economic emission dispatch (CEED)
problem. The price penalty factor is used to convert multiple objective functions of CEED problem into one
objective. The math optimization probability (MOP) parameter is used to control the position update of the
AOA. MOP is replaced by the oscillation coefficient and Cauchy mutation, which can not only guarantee the
local search accuracy but also enhance the global search capability. 6 kinds of trigonometric function search
operators, sine function, hyperbolic sine, inverse hyperbolic sine, hyperbolic tangent, inverse hyperbolic
tangent, are used to replace the fixed value control parameters in AOA algorithm. The algorithm still has a
certain ability to jump out of the local optimal in the late running. The 23 test functions are used to verify
the effect of the improved AOA method. The AOA is compared with 6 kinds of improved AOA, and the
improvement method with the best effect is selected, and then compared with other intelligent optimization
algorithms to verify the effectiveness of the improved strategy. In addition to improving the algorithm, the
constraint of CEED problem is also treated. Five kinds of random disturbance penalty functions are proposed,
which are cosine function, hyperbolic sine function, tangent function, hyperbolic tangent function and V-
type function. The CEED problem of 6 units was selected for simulation experiment under 4 different load
demands. The experimental data show that the arithmetic optimization algorithm based on Cauchy mutation
trigonometric function search has a good effect on solving CEED problems, and the random disturbance
penalty strategy is more effective in solving quality.

INDEX TERMS Combined economic emission dispatch, Cauchy mutation, random disturbance penalty
function, trigonometric function search, arithmetic optimization algorithm.

I. INTRODUCTION power industry has been developing in a highly demanding
Nowadays, electricity industry is a necessary element in and competitive environment [1]. Among them, people pay
people’s work and life. From the past to the present, the much attention to this problem, how to reduce the cost of
power generation has become a key research object in power
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is called the economic load dispatch (ELD) problem [2].
As environmental problems become more and more serious,
people begin to realize the importance of protecting the envi-
ronment. At present, clean energy related technologies have
been vigorously developed, such as wind power generation
and hydroelectric power generation are increasingly mature,
but thermal plants is still the main way of power generation.
The burning of fossil fuels releases a lot of air contaminant,
such as SO2, NOx and CO2. These pollutants will cause
serious damage to the natural environment and lead to a
series of environmental problems. Therefore, it is not only
important to consider the fuel cost, but also to reduce the
pollution to the environment. When power generation cost
and operational constraints are met, the combined economic
emission dispatch (CEED) should be considered at the same
time as power generation cost and pollutant emission [3]. It is
more complicated to solve the CEED problem, which has
been widely concerned and studied.

Quadratic function as a way to express the CEED problem
[4]. It is found that the high-order polynomial function repre-
senting the CEED problem can improve the solution method
[5]. However, this makes the solution of CEED problem
more difficult and complex. Some methods based on classical
mathematical modeling are adopted for solving CEED prob-
lem [6], [7], [8], [9], [10], which provides a good solution
for solving the CEED problem. However, power generation
system is often nonlinear and non-convex in practical work,
and there will be many constraints in production work, so it
becomes difficult to solve CEED problems by using this kind
of method. Therefore, many intelligent optimization methods
are used to deal with CEED problems with good results,
Particle Swarm Optimization algorithm (PSO) [11], Bacterial
Foraging algorithm (BFO) [12], Grasshopper optimization
algorithm (GOA) [13], Ant colony optimization (ACO) [14],
Ant Lion optimization (ALO) (SMO) [15], Spider Monkey
optimization [16], Sine Cosine algorithm (SCA) [17], etc.
With the progress of science and technology, the power sys-
tem has been developed to the cyber-physical power system,
which brings convenience but also considers the problem of
cyber attacks. Lu et al. propose a three-stage dynamic fake
data injection attack (DFDIA) model that considers underly-
ing dynamic behavior. Two constrained differential evolution
algorithms are designed to determine the attack location and
optimize the attack vector to cooperatively change the meter
measurement. Several IEEE bus systems are selected in simu-
lation experiments to prove the effectiveness of the proposed
method [18].

Some researchers transform multi-objective CEED prob-
lems into single-objective optimization problems for solving.
Ziane et al. [19] adopted simulated annealing method to deal
with the CEED problem, and used maximum/maximum price
penalty factor (PPF) to convert fuel cost and SO2, NOx
and CO2 emissions into a single target for optimization.
Compared with other methods such as PSO and Lagrange
technique, simulated annealing can give better solutions.

136886

Aydin et al. proposed the Artificial bee colony with dynamic
population size (ABCDP), which uses a similar mechanism
defined in the Incremental ABC with local search (IABC-LS)
and reduces many of the parameters to be adjusted. In order
to test the effectiveness and robustness of the algorithm in
CEED problem, the algorithm is applied to the economic
emissions joint dispatching problem. The IEEE30 bus test
system and 40 generator sets are taken as examples. The
results show that ABCDP gives good results in both systems
[20]. Gherbi et al. [21] proposed a new method combin-
ing firefly algorithm and bat algorithm to deal with CEED
problem, which well combined the advantages of the two.
Hassan et al. proposed an optimization algorithm based on
chaotic artificial ecosystem (CAEO) and used PPF to con-
vert four objective functions into one objective function
when solving CEED problem. The proposed improved AEO
method is based on chaotic mapping. Instead of using random
arguments [22]. It can be seen from the above literature that
a multi-objective CEED problem can be transformed into
a single-objective optimization problem and solved by an
optimization algorithm to get a better performance. The opti-
mization process of this method is simple and the operation
time is short. However, the weight setting of each objective
function has a great influence on the optimization results, and
only one solution can be obtained each time, and the Pareto
optimal solution set cannot be obtained.

Using multi-objective optimization algorithm to deal with
CEED problem directly is also a very effective method.
Kumar et al. [23] proposed a multi-objective directed bee
colony optimization algorithm (MODBC), which is well
applied to optimize CEED multi-objective optimization prob-
lem with equality and inequality constraints. Hybridization
enables MODBC to get the high quality and fast solutions that
generate better Pareto frontiers for multi-objective problems.
Wu et al. [24] proposed a new multi-objective differential
brain storm optimization (MDBSO) algorithm to solve the
EED problem. Unlike classical BSO, clustering operations
are designed in the target space rather than the solution
space to improve computational efficiency. In order to keep
the diversity of population and improve the convergence
speed, differential variation is used to replace Gaussian vari-
ation. The effect of the algorithm is tested by simulation
experiment. The simulation results show that MDBSO can
have better convergence while maintaining the diversity of
Pareto optimal solutions. Chen et al. proposed a constrained
multi-objective population extremal optimization algorithm
(CMOPEO-EED) in order to improve EED performance of
renewable energy generating units. Simulation experiments
with three versions of improved IEEE 30 bus and 6 generator
systems with renewable energy generation are carried out
to verify the superiority of the proposed CMOPEO-EED
method in solving EED problems [25]. Singh et al. [26]
proposed a permutation based multi-objective environment
adaptation method (pMOEAM) to solve the EED problem
of power systems. The new improved pMOEAM solves the
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three weaknesses of the original algorithm. A large number
of experimental data show that pMOEAM method can get
better quality solutions for EED problem. Chen et al. [27]
proposed a new multi-objective whale optimization algorithm
(MONWOA) to solve the EED problem. In order to explore
and develop the balance algorithm, Gaussian mutation oper-
ator, differential evolution algorithm mutation process and
search mode parameters were used to improve the standard
MOWOA. In summary, using the multi-objective optimiza-
tion algorithm to solve CEED problem directly, a set of Pareto
optimal solutions can be obtained in a single run, and the
optimal solutions can be selected in the solution set according
to demand. However, the calculation process of this method
is more complicated, and the performance of the algorithm is
higher.

The constraint problem must be considered in the actual
production work, and the treatment of the constraint prob-
lem is also very important in the process of solving the
CEED problem. Penalty function method is usually used to
deal with solutions that do not meet constraints. A penalty
function proportional to the degree of constraint violation is
added to the objective function to discard solutions that do
not meet constraints, and the setting of penalty intensity is
very important [28]. Literature [29] selects a fixed penalty
parameter, which requires repeated trials to find the appro-
priate penalty parameter and obtain a reasonable solution.
For multi-constrained optimization problems, an improved
PSO algorithm (IPSO) combined with penalty function is
proposed to prevent premature convergence, accelerate the
search speed and ensure the feasibility of solution [30]. Haeun
Yoo et al. proposed a dynamic penalty (DP) method. In the
training process, the penalty factor increases gradually and
systematically with the progress of iterative events [31]. Sak-
thivel et al. introduced a refurbishment strategy to deal with
power balance constraints, in which a randomly generated
unit is selected to perform the refurbishment process. The
advantage of this strategy is that it is easy to implement and
quickly updated [32].

Based on the above literature, it can be found that the
treatment of constraint problems will have a certain impact
on the solution of CEED problems, so it is also very impor-
tant to deal with constraint problems well while improving
the optimization algorithm. This paper chooses to use arith-
metic optimization algorithm (AOA) to solve CEED problem,
because AOA is a crowd-based meta-heuristic algorithm
with simple structure and easy to understand principle. It is
realized by arithmetic operators (addition, subtraction, mul-
tiplication and division) in mathematics [33], and has a good
effect in solving practical engineering problems. So using
AOA algorithm can also solve CEED problem well. The AOA
based on Cauchy mutation trigonometric function search is
designed to solve CEED problem. In addition to improv-
ing the algorithm, a random disturbance penalty strategy is
proposed to deal with the constraint problem. Firstly, the
effectiveness of the improved method is verified on CEC2017
benchmark functions and compared with other optimization
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TABLE 1. 5 penalty function expressions.
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FIGURE 1. The images of 5 penalty functions.

algorithms. Then, the CEED cases with 6 units are selected
for simulation. The results show that the arithmetic opti-
mization algorithm based on Cauchy mutation trigonometric
function search and the random disturbance penalty strategy
have good performance.

The structure of the thesis is as follows: In section II, the
expression of CEED problem and the random disturbance
penalty function are introduced. Section III describes the
basic principle of the algorithm and arithmetic optimization
algorithm based on Cauchy mutation trigonometric function
search. In Section IV, CEC2017 benchmark functions are
used to test the performance of AOA based on Cauchy muta-
tion trigonometric function search. Section V selects CEED
cases for simulation experiments; Section VI concludes.

Il. PROBLEM DESCRIPTION

A. PROBLEM OBJECTIVE

The task of CEED problem is to satisfy total load demand
and minimize fuel cost and pollutant emission under all
constraints [1]. Pollutant emission includes three objective
functions SO,, NO, and CO;. Therefore, fuel costs and
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FIGURE 2. The image of 5 penalty functions after adding disturbance.
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FIGURE 4. The Motion trajectory of oscillating Cauchy mutation.

pollutant emissions need to be considered in four optimiza-
tion objectives. The fuel cost F(P) is expressed here as a cubic
criterion function, and its expression is shown in Eq. (1).

n
F/(P) = Zi:l aiP} 4 biP? 4 ciP; + d; (1)

where, a;, b;, ¢; and d; is the fuel cost coefficient of the
generating set. n is the number of total generating units, P;
is the actual output power of the generating set. Emissions
targets of SO, NO, and CO; are expressed using cubic
polynomial functions respectively.

_S p3 P2 P, .
Es02(P) = Zi:l es02iP; + fs02iP; + 8s02iPi + hsooi
n
Enox(P) = Zi:l enoxiP} + fnoxiP + gnoxiPi + hnowi
n
Ecox(P) = Z[: . econP; + fconiPt + gcoaiPi + heoni

@

where, Eso2i, fso2i, 8502i» so2i» ENOxi» fNOxi» 8NOxis ANOxi»
ecoi> fcozi, gcozi and hepo; are the pollutant emission coef-
ficients of the i — th generator set, respectively.

The maximum/maximum penalty factor of a unit direction
[19] is used to transform the multi-objective CEED prob-
lem into a single-objective problem to solve. The objective
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FIGURE 5. Flow chart of improved AOA algorithm.

function is set to the total cost Fr, and the mathematical
expression is as follows:

OF = min(Fr)
Fr=>"_{F(P)+hsiEsoz (P) + hniExox (Pi)
+hciEcor (Pi)}
n F (Pi max)
hg; = 7
¥ zi:l Eso2 (Pi,max)
n F (Pi max)
hy; = 7
N Zi:l Enox (Pi,max)
n F (Pi max)
“ Zl:l Eco (Pi,max) (

where, F (Pimax), Eso2 (Pimax), Enox (Pimax) and Econ
(P,-,max) are respectively the total fuel cost corresponding to
the output power of generator set 7, the total emissions of SO,
the total emissions of NO, and the total emissions of CO;.
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TABLE 2. Parameter settings of the six improvement methods.

Method ky k,
sinCAOA 2x 7w xrand 0.5+0.01x rand x sin (k)
sinhCAOA randn 0.5+0.01x rand x sinh (k)
asinhCAOA randn 0.5+0.01x rand x asinh (k)
tanhCAOA randn 0.5+0.01x rand x tanh (k3 )
atanCAOA randn 0.5+0.01xrand x atan (k; )
atanhCAOA  2xrand—1  0.5+0.01xrand x atanh(k;)

hsi, hyi and h¢; are the maximum/maximum penalty factors
of SO,, NO, and CO; emitted by generator set i, respectively.

B. CONSTRAINT PROBLEM

In the process of CEED problem optimization, many con-
straints will be faced. The concepts of power balance
constraints and generator power constraints are mainly intro-
duced below.

1) POWER BALANCE CONSTRAINT

The total output of the generator set must equal the total
power required by the load plus the actual power loss of the
transmission line, and its expression can be defined as:

> Pi=Pot Py @)
n n n
PL=2_ 2 PBiPi+ > BoiPi+Boo
()

where, Pp is the total actual power demand, and Py, is the loss
during transmission. Bj; By; and By are the loss coefficients.

2) GENERATOR POWER CONSTRAINTS
The generator set must work within the scope of the specifi-
cation, and its expression is shown as follows:

P < Py < PP ©)

where, P; is the output power output of the i — th generator,
P and P™" represent the upper and lower limits of the
output power of generator i respectively.

3) PENALTY FUNCTION OF RANDOM DISTURBANCE
PENALTY STRATEGY

This paper mainly considers the power balance constraint and
generator power constraint. The generator power constraints
are inequality constraints, and the following methods are
adopted to deal with the generator power constraints of the
i — th machine:

P (P < i< )
P;= { pmin, (Pi < P;“i“) )
P (P > PM)
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Equality constraint is power balance constraint. When
dealing with equality constraint, punishment factor with fixed
value is generally used [14]. The definition of objective func-
tion is as follows:

minF; = minF, + FP x APp ®)

where, FP is the fixed penalty value, which is set to 300 after
multiple value attempts in this experiment. APp is transmis-
sion loss plus supply demand minus total generation.

n
APp=Pp+PL— P ©)

The traditional fixed penalty function is to add the degree
of violation of the infeasible solution to the target function
as punishment. For the solution that violates the constraint
to a large extent, it needs to take a large degree of punish-
ment. However, the solution that violates fewer constraints
can be punished less, and the subsequent iteration update
may be closer to the optimal solution. In this paper, a ran-
dom disturbance penalty strategy is proposed to deal with
the constraint problem. Five penalty strategies are proposed,
including cosine function, hyperbolic sine function, tangent
function, hyperbolic tangent function and V-type function.
These five punishment strategies can change the degree of
punishment with the change of the degree of violation of
constraints of the generated solutions. However, the degree
of punishment of some functions decreases too fast with the
change of the degree of violation of constraints, resulting
in too small punishment, and the obtained solutions cannot
meet the constraints. Therefore, on the basis of these five
penalty functions, perturbations varying with the degree of
constraint violation are added, and the degree of punishment
is appropriately increased to ensure that the obtained solution
satisfies the constraint. The improved penalty factor is shown
as follows:

RDP = FP x RD (10)

where, RDP is the random disturbance penalty factor, FP is
the penalty factor with a fixed value, and Table 1 shows the
expression of RD. The x in Table 1 represents the degree to
which the resulting solution violates the constraint. Fig. 1
shows an image of the five penalty functions. Fig. 2 is the
image of the penalty functions after adding disturbance. The
x axis of Fig. 1-2 shows the degree of constraint violation,
and the y axis shows the degree of punishment.

lll. ARITHMETIC OPTIMIZATION ALGORITHM BASED

ON CAUCHY MUTATION TRIGONOMETRIC

FUNCTION SEARCH

A. ARITHMETIC OPTIMIZATION ALGORITHM

AOA is a meta-heuristic algorithm newly proposed by
Abualigah et al. in 2021 [33]. This algorithm mainly uses four
operators of addition, subtraction, multiplication and division
to seek and gradually approaches the optimal solution. In the
running process of the algorithm, initialization is carried out
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first, and the initial solution X is generated randomly. Its
expression is shown as follows.

X1,1 X1,n—1 X1,n
X211 X2,n—1 X2.n

X — e . (11)
XN 1 XN,n—1  XN.;n

Next, math optimization acceleration function (MOA) is
used to control the algorithm selection search phase. MOA
is compared with 71 (r1 is a random number from O to 1).
When MOA is greater than 1, the AOA enters the exploration
stage. When MOA is less than r1, the AOA enters the
exploitation stage. Eq. (12) is the calculation formula of
MOA. The math optimization probability function (MOP) is
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an important parameter to control the algorithm’s position
update, as shown in Eq. (13).

. Max — Min
MOA (C_Iter) = Min+ C_Iter x | ———— (12)
M _Iter

C_Iterl/®
M_Iter!/«
where, MOA (C_Iter) and MOP (C_Iter) indicate the MOA
and MOP values respectively. « is a parameter that affects the
search accuracy, o = 5.

When MOA is greater than r1, AOA is optimized using
a division or multiplication operator. The exploration stage
can be searched extensively. Eq. (14) represents the position
update expression of AOA exploration stage. When MOA
is less than 1, the algorithm enters the exploitation stage.
At this time, AOA uses subtraction and addition operators to

MOP (C_lter) = 1 — (13)
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TABLE 3. Benchmark testing functions.

Type F Functions Global min Dim
K Shifted and Rotated Bent Cigar function 100 [-100,100]
Unimodal Function F, Shifted and Rotated sum of Differential Power Function 200 [-100,100]
F Shifted and Rotated Zakharov Function 300 [-100,100]
F, Shifted and Rotated Rosenbrock’s Function 400 [-100,100]
F; Shifted and Rotated Rastrigin’s Function 500 [-100,100]
Fy Shifted and Rotated Expanded Scaffer’s Function 600 [-100,100]
Multimodal Functions F, Shifted and Rotated Lunacek Bi_Rastrigin Function 700 [-100,100]
Fy Shifted and Rotated Non-Continuous Rastrigin’s Function 800 [-100,100]
F, Shifted and Rotated Levy Function 900 [-100,100]
F, Shifted and Rotated Schwefel’s Function 1000 [-100,100]
F, Hybrid Function of Zakharov, Rosenbrock and Rastrigin’s 1100 [-100,100]
£, Hybrid Function of High Conditioned Elliptic, Modified Schwefel and Bent Cigar 1200 [-100,100]
F, Hybrid Function of Bent Ciagr, Rosenbrock and Lunache Bi-Rastrigin 1300 [-100,100]
F,  Hybrid Function of Bent Ciagr, Rosenbrock and Lunache Bi-Rastrigin 1400 [-100,100]
Fs Hybrid Function of Eliptic, Ackley, Schaffer and Rastrigin 1500 [-100,100]
Hybrid Functions Fs  Hybrid Function of Bent Cigar, HGBat, Rastrigin and Rosenbrock 1600 [-100,100]
£, Hybrid Function of Expanded Schaffer, HGBat, Rosenbrock and Modified Schwefel 1700 [-100,100]
F, i};eri:SI;liJ;licntion of Katsuura, Ackley, Expanded Griewank plus Rosenbrock, Modifed Schwefel 1800 [-100,100]
F, ;};bifp;l;lg;gréh(;i fljrent Cigar, Rastrigin, Expanded Grienwank plus Rosenbrock, Weierstrass 1900 [-100,100]
F,y  Hybrid Function of Happycat, Katsuura, Ackley, Rastrigin, Modified Schwefel and Schaffer 2000 [-100,100]
F, Composition Function of Rosenbrock, High Conditioned Elliptic and Rastrigin 2100 [-100,100]
F, Composition Function of Rastrigin’s, Griewank’s and Modifed Schwefel's 2200 [-100,100]
Fy Composition Function of Rosenbrock, Ackley, Modified Schwefel and Rastrigin 2300 [-100,100]
F,,  Composition Function of Rastrigin, Happycat, Ackley, Discus and Rosenbrock 2400 [-100,100]
F, g:;?rli)(g)isriltion Function of Expanded Scaffer, Modified Schwefel, Griewank, Rosenbrock and 2500 [-100,100]
Composition Functions F,, CoTnposition Function of HGBat, Rastrigin, Modified Schwefel, Bent-Cigar, High Conditioned 2600 [-100,100]
Elliptic and Expanded Scaffer
F,;  Composition Function of Ackley, Griewank, Discus, Rosenbrock, HappyCat, Expanded Scaffer 2700 [-100,100]
F, (B::inlil:;frllt;;l Function of shifted and rotated Rastrigin, Expanded Scaffer and Lunacek 2800 [-100,100]
F, g?_n;{z(;frl:;;l Function of shifted and rotated Rastrigin, Expanded Schaffer and Lunacek 2900 [-100,100]
F, Composition Function of shifted and rotated Rastrigin, Non-Continuous Rastrigin and Levy 3000 [-100,100]

Function

update the position, which can be searched more accurately
and easily approach the optimal solution. Eq. (15) represents
the exploitation stage location update formula.

x; j (C_lIter)
best (xj) ~ (MOP+ €) x ((UBj — LB;j) x ju + LB)) ,

r2 < 0.5

= | best (xj) x MOP x ((UB; — LB;) x u+ LB)),
otherwise

(14)
x; j (C_lIter)
136892

best ()Cj) — MOP x ((UBj — LBj) X o+ LBj) ,
r3 <0.5
best (x;) + MOP x ((UBj — LBj) x n + LB;),
otherwise
(15)

where, best (xj) is the j — th position of the best solution
obtained. x;j (C_Iter) is the j — th position of the i — th
solution. r2 and r3 are random numbers in the range [0,1].
UBj and LB; respectively represent the upper and lower bound
values. € is A small integer, u is the parameter that controls
the search of the algorithm, u = 0.5.
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TABLE 4. Function optimization simulation results.

F Meteic AOA sinCAOA sinhCAOA asinhCAOA tanhCAOA atanCAOA atanhCAOA
Ave 6.3E+09 379672.9 5649652 162086.8 203899.7 292719.7 491981.3
H Std 4.44E+09 424479 3279893 72873.5 171412.5 246180.7 882925.4
Rank 7 4 6 1 2 3 5
Ave 5.03E+09 5007.522 50964.64 2870.511 6382.506 4549.397 10166.76
F, Std 8.57E+09 7106.149 114673.7 2029.81 9420.396 4586.021 10048.91
Rank 7 3 6 1 4 2 5
Ave 7422.805 341.8016 504.0709 369.6911 360.9139 361.2451 359.9522
F Std 2506.139 24.38169 76.24781 44.67225 48.36371 31.78457 29.04602
Rank 7 1 6 5 3 4 2
Ave 800.3586 409.7933 408.4191 411.4283 407.3283 405.449 419.3858
F, Std 449.6062 14.60431 2.128481 19.5512 1.084275 3.154915 37.80818
Rank 7 4 3 5 2 1 6
Ave 544.6486 535.1885 528.9432 527.4528 533.102 536.2961 529.9428
F Std 20.72376 6.800326 7.875667 7.008136 10.13005 11.23671 10.14575
Rank 7 5 2 1 4 6 3
Ave 633.5853 617.8828 614.9164 614.6376 620.1421 615.0648 614.8406
Fy Std 8.845589 10.67271 9.285591 6.785115 10.49224 7.2223 9.297367
Rank 7 5 3 1 6 4 2
Ave 799.276 771.6775 765.9595 758.3506 765.0855 772.1387 772.0159
F; Std 18.76039 18.99144 15.89493 13.55157 17.01304 16.3987 21.31055
Rank 7 4 3 1 2 6 5
Ave 830.0305 822.6346 826.8151 821.5285 823.7998 825.1086 823.1878
K Std 6.15537 7.132221 7.689622 6.640807 8.846827 7.470316 6.637383
Rank 7 2 6 1 4 5 3
Ave 1349.055 1001.133 1039.327 1084.942 1031.357 1107.86 1054.754
Fy Std 192.6892 147.3704 166.734 152.5915 151.9925 147.0071 181.882
Rank 7 1 3 5 2 6 4
Ave 2159.813 1734.299 1539.052 1684.131 1748.217 1719.388 1630.652
F, Std 245.8042 221.9498 186.4666 206.3521 184.3196 311.138 242.6701
Rank 7 5 1 3 6 4 2
Ave 1345.435 1123.339 1147.309 1127.162 1125.008 1123.434 1144.239
o Std 262.8355 6.491929 55.84425 3.38549 5.932564 7.73986 63.02191
Rank 7 1 6 4 3 2 5
Ave 2219827 532599 377079.3 96015.42 1281412 291085.7 1777398
F, Std 2990782 554003.9 353450.2 92524.76 1750951 266673.1 2634649
Rank 7 4 3 1 5 2 6
Ave 14809.29 10739.33 15669.46 10256.94 5684.904 11285.32 17064.15
F, Std 10990.49 7182.184 13997.44 9141.459 7792.036 8968.808 13340.63
Rank 5 3 6 2 1 4 7
F, Ave 13622.24 6126.88 5133.786 4500.298 3651.678 6539.886 6719.908
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TABLE 4. (Continued.) Function optimization simulation results.

Std
Rank
Ave
Std
Rank
Ave
Std
Rank
Ave
Std
Rank
Ave
Std
Rank
Ave
Std
Rank
Ave
Std
Rank
Ave
Std
Rank
Ave
Std
Rank
Ave
Std
Rank
Ave
Std
Rank
Ave
Std
Rank
Ave
Std
Rank
Ave
Std
Rank
Ave
Std

9533.483
7
16236.16
6809.298
7
2011.164
77.72548
7
1819.95
60.52791
7
16872.12
15035.25
2
15996.99
2178291
7
2124.24
62.19807
7
2310.567
49.40488
7
2769.713
168.1829
7
2718.756
31.59606
7
2828.272
84.39012
7
3136.214
131.3258
7
3711.105
253.0218
7
3225.538
46.04964
7
3709.066
132.0435

5040.693
4
5456.366
5477.71
4
1787.801
95.48166
4
1764.685
19.71587
3
15331.09
10377.98
1
11202.78
12237.47
6
2071.755
53.49242
1
2272.037
59.08371
6
2309.992
2.661702
2
2651.948
14.35437
5
2739.98
106.3219
3
2927.706
25.15062
3
3129.264
360.2559
4
3096.409
3.614307
1
3236.078
94.26914

4310.057
3
4024.376
1897.947
2
1806.226
154.966
5
1755.851
19.06427
2
21240.96
14105.46
6
9164.531
7501.615
3
2083.774
63.23409
3
2215.85
6.560978
1
2352.644
173.9721
6
2642.572
13.94746
1
2776.398
11.37628
5
2929.876
23.33947
5
2964.652
87.29277
1
3098.143
4.542175
3
3346.329
99.8656

3176.965
2
4345.879
3236.104
3
1772.513
112.4796
2
1773.619
37.18435
5
17049.42
12928.15
3
9517.06
8996.282
4
2076.355
62.70877
2
2262.367
64.00019
5
2312.558
6.272488
5
2660.356
19.21799
6
2734.726
91.53474
2
2925.098
23.8355
2
3048.847
197.6423
3
3097.573
3.951869
2
3274.462
97.44954

1349.681
1
3191.567
878.9692
1
1781.057
96.01
3
1772.167
19.9957
4
22517.48
16437.09
7
10226.22
10415.79
5
2088.761
54.96277
5
2256.068
57.20936
3
2307.646
4.147465
1
2645.958
12.92127
2
2681.527
130.3443
1
2938.29
20.61104
6
3171.307
306.8777
5
3100.728
8.758808
5
3284.228
106.8563

5908.542
5
5998.139
4415.593
5
1814.413
141.3364
6
1795.043
40.92461
6
20932.76
12273.19
5
3985.209
2748.238
1
2096.979
59.68068
6
2248.269
56.42777
2
2311.816
2.446995
4
2648.382
18.0011
4
2741.459
90.63813
4
2928.798
24.45904
4
2979.419
167.8578
2
3100.083
4.947012
4
3293.769
102.1561

8442.825
6
6213.878
7055.641
6
1765.71
146.6365
1
1754911
8.55306
1
20481.55
13274.8
4
6547.563
5398.001
2
2086.619
59.76797
4
2262.283
59.85452
4
2311.59
4.581923
3
2647.519
9.629156
3
2780.661
21.661
6
2884.703
98.19935
1
3189.776
272.514
5
3101.81
15.3375
6
3285.053
110.4849
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TABLE 4. (Continued.) Function optimization simulation results.

Rank 7 1 6
Ave 3337.745 3238.37 3199.708
Fy Std 94.86375 47.17818 23.58181
Rank 7 6 1
Ave 6379844 471604.1 249192.6
F, Std 9599192 465569 295072
Rank 7 4 2
Mean Rank 6.77 3.33 3.63
Final Ranking 7 2 4

2 3 5 4
3216.709 3221.358 3225.843 3236.021
59.45622 45.1341 37.3858 60.91602

2 3 4 5
234662.5 482956.6 724044.6 466488.8
517721.2 475021 443630.5 472825.5

1 5 6 3

2.73 3.47 4.07 3.97

1 3 6 5

B. SINE OPTIMIZATION ALGORITHM

The Sine Optimization algorithm (SOA) was proposed by
Mostafa Meshkat in 2017. This algorithm only uses the
sine function as the position update strategy, which enables
the algorithm to have higher optimization accuracy and
faster convergence rate [34]. The search process in an SOA
algorithm is divided into two phases, exploration and devel-
opment, whose location update formula is shown below.

r3 < 0.5
r3 > 0.5

X! g )+ xsin(r2),

P . (16)
Xpess () + 11 X 8in(ry)

xG+1)= {
where, X;an 4 () 1s the position of random search individuals,
and X;, . (j) is the position of optimal search individuals. r|
represents the direction of movement, which can be calcu-
lated by equation (17). r is the random number in the range
of [0, 27r], and r3 is the random number between [0, 1]. a is
a constant with the value 2.

a

=a—t— 17
n=a—tz )

C. INVERSE ACCUMULATION FUNCTION OF CAUCHY
DISTRIBUTION

Cauchy distribution is a continuous probability distribution
named after Augustine Louis Cauchy and Hendrik Lorentz
[35]. The expression of its probability density function is Eq.
(18).

1 b
f (a,b) n[@_mqu (18)

The formula for calculating the cumulative distribution
function of Cauchy distribution is:

1 - 1
f (x; a, b) = — arctan r—a + = (19)
T b 2

The inverse function of the cumulative distribution func-
tion of the Cauchy distribution is shown as follows:

' (p;a,b) =a+ btan (7‘[ (p— %)) (20)

p = rand (1, dim) 21
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where, p is a random number in the range of [0,1]; dim is the
dimension of the function, and the positional parameter a is
assigned 0 and the parameter b is assigned 1.

D. ARITHMETIC OPTIMIZATION ALGORITHM BASED ON
CAUCHY MUTATION TRIGONOMETRIC FUNCTION SEARCH
MOP is an important parameter that controls the update
of AOA position. The original MOP parameter gradually
reduced with the progress of iteration, and the MOP value will
become very small after the algorithm is run, which makes it
difficult for the algorithm to jump out of the local optimal.
In this paper, the oscillation coefficient is considered to com-
bine with Cauchy mutation, in which the Cauchy mutation
is the inverse accumulation function of Cauchy distribution,
enriching its variation trend. Then, the k, is generated by
the oscillation Cauchy mutation is used to replace MOP,
which will change with the oscillation Cauchy mutation in
each iteration, thus strengthening the ability to get out of the
local optimal and improving the convergence speed of the
algorithm. The expression of the oscillating Cauchy mutation
operator is shown as follows:

C_iter . C_iter
k1=1.5—M +0.5sin | 107 x

_iter M _iter
C_iter
X (1 — - ) (22)
M _iter
ko = k1 x tan (7 (rand — 0.5)) (23)

where, kj is the oscillation coefficient, and k; is the parameter
generated by oscillation Cauchy mutation. Fig. 3 shows the
variation of oscillation coefficient after 1000 iterations, where
x axis is the number of iterations and y axis is the size
of ky value. Fig. 4 shows the motion track of oscillation
Cauchy mutation after 1000 iterations, and the two axes are
the amount of displacement in both directions.

The value of control parameter i in the AOA position
update formula is 0.5. In this thesis, the k4 is generated by the
sinusoidal search operator is used to replace the original fixed
value parameter, which can enhance the search capability of
the AOA, so that the AOA still has a certain global exploration
capability in the late running. On the basis of introduc-
ing sinusoidal search operators, we also put forward some
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TABLE 5. Performance comparison results with different intelligent optimization algorithms.

F Meteic AOA asinhCAOA HHO CMA-ES GSA FDO GA SSA
Ave 4.81E+09 89374.59 3.6428E+05 100.00 296.0 2.1193E+10 9799.7 3396.25
K Std 2.62E+09 50492.39 1.5316E+05 0.000 275.1 1.6865E+09 5942.54 3673.08
Rank 7 5 6 1 2 8 4 3
Ave 6971.252 366.0477 301.44 300.00 10829.2 1.5382E+04 8721.4 300.00
I Std 2346.377 36.42204 1.0172 0.000 1620.74 260.47 5900.30 0.00
Rank 5 4 3 1 7 8 6 1
Ave 648.9165 404.2003 409.96 400.00 406.6 3458.9 410.71 406.27
F, Std 201.9786 2.609539 16.826 0.000 2.92 251.24 18.512 10.07
Rank 7 2 5 1 4 8 6 3
Ave 539.4426 529.7581 546.51 530.18 556.7 634.46 516.32 521.82
k; Std 20.54336 6.840792 17.142 58.32 8.40 5.6416 6.926 10.50
Rank 5 3 6 4 7 8 1 2
Ave 638.5729 614.0404 628.56 682.1 621.6 657.34 600.04 609.77
Fy Std 6.923598 5.610863 14.009 35.43 9.015 1.3673 0.0668 8.26
Rank 6 3 5 8 4 7 1 2
Ave 793.3362 762.8876 786.43 713.4 714.6 808.41 728.32 740.88
£ Std 11.1881 21.93916 19.5713 1.63 1.55 8.1592 7.290 16.62
Rank 7 5 6 1 2 8 3 4
Ave 831.7577 826.5199 829.08 828.9 820.5 840.41 820.72 823.45
£ Std 5.610561 1.624062 9.1952 52.98 4.69 1.7563 8.961 9.95
Rank 7 4 6 5 1 8 2 3
Ave 1323.734 970.96 1399.5 4667.3 900.0 1653.1 910.28 944.07
I Std 307.2437 34.83224 247.32 2062.8 6.9E-14 42.672 15.154 104.66
Rank 5 4 6 8 1 7 2 3
Ave 1964.968 1520.727 1985.9 2588.1 2694.6 3608.1 17233 1858.85
I Std 232.7142 194.1624 275.46 414.47 297.62 171.89 252.34 294.50
Rank 5 1 4 6 7 8 2 3
Ave 3147.222 1122.435 1153.1 1111.3 1134.7 2.4642E+06 1125.6 1180.5
£, Std 4310.589 6.09369 44.932 25.44 10.45 3.8727E+06 23.80 59.80
Rank 7 2 5 1 4 8 3 6
Ave 572999.5 221494.9 3.3976E+06 1629.6 702723 2.3930E+09 37255 1983166
F, Std 330137 425765.1 3.8744E+06 198.11 42075.4 5.7508E+08 34792.7 1909901
Rank 4 3 7 1 5 8 2 6
Ave 3062.083 2708.721 1553.9 1452.1 7147.5 3.0406E+08 7048.9 1508.94
Fy Std 1361.791 1614.508 146.42 55.98 1489.52 2.8026E+08 8160.08 51.05
Rank 5 4 3 1 7 8 6 2
Ave 13981.45 3276.259 3077.3 1509.6 18001 1.0541E+07 9296.2 2236.69
Fs Std 6787.304 1167.299 1286.7 16.43 5498.67 2.0198E+07 8978.18 571.19
Rank 6 4 3 1 7 8 5 2
F Ave 2047.573 1697.204 1882.3 1815.3 2149.7 2400.6 1786.3 1726.26
Std 120.3839 103.4412 120.58 230.1 105.8 72.087 129.07 126.97
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TABLE 5. (Continued.) Performance comparison results with different intelligent optimization algorithms.

Rank 6 1 5 4 7 8 3 2
Ave 1901.083 1745.839 1779.7 1830.1 1857.7 1935.0 1746.5 1774.57
F, Std 81.39328 13.15915 35.434 175.8 108.32 101.78 39.78 34.23
Rank 7 1 4 5 6 8 2 3
Ave 17501.28 10677.94 1.4672E+04 1825.9 8720.5 7.0988E+09 15721 23429.1
Fg Std 9161.536 5952.523 1.2135E+04 13.53 5060.1 1.0187E+09 12828 14045.7
Rank 6 3 4 1 2 8 5 7
Ave 38413.33 5797.537 8954.2 1920.5 13670 3.2867E+09 9686.5 2916.1
F, Std 29914.92 5751.063 7966.2 28.68 19168 2.4058E+09 6766.3 1871.2
Rank 7 3 4 1 6 8 5 2
Ave 2165.552 2049.754 2126.3 2494.8 22723 2237.6 2056.5 2089.3
Fy Std 49.89107 11.22543 60.591 242.65 81.72 20.487 60.01 49.28
Rank 5 1 4 8 7 6 2 3
Ave 2307.233 2233.325 2310.4 2324.7 2357.7 2527.9 2303.8 2249.8
£y Std 47.2523 58.09804 66.374 67.76 28.20 60.44 43.75 60.44
Rank 4 1 5 6 7 8 3 2
Ave 2775.807 2310.586 2312.2 35324 2300.0 4210.7 2304.6 2301.5
£y Std 184.4506 3.803339 15.194 847.6 0.072 261.99 2.38 11.80
Rank 6 3 5 7 1 8 4 2
Ave 2700.164 2647.702 2659.2 2728.8 2736.5 3332.9 2632.9 2621.7
Fy Std 25.08189 16.46436 24.988 243.1 39.14 166.06 13.42 8.69
Rank 5 3 4 6 7 8 2 1
Ave 2828.447 2683.855 2791.9 2704.4 2742.2 3206.8 27583 2733.2
Fy, Std 57.0816 144.395 85.570 73.42 5.52 37.169 14.92 64.43
Rank 7 1 6 2 4 8 5 3
Ave 3189.873 2919.041 2923.4 2932.01 2937.5 3783.6 2947.9 2923.5
Fys Std 52.50918 26.43326 48.503 20.87 15.36 247.31 19.25 23.86
Rank 7 1 2 4 5 8 6 3
Ave 3995.715 2996.4 3288.3 3457.7 34407.5 5085.1 3112.1 2900.9
Fy Std 262.758 104.0844 459.24 598.9 628.73 125.07 334.65 36.56
Rank 6 2 4 5 8 7 3 1
Ave 3225.731 3096.39 3151.0 3137.5 3259.5 3824.8 3115.1 3092.6
Fy Std 52.75979 1.663944 42.197 21.37 41.66 349.40 19.18 2.78
Rank 6 2 5 4 7 8 3 1
Ave 3676.381 3253.608 3389.5 3397.6 3459.4 3973.3 3320.7 3210.5
Fy Std 204.2122 91.84942 128.84 131.3 33.84 270.36 126.34 113.17
Rank 7 2 4 5 6 8 3 1
Ave 3363.131 3209.198 3308.7 32135 3449.5 5734.4 32535 3214.1
Fy Std 89.5474 19.28315 70.303 109.79 171.33 880.61 81.99 51.69
Rank 6 1 5 2 7 8 4 3
Mean Rank 5.75 2.46 4.5 3.54 4.93 7.54 3.32 2.64
Final Ranking 7 1 5 4 6 8 3 2
VOLUME 11, 2023 136897
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FIGURE 7. Results of function convergence curves.

136898

VOLUME 11, 2023



Y.-P. Li et al.: AOA Based on Cauchy Mutation Trigonometric Function Search

IEEE Access

Convergence curve
T T T

Convergence curve . . . .
; T : T . T T
1000 | AOA 900 F —+—AOA
- GnGAOA O sinCAOA
—%— sinhCAOA 890 - +S|n.hCAOA
950 | asinhCAOA | | asinhCAOA
—— tanhCAOA ssol e "‘:"hgﬁgi
atanCAOA c [ atan ]
c
S —&— atanhCAOA 2 —¢—atanhCAOA
2 900t 1 5870 :
2 2
@ ?
2 2 860 ]
= =4
£ 850 1 5
2 o}
Q
m m
100 200 300 400 500 600 700 800 900 1000
Iteration# Iteration#
N F ®) K
Convergence curve ) Convergence curve
T T : T : T . T 4 T T T T T T T T T
L p
3500 ——AOA 3200%‘ ——AOA ]
—©—— sinCAOA q O sinCAOA
3000 | ——sinhCAOA | ] 3000 —%—sinhCAOA |
asinhCAOA 2 asinhCAOA 1
—>%— tanhCAOA 800 —>%—— tanhCAOA
< 2500 atanCAOA | - c atanCAOA | |
S —<— atanhCAOA S —<%—atanhCAOA
% 2000 1 @
7] 173
(0] (0]
= = I I I I I I I I I ]
E E T T T T T T T T T
b7 k7]
[ [ 4
@ 1500 o
= ok ke Kk ok kK b kK
100 200 300 400 500 600 700 800 900 1000
Iteration# Iteration#
OF (10) £,
Convergence curve . Convergence curve
T T T T T T T T T T T T T T
9
. —+—AOA | 10 g:% —+—AOA
10 ~—©— sinCAOA O sinCAOA
—— sinhCAOA —%—sinhCAOA
asinhCAOA asinhCAOA
—— tanhCAOA ——tanhCAOA
c atanCAOA c atanCAOA
2 —&— atanhCAOA S —&— atanhCAOA
g 2
2 2
[} 2]
(7] 17
[0} o) 4
£ £
=4 L=
k7 k7
o o I I I I I I I I I I
o m YN N NN N N NN
& & & & o & o o b o 6 o o b s o , . ) ) ) ) ; \ . i

200

300

400 500 800 900 1000

Iteration#
an g,

600 700

FIGURE 7. (Continued.) Results of function convergence curves.
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improved methods similar to sinusoidal search operators,
these methods are hyperbolic sine, inverse hyperbolic sine,
hyperbolic tangent, arctangent, inverse hyperbolic tangent
search operators. The parameter changes generated by them
have different effects on the algorithm effect. Fig. 6 shows
the images of six trigonometric functions, and Table 2 shows
the parameter Settings of six improved methods. Combined
with the above two improved position update expressions are
as follows (r2 and r3 are random numbers in the range [0,1]):

x; j (C_lIter)
best (xj) =+ (kx+ €) x ((UBj — LB)) x k4 + LB)) ,
r2 < 0.5
| best (x)) x ko x ((UBj — LB;) x ks + LB)) ,
otherwise
(24)
x; j (C_Iter)
best (xj) — ko x ((UB;j — LBj) x k4 + LB;),
_ r3 <05 25)
best (x;) + ko x ((UBj — LBj) x k4 + LB;)
otherwise

IV. FUNCTION OPTIMIZATION TEST SIMULATION

A. BENCHMARK TEST FUNCTIONS

In this section, the CEC2017 test functions are used to check
the performance of the AOA based on Cauchy mutation
trigonometric function search. In order to observe the effect
of the six improved methods, the improved schemes that add
sine function, hyperbolic sine, inverse hyperbolic sine, hyper-
bolic tangent, arctan and inverse hyperbolic tangent search
operators are denoted as sinCAOA, sinhCAOA, asinhCAOA,
tanhCAOA, atanCAOA and atanhCAOA, respectively. The
relevant information of CEC2017 benchmark Functions is
shown in Table 3, including Unimodal, Multimodal, Hybrid
and Composition Functions. The two parameters « and u in
AOA are « = 5, u = 0.5. In terms of ensuring the fairness
of the experiment, each algorithm runs 10 times indepen-
dently when optimizing the benchmark function, averages the
optimal value obtained after optimization, and compares the
effect of the improved method with the calculated average
value. At the same time, the population of each method is 30,
and the number of iterations is 1000.

B. SIMULATION RESULTS

Table 4 shows the result data of the six improved methods and
the original AOA optimization of CEC2017 benchmark test
functions. From the comparison of the average value obtained
from the optimized test function in the table, it can be
found that the six improved methods sinCAOA, sinhCAOA,
asinhCAOA, tanhCAOA, atanCAOA and atanhCAOA are all
better than the optimization results of AOA algorithm, which
proves that the improved method is effective. Among the
six improvement methods, asinhCAOA method has the best
comprehensive effect. Next, AOA and asinhCAOA were used
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FIGURE 8. The convergence curve of solving the 150MW demand CEED
problem.

T T
1.34 1 - = =-AOA
—*—sinCAOCA
—+—sinhCAOA
—*——asinhCAOA | 4
tanhCAOA
atanCAOA
—<}— atanhCAOA | |

Total cost ($/h)

wwwwwwwww

L | | ?
0 20 40 60 80 100 120 140 160 180 200
Iterations

FIGURE 9. The convergence curve of solving the 175MW demand CEED
problem.

to compare with Harris hawk optimizer (HHO) [36], Evolu-
tion Strategy with Covariance Matrix Adaptation (CMA-ES)
[37], Gravitational Search Algorithm (GSA) [38], Fitness-
dependent Optimizer (FDO) [39], Genetic Algorithm (GA)
[40] and Salp Swarm Algorithm (SSA) [41], and the same
CEC2017 test functions as above are used for comparison.
The performance data of the test functions optimized by
HHO, CMA-ES, GSA, FDO, GA and SSA algorithms are
quoted from literature [42] and [43]. In order to ensure the
fairness of the experiment, the number of populations and
iterations set by AOA and asinhCAOA are the same as those
of the optimization algorithms used for comparison, which
are 50 and 1000 respectively. Each group of experiments is
run independently for 10 times, and the minimum value of
each optimized test function is averaged, and the value is
compared to judge the performance of the algorithm. The
comparison data of the simulation experiment is shown in
Table 5. It can be clearly seen from the data in Table 5 that
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FIGURE 11. The convergence curve of solving the 225MW demand CEED
problem.

asinhCAOA obtains the least optimal value when optimizing
the Fig, Fi6-F17, F20-F21, F24-F>s5, F29 benchmark func-
tions, and also has a better performance when optimizing
other functions. The improved method of asinhCAOA can
obtain a smaller optimal value by comprehensively compar-
ing the algorithms of HHO, CMA-ES, GSA, FDO, GA and
SSA, which better verifies the effectiveness of the improved
method.

V. SIMULATION EXPERIMENT OF CEED PROBLEM

In this section, the experiment is divided into two parts.
First, it is verified that the AOA based on Cauchy mutation
trigonometric function search can achieve better optimization
effect in solving CEED problems compared with the AOA
algorithm, and the method with the best improvement effect
is selected by comparing the experimental data results. Next,
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TABLE 6. Power limits and fuel cost coefficient of generators.

Unit a,(107) b, ¢ (10%) d, (10%) P P
1 0.1000 0.0920 0.1450 -0.1360 50 200
2 0.4000 0.0250 0.2200 -0.0035 20 80
3 0.6000 0.0750 0.2300 -0.0810 15 50
4 0.2000 0.1000 0.1350 -0.0145 10 50
5 0.1300 0.1200 0.1150 -0.0098 10 50
6 0.4000 0.0840 0.1250 0.0756 12 40

TABLE 7. The coefficient of nox emission and max/max penalty factor.

Unit €nou Sroni Zxou Do hy
1 0.0012 0.0520 18.50 -26.00 0.9407
2 0.0004 0.0450 12.00 -35.00 1.4962
3 0.0016 0.0500 13.00 -15.00 1.3870
4 0.0012 0.0700 17.50 -74.00 0.8308
5 0.0003 0.0400 8.50 -89.00 2.1705
6 0.0014 0.0240 15.50 -75.00 1.0930

TABLE 8. The coefficient of co, emission and max/max penalty factor.

Unit €coi Jeoa 8coni Do he
1 0.0015 0.0920 14.00 -16.00 0.7823
2 0.0014 0.0250 12.50 -93.50 1.1895
3 0.0016 0.0550 13.50 -85.00 1.4356
4 0.0012 0.0100 13.50 -24.50 1.1333
5 0.0023 0.0400 21.00 -59.00 0.7456
6 0.0014 0.0800 22.00 -70.00 0.7158

TABLE 9. The coefficient of so, emission and max/max penalty factor.

Unit €50 S0 Lo hsos; hy
1 0.0005 0.150 17.00 -90.00 1.0852
2 0.0014 0.055 12.00 -30.50 1.0616
3 0.0010 0.035 10.00 -80.00 2.1051
4 0.0020 0.070 23.50 -34.50 0.5976
5 0.0013 0.120 21.50 -19.75 0.6772
6 0.0021 0.080 22.50 25.60 0.6192

verify whether the effect of using the random disturbance
penalty function is improved compared to the fixed-value
penalty strategy. The CEED problem cases of 6 units is used,
and the load demands is set as 150 MW, 175 MW, 200
MW and 225 MW for experiments. In the following exper-
iment, the arguments of AOA algorithm are set as @ = 5,
un=0.5.
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TABLE 10. Experimental data for solving the 150mw demand ceed problem.

AOA sinCAOA sinhCAOA asinhCAOA tanhCAOA atanCAOA atanhCAOA

e 50 50 50 50 50 50 50

P, 20 20 20 20 20.19944 20 20

P 15 15 15 15 15 15 15

P, 11.86382 28.03583 23.59578 10.20696 19.72084 32.59998 24.22102

P, 36.57987 12.86178 12.91201 24.33985 13.71956 16.14233 12.12747

F, 16.9582 24.25655 28.59542 30.49611 31.39614 16.4383 28.92076
Feor ($/h) 2615.708 2603.32 2596.553 2587.416 2595.12 2616.161 2602.732
Ecoy (kg/h) 2761.741 2556.066 2610.873 2754.108 2657.809 2501.843 2612.574
Eyo. (kg/h) 2239.041 2462.6 2444.17 2320.669 2426.787 2466.71 2457.548
Eg,  (kg/h) 3210.268 3172.695 3170.877 3175.35 3173.151 3187.189 3180.616
Frow ($/h) 10344.46 10258.25 10303.57 10237.21 10293.27 10282.66 10301.89

TABLE 11. Experimental data for solving the 175mw demand ceed problem.
AOA sinCAOA sinhCAOA asinhCAOA tanhCAOA atanCAOA atanhCAOA

R 50 50 50 50 50 50 50

P, 25.95509 31.144 20.79557 20 20 20 20.56601

P 15 16.94124 15 15 15 15 17.81973

P, 23.52634 37.22361 29.56719 34.27872 28.97005 19.27156 38.21895

P, 20.98749 11.69035 25.08684 20.02265 21.14093 44.68826 13.52578

F, 40 28.20268 34.56364 36.25066 39.90974 27.16255 35.04209
Feosr ($/h) 3088.071 3164.701 3040.895 3065.758 3051.409 3088.872 3111.318
Ecor (kg/h) 3271.519 3026.012 3214.129 3208.132 3267.641 3441.698 3140.42
Eyo. (kg/h) 2864.287 2966.072 2850.258 2943.067 2904.983 2688.977 3010.858
Es,  (kg/h) 3888.754 3802.055 3908.622 3970.997 3960.302 4014.721 3940.619
Frow ($/h) 12347.66 12307.66 12352.99 12222.56 12287.73 12341.23 12289.58

A. ARITHMETIC OPTIMIZATION ALGORITHM BASED ON
CAUCHY MUTATION TRIGONOMETRIC FUNCTION SEARCH
TO SOLVE CEED PROBLEM

The fuel cost coefficient and pollutant emission coefficient
of generator are from [44]. Their data are shown in Table 6-9,
and the transmission losses are not considered in this case.
Firstly, an AOA based on Cauchy mutation trigonometric
function search is applied to solve CEED problem of 6 units,
and its effect is tested. Since there are 4 objective functions
in this problem, the generating cost and pollutant emissions
need to be converted into one optimization objective, which
is called the total cost ($/h). The original AOA algorithm
and six improved AOA methods are used for experiments
and their results are compared. The following parameters are
set in the following experiments. The population considered
by the algorithm is 50, and the number of iterations is 200.

VOLUME 11, 2023

Each methods are run for 20 times, and the average value of
the experimental data is calculated. Table 10-13 shows the
simulation results of 4 different loads CEED problems, where
the recorded data is the average value, and the simulation
figures are shown in Fig. 8-11.

Table 10-Table 13 and Fig. 8-11 show the total cost
obtained by six improved methods in solving this case
under different load requirements. Most of the results of
the six improved methods are better than the original AOA
algorithm. According to the data in Table 10 and the sim-
ulation diagram in Figure 8, it can be found that when the
load demand is set to 150MW, the total cost obtained by
asinhCAOA is 10237.21($/h), which is the minimum value.
When the load demand is 175MW, it is shown in Table 11
and Fig. 9 that the total cost obtained by asinhCAOA to
solve this problem is 12222.56 ($/h), which has the best
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TABLE 12. Experimental data for solving the 200mw demand ceed problem.

AOA sinCAOA sinhCAOA asinhCAOA tanhCAOA atanCAOA atanhCAOA

R 50 50 50 50 50 50 50

P, 28.15645 33.59214 23.37567 27.35535 20.596 27.72021 39.64162

P, 20.30235 15 17.19603 15 15.38744 15 15.09997

P, 35.17356 43.66716 47.97644 41.24658 49.64244 50 38.36619

P, 30.88494 31.97632 23.71293 27.49407 30.67354 31.79019 17.82748

P, 35.75812 25.77442 37.75451 39.01588 33.80951 25.76836 40
Feosr ($/h) 3602.837 3621.001 3607.163 3580.873 3583.992 3625.588 3681.462
E., (kg/h) 3729.58 3631.206 3724.103 3755.822 3755.508 3661.2 3711.572
Eyo, (kg/h) 3284.234 3331.195 3503.698 3392.487 3479.099 3437.971 3431.702
Esp,  (kg/h) 4516.768 4585.746 4754.774 4679.618 4833.869 4739.695 4578.901
Frow ($/h) 14443.38 14401.8 14514.13 14410.88 14438.18 14420.52 14454.37

TABLE 13. Experimental data for solving the 225mw demand ceed problem.
AOA sinCAOA sinhCAOA asinhCAOA tanhCAOA atanCAOA atanhCAOA

R, 53.42939 50 50 50 50 50 50

P, 27.43515 27.8035 31.4233 41.04481 34.2461 20 25.09994

P 15.8581 15 15 15 15 22.99286 23.94985

P, 50 50 40.83785 45.64204 50 49.67611 46.94303

P 39.03363 42.21536 50 33.32814 35.76609 42.62369 41.74513

F, 40 40 37.98438 40 40 40 37.34563
Feor ($/h) 4149.555 4120.963 4131.538 4159.893 4141.813 4147.499 4152.972
Ecor (kg/h) 4481.433 4465.18 4565.715 4319.922 4358.488 4485.514 4397.664
Eyo. (kg/h) 3960.953 3880.362 3712.318 3844.14 3899.351 3892.369 3820.39
Esp, (kg/h) 5616.29 5607.539 5529.734 5370.548 5495.641 5574.931 5416.401
Froa ($/h) 16780.34 16762.16 16800.73 16693.98 16705.12 16766.2 16729.69

effect and fast convergence speed. However, when the load
requirement is set to 200MW, the data in Table 12 and the
simulation diagram in Fig. 10 show that sinCAOA has the
lowest total cost compared with other methods, and the effect
of asinhCAOA is second only to sinCAOA. Table 13 and
Fig. 11 show the simulation results when the load demand is
set to 225MW. It can be found that asinhCAOA has the best
effect among the AOA and the improved method, and the total
cost obtained is 16693.98 ($/h). Through data comparison
and simulation graph, it can be found that asinhCAOA have
better solution quality and faster convergence rate than other
improved methods.

Next, the total cost obtained by asinhCAOA method is
compared with LM [5], SA [19], QBA [44], MBO [45]
and SCA [17]. The total cost data obtained by LM [5],
SA [19], QBA [44], MBO [45] and SCA [17] are obtained
from literature [17] and [22]. The table records the total cost
obtained by solving CEED problem under four different load
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TABLE 14. Comparison of results of ceed problem solved by different
algorithms.

Total cost ($/h)

Load(MW)

asinhCAOA LM[5]  SA[19] QBA[44] MBO[45] SCA[17]

150 10237.21 10264.566710261.490510,255.28 10255.21 10255.208
175 12222.56 13251.516612280.0437 12,241.74 12241.67 12241.668
200 14410.88 16077.408914421.3044 14,413.88 14413.71 14413.708
225 16693.98 19661.327816790.6906 16,783.91 16784.34 16783.781

demands by different algorithms. The data in Table 14 prove
that the total cost obtained by asinhCAOA is smaller than
that of other algorithms cited under the four load demands,
which better proves the superiority of the improved method
of asinhCAOA.
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TABLE 15. Experimental data for solving the 150mw demand ceed
problem.

I b, B P, B £ Fy ($/h)

F CAOA 50 20 15 33.22108 10 21.82467 10219.86

cos CAOA 50 2049368 15 27.42418 10  27.11462 1023331
asinh CAOA 50 20 15 3223516 13.92087 18.80403 10205.68
tan_CAOA 50 20.62971 15 30.51903 10  23.94141 10234.56
tanh CAOA 50 20 15 21.58681 20.89678 2277248 10231.77
V AOA 50 20

15 25.86455 10 29.14367 10241.62

TABLE 16. Experimental data for solving the 175mw demand ceed
problem.

R B B B, B B F ($h)
F_CAOA 50 20 15 284786 2251101 40  12308.28

cos_CAOA 50 20 15.85351 49.08973 11.53187 28.58829 12222.66

asinh_CAOA 50 21.46713 15 23.08005 26.22622 39.61858 12206.51

tan_CAOA 50 20 15 31.32886 19.86718 38.77133 12253.51
tanh_CAOA 50 20 15 28.98013 23.93548 37.07699 12292.03
V_AOA 50 20 15 36.01674 14.23861 40 12281.11

TABLE 17. Experimental data for solving the 200mw demand ceed
problem.

R P P, P, P F Fy ($/h)

3 5

F_CAOA 50 37.76003 15 34.72443 33.52886 29.89622 14426.68

cos_ CAOA 50 25.27359 18.42867 34.96584 34.40803 37.25707 14381.96
asinh_CAOA 50 23.40233 16.74399 28.47119 41.61599 40 14375.87
tan_CAOA 50 22.11805 17.75074 37.99802 34.35786 37.79941 14364.74
tanh_CAOA 50 20 15 44.43245 38.7487 32.11241 14399.58

V_AOA 50 29.303 15 37.20131 29.28335 40 14406.82

TABLE 18. Experimental data for solving the 225mw demand ceed
problem.

A £ 8 £, 5 £

Fr ($/h)

F_CAOA 50 20 16.45088 48.65911 49.92478 40  16733.89

cos_ CAOA 50 23.97154 22.22258 47.90962 43.03837 37.93525 16783.59

asinh_CAOA 50 35.54562 18.33049 50  31.42747 40  16686.75
tan_CAOA 50 20 17.14695 50  48.01926 40 16727.3
tanh_CAOA 50 36.77825 15 50 33.54483 39.66798 16706.77

V_AOA 50 37.38017 15 46.31213 36.33713 40  16738.66

B. RANDOM DISTURBANCE PENALTY FUNCTION TEST

The above experiment verifies the performance of arith-
metic optimization algorithm based on Cauchy mutation
trigonometric function search in solving CEED problems.
After comprehensive comparison of the total cost of each
method, asinhCAOA with the best effect is selected among
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the six improved methods. The next step of the experiment
is to test the performance of the random disturbance penalty
function. The case of 6 units is simulated and solved by
asinhCAOA, which is the same as the previous section. The
proposed random disturbance penalty function selects five
different functions, which are cosine function, hyperbolic
sine function, tangent function, hyperbolic tangent func-
tion and V-type function. For the convenience of recording,
asinhCAOA is abbreviated as CAOA. The five punish-
ment strategies are denoted as cos_CAOA, asinh_CAOA,
tan_CAOA, tanh_CAOA and V_CAOA; The fixed penalty
strategy is denoted as F_CAOA. In this experiment, the popu-
lation number is set to 50, the maximum number of iterations
is 200, and each methods is run for 20 times to take the
average. The experimental results are shown in Table 15-18
and Fig. 12-15. The data recorded in Table 15-18 are average
values.
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FIGURE 14. The convergence curve of solving the 200MW demand CEED
problem.
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FIGURE 15. The convergence curve of solving the 225MW demand CEED
problem.

By observing Table 15-18 and Figure 12-15, it can
be concluded that Compared with F_CAOA, cos_CAOA,
tan_CAOA, tanh_CAOA and V_CAOA, the total cost
obtained by using asinh_CAOA penalty strategy is
10205.68($/h), 12,206.51 ($/h) and 16,686.75 ($/h) when
solving 150MW, 175MW and 225MW load demands, respec-
tively. When the load demand is 200MW, tan_CAOA works
best, and the total cost is 14364.74($/h). When the load
demand is 150MW, 175MW, 200MW and 225MW, the total
cost of asinh_CAOA is reduced by 0.14%, 0.83%, 0.35% and
0.28% respectively compared with the fixed penalty strategy.
However, in general, the stability of the random disturbance
penalty strategy needs to be improved.

VI. CONCLUSION

In this thesis, an arithmetic optimization algorithm based on
Cauchy mutation trigonometric function search is proposed.
MOP is replaced by oscillating factor and Cauchy muta-
tion, and 6 kinds of trigonometric function search are used
to replace fixed value parameters in AOA position update

136908

formula. In order to test the optimization performance of
arithmetic optimization algorithm based on Cauchy muta-
tion trigonometric function search, 23 benchmark functions
are applied to test the optimization effect, and asinhCAOA
with the best optimization effect is selected, and then the
performance of other algorithms is compared. Then the AOA
based on Cauchy mutation trigonometric function search is
applied to solve CEED problem and compared with other
methods. The experimental data show that the improved AOA
algorithm is effective in solving CEED problem. Finally, it is
verified by experiments that the effect of random disturbance
penalty function is obviously better than that of fixed penalty
function, but the stability of this penalty strategy still needs
to be improved.
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