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ABSTRACT Nowadays, problems such as greenhouse effect and air pollution become increasingly promi-
nent. The power generation process should pay attention to the fuel cost and reduce the pollution to
the environment. In this paper, an arithmetic optimization algorithm (AOA) based on Cauchy mutation
trigonometric function search is proposed to solve the combined economic emission dispatch (CEED)
problem. The price penalty factor is used to convert multiple objective functions of CEED problem into one
objective. The math optimization probability (MOP) parameter is used to control the position update of the
AOA. MOP is replaced by the oscillation coefficient and Cauchy mutation, which can not only guarantee the
local search accuracy but also enhance the global search capability. 6 kinds of trigonometric function search
operators, sine function, hyperbolic sine, inverse hyperbolic sine, hyperbolic tangent, inverse hyperbolic
tangent, are used to replace the fixed value control parameters in AOA algorithm. The algorithm still has a
certain ability to jump out of the local optimal in the late running. The 23 test functions are used to verify
the effect of the improved AOA method. The AOA is compared with 6 kinds of improved AOA, and the
improvement method with the best effect is selected, and then compared with other intelligent optimization
algorithms to verify the effectiveness of the improved strategy. In addition to improving the algorithm, the
constraint of CEED problem is also treated. Five kinds of random disturbance penalty functions are proposed,
which are cosine function, hyperbolic sine function, tangent function, hyperbolic tangent function and V-
type function. The CEED problem of 6 units was selected for simulation experiment under 4 different load
demands. The experimental data show that the arithmetic optimization algorithm based on Cauchy mutation
trigonometric function search has a good effect on solving CEED problems, and the random disturbance
penalty strategy is more effective in solving quality.

INDEX TERMS Combined economic emission dispatch, Cauchy mutation, random disturbance penalty
function, trigonometric function search, arithmetic optimization algorithm.

I. INTRODUCTION
Nowadays, electricity industry is a necessary element in
people’s work and life. From the past to the present, the
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power industry has been developing in a highly demanding
and competitive environment [1]. Among them, people pay
much attention to this problem, how to reduce the cost of
power generation has become a key research object in power
generation work. The task of obtaining the minimum power
generation cost while meeting the power supply demand
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is called the economic load dispatch (ELD) problem [2].
As environmental problems become more and more serious,
people begin to realize the importance of protecting the envi-
ronment. At present, clean energy related technologies have
been vigorously developed, such as wind power generation
and hydroelectric power generation are increasingly mature,
but thermal plants is still the main way of power generation.
The burning of fossil fuels releases a lot of air contaminant,
such as SO2, NOx and CO2. These pollutants will cause
serious damage to the natural environment and lead to a
series of environmental problems. Therefore, it is not only
important to consider the fuel cost, but also to reduce the
pollution to the environment. When power generation cost
and operational constraints are met, the combined economic
emission dispatch (CEED) should be considered at the same
time as power generation cost and pollutant emission [3]. It is
more complicated to solve the CEED problem, which has
been widely concerned and studied.

Quadratic function as a way to express the CEED problem
[4]. It is found that the high-order polynomial function repre-
senting the CEED problem can improve the solution method
[5]. However, this makes the solution of CEED problem
more difficult and complex. Somemethods based on classical
mathematical modeling are adopted for solving CEED prob-
lem [6], [7], [8], [9], [10], which provides a good solution
for solving the CEED problem. However, power generation
system is often nonlinear and non-convex in practical work,
and there will be many constraints in production work, so it
becomes difficult to solve CEED problems by using this kind
of method. Therefore, many intelligent optimization methods
are used to deal with CEED problems with good results,
Particle SwarmOptimization algorithm (PSO) [11], Bacterial
Foraging algorithm (BFO) [12], Grasshopper optimization
algorithm (GOA) [13], Ant colony optimization (ACO) [14],
Ant Lion optimization (ALO) (SMO) [15], Spider Monkey
optimization [16], Sine Cosine algorithm (SCA) [17], etc.
With the progress of science and technology, the power sys-
tem has been developed to the cyber-physical power system,
which brings convenience but also considers the problem of
cyber attacks. Lu et al. propose a three-stage dynamic fake
data injection attack (DFDIA) model that considers underly-
ing dynamic behavior. Two constrained differential evolution
algorithms are designed to determine the attack location and
optimize the attack vector to cooperatively change the meter
measurement. Several IEEE bus systems are selected in simu-
lation experiments to prove the effectiveness of the proposed
method [18].
Some researchers transform multi-objective CEED prob-

lems into single-objective optimization problems for solving.
Ziane et al. [19] adopted simulated annealing method to deal
with the CEED problem, and used maximum/maximum price
penalty factor (PPF) to convert fuel cost and SO2, NOx
and CO2 emissions into a single target for optimization.
Compared with other methods such as PSO and Lagrange
technique, simulated annealing can give better solutions.

Aydin et al. proposed the Artificial bee colony with dynamic
population size (ABCDP), which uses a similar mechanism
defined in the Incremental ABCwith local search (IABC-LS)
and reduces many of the parameters to be adjusted. In order
to test the effectiveness and robustness of the algorithm in
CEED problem, the algorithm is applied to the economic
emissions joint dispatching problem. The IEEE30 bus test
system and 40 generator sets are taken as examples. The
results show that ABCDP gives good results in both systems
[20]. Gherbi et al. [21] proposed a new method combin-
ing firefly algorithm and bat algorithm to deal with CEED
problem, which well combined the advantages of the two.
Hassan et al. proposed an optimization algorithm based on
chaotic artificial ecosystem (CAEO) and used PPF to con-
vert four objective functions into one objective function
when solving CEED problem. The proposed improved AEO
method is based on chaotic mapping. Instead of using random
arguments [22]. It can be seen from the above literature that
a multi-objective CEED problem can be transformed into
a single-objective optimization problem and solved by an
optimization algorithm to get a better performance. The opti-
mization process of this method is simple and the operation
time is short. However, the weight setting of each objective
function has a great influence on the optimization results, and
only one solution can be obtained each time, and the Pareto
optimal solution set cannot be obtained.

Using multi-objective optimization algorithm to deal with
CEED problem directly is also a very effective method.
Kumar et al. [23] proposed a multi-objective directed bee
colony optimization algorithm (MODBC), which is well
applied to optimize CEEDmulti-objective optimization prob-
lem with equality and inequality constraints. Hybridization
enablesMODBC to get the high quality and fast solutions that
generate better Pareto frontiers for multi-objective problems.
Wu et al. [24] proposed a new multi-objective differential
brain storm optimization (MDBSO) algorithm to solve the
EED problem. Unlike classical BSO, clustering operations
are designed in the target space rather than the solution
space to improve computational efficiency. In order to keep
the diversity of population and improve the convergence
speed, differential variation is used to replace Gaussian vari-
ation. The effect of the algorithm is tested by simulation
experiment. The simulation results show that MDBSO can
have better convergence while maintaining the diversity of
Pareto optimal solutions. Chen et al. proposed a constrained
multi-objective population extremal optimization algorithm
(CMOPEO-EED) in order to improve EED performance of
renewable energy generating units. Simulation experiments
with three versions of improved IEEE 30 bus and 6 generator
systems with renewable energy generation are carried out
to verify the superiority of the proposed CMOPEO-EED
method in solving EED problems [25]. Singh et al. [26]
proposed a permutation based multi-objective environment
adaptation method (pMOEAM) to solve the EED problem
of power systems. The new improved pMOEAM solves the
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three weaknesses of the original algorithm. A large number
of experimental data show that pMOEAM method can get
better quality solutions for EED problem. Chen et al. [27]
proposed a newmulti-objective whale optimization algorithm
(MONWOA) to solve the EED problem. In order to explore
and develop the balance algorithm, Gaussian mutation oper-
ator, differential evolution algorithm mutation process and
search mode parameters were used to improve the standard
MOWOA. In summary, using the multi-objective optimiza-
tion algorithm to solve CEED problem directly, a set of Pareto
optimal solutions can be obtained in a single run, and the
optimal solutions can be selected in the solution set according
to demand. However, the calculation process of this method
is more complicated, and the performance of the algorithm is
higher.

The constraint problem must be considered in the actual
production work, and the treatment of the constraint prob-
lem is also very important in the process of solving the
CEED problem. Penalty function method is usually used to
deal with solutions that do not meet constraints. A penalty
function proportional to the degree of constraint violation is
added to the objective function to discard solutions that do
not meet constraints, and the setting of penalty intensity is
very important [28]. Literature [29] selects a fixed penalty
parameter, which requires repeated trials to find the appro-
priate penalty parameter and obtain a reasonable solution.
For multi-constrained optimization problems, an improved
PSO algorithm (IPSO) combined with penalty function is
proposed to prevent premature convergence, accelerate the
search speed and ensure the feasibility of solution [30]. Haeun
Yoo et al. proposed a dynamic penalty (DP) method. In the
training process, the penalty factor increases gradually and
systematically with the progress of iterative events [31]. Sak-
thivel et al. introduced a refurbishment strategy to deal with
power balance constraints, in which a randomly generated
unit is selected to perform the refurbishment process. The
advantage of this strategy is that it is easy to implement and
quickly updated [32].

Based on the above literature, it can be found that the
treatment of constraint problems will have a certain impact
on the solution of CEED problems, so it is also very impor-
tant to deal with constraint problems well while improving
the optimization algorithm. This paper chooses to use arith-
metic optimization algorithm (AOA) to solve CEED problem,
because AOA is a crowd-based meta-heuristic algorithm
with simple structure and easy to understand principle. It is
realized by arithmetic operators (addition, subtraction, mul-
tiplication and division) in mathematics [33], and has a good
effect in solving practical engineering problems. So using
AOA algorithm can also solve CEED problemwell. The AOA
based on Cauchy mutation trigonometric function search is
designed to solve CEED problem. In addition to improv-
ing the algorithm, a random disturbance penalty strategy is
proposed to deal with the constraint problem. Firstly, the
effectiveness of the improvedmethod is verified on CEC2017
benchmark functions and compared with other optimization

TABLE 1. 5 penalty function expressions.

FIGURE 1. The images of 5 penalty functions.

algorithms. Then, the CEED cases with 6 units are selected
for simulation. The results show that the arithmetic opti-
mization algorithm based on Cauchy mutation trigonometric
function search and the random disturbance penalty strategy
have good performance.

The structure of the thesis is as follows: In section II, the
expression of CEED problem and the random disturbance
penalty function are introduced. Section III describes the
basic principle of the algorithm and arithmetic optimization
algorithm based on Cauchy mutation trigonometric function
search. In Section IV, CEC2017 benchmark functions are
used to test the performance of AOA based on Cauchy muta-
tion trigonometric function search. Section V selects CEED
cases for simulation experiments; Section VI concludes.

II. PROBLEM DESCRIPTION
A. PROBLEM OBJECTIVE
The task of CEED problem is to satisfy total load demand
and minimize fuel cost and pollutant emission under all
constraints [1]. Pollutant emission includes three objective
functions SO2, NOx and CO2. Therefore, fuel costs and
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FIGURE 2. The image of 5 penalty functions after adding disturbance.
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FIGURE 3. Image of oscillation coefficient.

FIGURE 4. The Motion trajectory of oscillating Cauchy mutation.

pollutant emissions need to be considered in four optimiza-
tion objectives. The fuel cost F(P) is expressed here as a cubic
criterion function, and its expression is shown in Eq. (1).

Ft (P) =

∑n

i=1
aiP3i + biP2i + ciPi + di (1)

where, ai, bi, ci and di is the fuel cost coefficient of the
generating set. n is the number of total generating units, Pi
is the actual output power of the generating set. Emissions
targets of SO2, NOx and CO2 are expressed using cubic
polynomial functions respectively.

ESO2(P) =

∑n

i=1
eSO2iP3i + fSO2iP2i + gSO2iPi + hSO2i

ENOx(P) =

∑n

i=1
eNOxiP3i + fNOxiP2i + gNOxiPi + hNOxi

ECO2(P) =

∑n

i=1
eCO2iP3i + fCO2iP2i + gCO2iPi + hCO2i

(2)

where, ESO2i, fSO2i, gSO2i, hSO2i, ENOxi, fNOxi, gNOxi, hNOxi,
eCO2i, fCO2i, gCO2i and hCO2i are the pollutant emission coef-
ficients of the i− th generator set, respectively.
The maximum/maximum penalty factor of a unit direction

[19] is used to transform the multi-objective CEED prob-
lem into a single-objective problem to solve. The objective

FIGURE 5. Flow chart of improved AOA algorithm.

function is set to the total cost FT , and the mathematical
expression is as follows:

OF = min(FT )

FT =

∑n

i=1
{F (Pi) + hSiESO2 (Pi) + hNiENOx (Pi)

+hCiECO2 (Pi)}

hSi =

∑n

i=1

F
(
Pi,max

)
ESO2

(
Pi,max

)
hNi =

∑n

i=1

F
(
Pi,max

)
ENOx

(
Pi,max

)
hCi =

∑n

i=1

F
(
Pi,max

)
ECO2

(
Pi,max

) (3)

where, F
(
Pi,max

)
, ESO2

(
Pi,max

)
, ENOx

(
Pi,max

)
and ECO2(

Pi,max
)
are respectively the total fuel cost corresponding to

the output power of generator set i, the total emissions of SO2,
the total emissions of NOx and the total emissions of CO2.

VOLUME 11, 2023 136889



Y.-P. Li et al.: AOA Based on Cauchy Mutation Trigonometric Function Search

TABLE 2. Parameter settings of the six improvement methods.

hSi, hNi and hCi are the maximum/maximum penalty factors
of SO2,NOx andCO2 emitted by generator set i, respectively.

B. CONSTRAINT PROBLEM
In the process of CEED problem optimization, many con-
straints will be faced. The concepts of power balance
constraints and generator power constraints are mainly intro-
duced below.

1) POWER BALANCE CONSTRAINT
The total output of the generator set must equal the total
power required by the load plus the actual power loss of the
transmission line, and its expression can be defined as:∑n

i=1
Pi = PD + PL (4)

PL =

∑n

i=1

∑n

j=1
PiBijPj +

∑n

i=1
B0iPi + B00

(5)

where, PD is the total actual power demand, and PL is the loss
during transmission. Bij B0i and B00 are the loss coefficients.

2) GENERATOR POWER CONSTRAINTS
The generator set must work within the scope of the specifi-
cation, and its expression is shown as follows:

Pmin
i ≤ Pi ≤ Pmax

i (6)

where, Pi is the output power output of the i − th generator,
Pmax
i and Pmin

i represent the upper and lower limits of the
output power of generator i respectively.

3) PENALTY FUNCTION OF RANDOM DISTURBANCE
PENALTY STRATEGY
This paper mainly considers the power balance constraint and
generator power constraint. The generator power constraints
are inequality constraints, and the following methods are
adopted to deal with the generator power constraints of the
i− th machine:

Pi =


Pi,

(
Pmin
i ≤ Pi ≤ Pmax

i

)
Pmin
i ,

(
Pi < Pmin

i

)
Pmax
i ,

(
Pi > Pmax

i
) (7)

Equality constraint is power balance constraint. When
dealing with equality constraint, punishment factor with fixed
value is generally used [14]. The definition of objective func-
tion is as follows:

minFt = minFt + FP× 1PD (8)

where, FP is the fixed penalty value, which is set to 300 after
multiple value attempts in this experiment. 1PD is transmis-
sion loss plus supply demand minus total generation.

1PD = PD + PL −

∑n

i=1
Pi (9)

The traditional fixed penalty function is to add the degree
of violation of the infeasible solution to the target function
as punishment. For the solution that violates the constraint
to a large extent, it needs to take a large degree of punish-
ment. However, the solution that violates fewer constraints
can be punished less, and the subsequent iteration update
may be closer to the optimal solution. In this paper, a ran-
dom disturbance penalty strategy is proposed to deal with
the constraint problem. Five penalty strategies are proposed,
including cosine function, hyperbolic sine function, tangent
function, hyperbolic tangent function and V-type function.
These five punishment strategies can change the degree of
punishment with the change of the degree of violation of
constraints of the generated solutions. However, the degree
of punishment of some functions decreases too fast with the
change of the degree of violation of constraints, resulting
in too small punishment, and the obtained solutions cannot
meet the constraints. Therefore, on the basis of these five
penalty functions, perturbations varying with the degree of
constraint violation are added, and the degree of punishment
is appropriately increased to ensure that the obtained solution
satisfies the constraint. The improved penalty factor is shown
as follows:

RDP = FP× RD (10)

where, RDP is the random disturbance penalty factor, FP is
the penalty factor with a fixed value, and Table 1 shows the
expression of RD. The x in Table 1 represents the degree to
which the resulting solution violates the constraint. Fig. 1
shows an image of the five penalty functions. Fig. 2 is the
image of the penalty functions after adding disturbance. The
x axis of Fig. 1-2 shows the degree of constraint violation,
and the y axis shows the degree of punishment.

III. ARITHMETIC OPTIMIZATION ALGORITHM BASED
ON CAUCHY MUTATION TRIGONOMETRIC
FUNCTION SEARCH
A. ARITHMETIC OPTIMIZATION ALGORITHM
AOA is a meta-heuristic algorithm newly proposed by
Abualigah et al. in 2021 [33]. This algorithmmainly uses four
operators of addition, subtraction, multiplication and division
to seek and gradually approaches the optimal solution. In the
running process of the algorithm, initialization is carried out
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FIGURE 6. Trigonometric functions.

first, and the initial solution X is generated randomly. Its
expression is shown as follows.

X =


x1,1 · · · · · · x1,n−1 x1,n
x2,1 · · · · · · x2,n−1 x2,n
· · · · · · · · · · · · · · ·

...
...

...
...

...

xN ,1 · · · · · · xN ,n−1 xN ,n

 (11)

Next, math optimization acceleration function (MOA) is
used to control the algorithm selection search phase. MOA
is compared with r1 (r1 is a random number from 0 to 1).
WhenMOA is greater than r1, theAOAenters the exploration
stage. When MOA is less than r1, the AOA enters the
exploitation stage. Eq. (12) is the calculation formula of
MOA. The math optimization probability function (MOP) is

an important parameter to control the algorithm’s position
update, as shown in Eq. (13).

MOA (C_Iter) = Min+ C_Iter ×

(
Max −Min
M_Iter

)
(12)

MOP (C_Iter) = 1 −
C_Iter1/α

M_Iter1/α
(13)

where, MOA (C_Iter) and MOP (C_Iter) indicate the MOA
andMOP values respectively. α is a parameter that affects the
search accuracy, α = 5.
When MOA is greater than r1, AOA is optimized using

a division or multiplication operator. The exploration stage
can be searched extensively. Eq. (14) represents the position
update expression of AOA exploration stage. When MOA
is less than r1, the algorithm enters the exploitation stage.
At this time, AOA uses subtraction and addition operators to
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TABLE 3. Benchmark testing functions.

update the position, which can be searched more accurately
and easily approach the optimal solution. Eq. (15) represents
the exploitation stage location update formula.

xi,j (C_Iter)

=


best

(
xj

)
÷ (MOP+ ∈) ×

((
UBj − LBj

)
× µ + LBj

)
,

r2 < 0.5
best

(
xj

)
×MOP×

((
UBj − LBj

)
× µ + LBj

)
,

otherwise

(14)

xi,j (C_Iter)

=


best

(
xj

)
−MOP×

((
UBj − LBj

)
× µ + LBj

)
,

r3 < 0.5
best

(
xj

)
+MOP×

((
UBj − LBj

)
× µ + LBj

)
,

otherwise
(15)

where, best
(
xj

)
is the j − th position of the best solution

obtained. xi,j (C_Iter) is the j − th position of the i − th
solution. r2 and r3 are random numbers in the range [0,1].
UBj and LBj respectively represent the upper and lower bound
values. ∈ is A small integer, µ is the parameter that controls
the search of the algorithm, µ = 0.5.
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TABLE 4. Function optimization simulation results.
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TABLE 4. (Continued.) Function optimization simulation results.
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TABLE 4. (Continued.) Function optimization simulation results.

B. SINE OPTIMIZATION ALGORITHM
The Sine Optimization algorithm (SOA) was proposed by
Mostafa Meshkat in 2017. This algorithm only uses the
sine function as the position update strategy, which enables
the algorithm to have higher optimization accuracy and
faster convergence rate [34]. The search process in an SOA
algorithm is divided into two phases, exploration and devel-
opment, whose location update formula is shown below.

x ti (j+ 1) =

{
X trand (j) + r1 × sin (r2) , r3 < 0.5
X tbest (j) + r1 × sin (r2) , r3 ≥ 0.5

(16)

where, X trand (j) is the position of random search individuals,
and X tbest (j) is the position of optimal search individuals. r1
represents the direction of movement, which can be calcu-
lated by equation (17). r2 is the random number in the range
of [0, 2π ], and r3 is the random number between [0, 1]. a is
a constant with the value 2.

r1 = a− t
a
T

(17)

C. INVERSE ACCUMULATION FUNCTION OF CAUCHY
DISTRIBUTION
Cauchy distribution is a continuous probability distribution
named after Augustine Louis Cauchy and Hendrik Lorentz
[35]. The expression of its probability density function is Eq.
(18).

f (x; a, b) =
1
π

[
b

(x − a)2 + b2

]
(18)

The formula for calculating the cumulative distribution
function of Cauchy distribution is:

f (x; a, b) =
1
π
arctan

(
x − a
b

)
+

1
2

(19)

The inverse function of the cumulative distribution func-
tion of the Cauchy distribution is shown as follows:

f −1 (p; a, b) = a+ b tan
(

π

(
p−

1
2

))
(20)

p = rand (1, dim) (21)

where, p is a random number in the range of [0,1]; dim is the
dimension of the function, and the positional parameter a is
assigned 0 and the parameter b is assigned 1.

D. ARITHMETIC OPTIMIZATION ALGORITHM BASED ON
CAUCHY MUTATION TRIGONOMETRIC FUNCTION SEARCH
MOP is an important parameter that controls the update
of AOA position. The original MOP parameter gradually
reducedwith the progress of iteration, and theMOP valuewill
become very small after the algorithm is run, which makes it
difficult for the algorithm to jump out of the local optimal.
In this paper, the oscillation coefficient is considered to com-
bine with Cauchy mutation, in which the Cauchy mutation
is the inverse accumulation function of Cauchy distribution,
enriching its variation trend. Then, the k2 is generated by
the oscillation Cauchy mutation is used to replace MOP,
which will change with the oscillation Cauchy mutation in
each iteration, thus strengthening the ability to get out of the
local optimal and improving the convergence speed of the
algorithm. The expression of the oscillating Cauchy mutation
operator is shown as follows:

k1 = 1.5 −
C_iter
M_iter

+ 0.5 sin
(
10π ×

C_iter
M_iter

)
×

(
1 −

C_iter
M_iter

)
(22)

k2 = k1 × tan (π (rand − 0.5)) (23)

where, k1 is the oscillation coefficient, and k2 is the parameter
generated by oscillation Cauchy mutation. Fig. 3 shows the
variation of oscillation coefficient after 1000 iterations, where
x axis is the number of iterations and y axis is the size
of k1 value. Fig. 4 shows the motion track of oscillation
Cauchy mutation after 1000 iterations, and the two axes are
the amount of displacement in both directions.

The value of control parameter µ in the AOA position
update formula is 0.5. In this thesis, the k4 is generated by the
sinusoidal search operator is used to replace the original fixed
value parameter, which can enhance the search capability of
the AOA, so that the AOA still has a certain global exploration
capability in the late running. On the basis of introduc-
ing sinusoidal search operators, we also put forward some
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TABLE 5. Performance comparison results with different intelligent optimization algorithms.
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TABLE 5. (Continued.) Performance comparison results with different intelligent optimization algorithms.
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FIGURE 7. Results of function convergence curves.
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FIGURE 7. (Continued.) Results of function convergence curves.
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FIGURE 7. (Continued.) Results of function convergence curves.
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FIGURE 7. (Continued.) Results of function convergence curves.
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FIGURE 7. (Continued.) Results of function convergence curves.
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improved methods similar to sinusoidal search operators,
these methods are hyperbolic sine, inverse hyperbolic sine,
hyperbolic tangent, arctangent, inverse hyperbolic tangent
search operators. The parameter changes generated by them
have different effects on the algorithm effect. Fig. 6 shows
the images of six trigonometric functions, and Table 2 shows
the parameter Settings of six improved methods. Combined
with the above two improved position update expressions are
as follows (r2 and r3 are random numbers in the range [0,1]):

xi,j (C_Iter)

=


best

(
xj

)
÷ (k2+ ∈) ×

((
UBj − LBj

)
× k4 + LBj

)
,

r2 < 0.5
best

(
xj

)
× k2 ×

((
UBj − LBj

)
× k4 + LBj

)
,

otherwise

(24)

xi,j (C_Iter)

=


best

(
xj

)
− k2 ×

((
UBj − LBj

)
× k4 + LBj

)
,

r3 < 0.5
best

(
xj

)
+ k2 ×

((
UBj − LBj

)
× k4 + LBj

)
,

otherwise

(25)

IV. FUNCTION OPTIMIZATION TEST SIMULATION
A. BENCHMARK TEST FUNCTIONS
In this section, the CEC2017 test functions are used to check
the performance of the AOA based on Cauchy mutation
trigonometric function search. In order to observe the effect
of the six improved methods, the improved schemes that add
sine function, hyperbolic sine, inverse hyperbolic sine, hyper-
bolic tangent, arctan and inverse hyperbolic tangent search
operators are denoted as sinCAOA, sinhCAOA, asinhCAOA,
tanhCAOA, atanCAOA and atanhCAOA, respectively. The
relevant information of CEC2017 benchmark Functions is
shown in Table 3, including Unimodal, Multimodal, Hybrid
and Composition Functions. The two parameters α and µ in
AOA are α = 5, µ = 0.5. In terms of ensuring the fairness
of the experiment, each algorithm runs 10 times indepen-
dently when optimizing the benchmark function, averages the
optimal value obtained after optimization, and compares the
effect of the improved method with the calculated average
value. At the same time, the population of each method is 30,
and the number of iterations is 1000.

B. SIMULATION RESULTS
Table 4 shows the result data of the six improvedmethods and
the original AOA optimization of CEC2017 benchmark test
functions. From the comparison of the average value obtained
from the optimized test function in the table, it can be
found that the six improved methods sinCAOA, sinhCAOA,
asinhCAOA, tanhCAOA, atanCAOA and atanhCAOA are all
better than the optimization results of AOA algorithm, which
proves that the improved method is effective. Among the
six improvement methods, asinhCAOA method has the best
comprehensive effect. Next, AOA and asinhCAOAwere used

FIGURE 8. The convergence curve of solving the 150MW demand CEED
problem.

FIGURE 9. The convergence curve of solving the 175MW demand CEED
problem.

to compare with Harris hawk optimizer (HHO) [36], Evolu-
tion Strategy with Covariance Matrix Adaptation (CMA-ES)
[37], Gravitational Search Algorithm (GSA) [38], Fitness-
dependent Optimizer (FDO) [39], Genetic Algorithm (GA)
[40] and Salp Swarm Algorithm (SSA) [41], and the same
CEC2017 test functions as above are used for comparison.
The performance data of the test functions optimized by
HHO, CMA-ES, GSA, FDO, GA and SSA algorithms are
quoted from literature [42] and [43]. In order to ensure the
fairness of the experiment, the number of populations and
iterations set by AOA and asinhCAOA are the same as those
of the optimization algorithms used for comparison, which
are 50 and 1000 respectively. Each group of experiments is
run independently for 10 times, and the minimum value of
each optimized test function is averaged, and the value is
compared to judge the performance of the algorithm. The
comparison data of the simulation experiment is shown in
Table 5. It can be clearly seen from the data in Table 5 that
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FIGURE 10. The convergence curve of solving the 200MW demand CEED
problem.

FIGURE 11. The convergence curve of solving the 225MW demand CEED
problem.

asinhCAOA obtains the least optimal value when optimizing
the F10, F16-F17, F20-F21, F24-F25, F29 benchmark func-
tions, and also has a better performance when optimizing
other functions. The improved method of asinhCAOA can
obtain a smaller optimal value by comprehensively compar-
ing the algorithms of HHO, CMA-ES, GSA, FDO, GA and
SSA, which better verifies the effectiveness of the improved
method.

V. SIMULATION EXPERIMENT OF CEED PROBLEM
In this section, the experiment is divided into two parts.
First, it is verified that the AOA based on Cauchy mutation
trigonometric function search can achieve better optimization
effect in solving CEED problems compared with the AOA
algorithm, and the method with the best improvement effect
is selected by comparing the experimental data results. Next,

TABLE 6. Power limits and fuel cost coefficient of generators.

TABLE 7. The coefficient of nox emission and max/max penalty factor.

TABLE 8. The coefficient of co2 emission and max/max penalty factor.

TABLE 9. The coefficient of so2 emission and max/max penalty factor.

verify whether the effect of using the random disturbance
penalty function is improved compared to the fixed-value
penalty strategy. The CEED problem cases of 6 units is used,
and the load demands is set as 150 MW, 175 MW, 200
MW and 225 MW for experiments. In the following exper-
iment, the arguments of AOA algorithm are set as α = 5,
µ = 0.5.

136904 VOLUME 11, 2023



Y.-P. Li et al.: AOA Based on Cauchy Mutation Trigonometric Function Search

TABLE 10. Experimental data for solving the 150mw demand ceed problem.

TABLE 11. Experimental data for solving the 175mw demand ceed problem.

A. ARITHMETIC OPTIMIZATION ALGORITHM BASED ON
CAUCHY MUTATION TRIGONOMETRIC FUNCTION SEARCH
TO SOLVE CEED PROBLEM
The fuel cost coefficient and pollutant emission coefficient
of generator are from [44]. Their data are shown in Table 6-9,
and the transmission losses are not considered in this case.
Firstly, an AOA based on Cauchy mutation trigonometric
function search is applied to solve CEED problem of 6 units,
and its effect is tested. Since there are 4 objective functions
in this problem, the generating cost and pollutant emissions
need to be converted into one optimization objective, which
is called the total cost ($/h). The original AOA algorithm
and six improved AOA methods are used for experiments
and their results are compared. The following parameters are
set in the following experiments. The population considered
by the algorithm is 50, and the number of iterations is 200.

Each methods are run for 20 times, and the average value of
the experimental data is calculated. Table 10-13 shows the
simulation results of 4 different loads CEED problems, where
the recorded data is the average value, and the simulation
figures are shown in Fig. 8-11.

Table 10-Table 13 and Fig. 8-11 show the total cost
obtained by six improved methods in solving this case
under different load requirements. Most of the results of
the six improved methods are better than the original AOA
algorithm. According to the data in Table 10 and the sim-
ulation diagram in Figure 8, it can be found that when the
load demand is set to 150MW, the total cost obtained by
asinhCAOA is 10237.21($/h), which is the minimum value.
When the load demand is 175MW, it is shown in Table 11
and Fig. 9 that the total cost obtained by asinhCAOA to
solve this problem is 12222.56 ($/h), which has the best
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TABLE 12. Experimental data for solving the 200mw demand ceed problem.

TABLE 13. Experimental data for solving the 225mw demand ceed problem.

effect and fast convergence speed. However, when the load
requirement is set to 200MW, the data in Table 12 and the
simulation diagram in Fig. 10 show that sinCAOA has the
lowest total cost compared with other methods, and the effect
of asinhCAOA is second only to sinCAOA. Table 13 and
Fig. 11 show the simulation results when the load demand is
set to 225MW. It can be found that asinhCAOA has the best
effect among the AOA and the improvedmethod, and the total
cost obtained is 16693.98 ($/h). Through data comparison
and simulation graph, it can be found that asinhCAOA have
better solution quality and faster convergence rate than other
improved methods.

Next, the total cost obtained by asinhCAOA method is
compared with LM [5], SA [19], QBA [44], MBO [45]
and SCA [17]. The total cost data obtained by LM [5],
SA [19], QBA [44], MBO [45] and SCA [17] are obtained
from literature [17] and [22]. The table records the total cost
obtained by solving CEED problem under four different load

TABLE 14. Comparison of results of ceed problem solved by different
algorithms.

demands by different algorithms. The data in Table 14 prove
that the total cost obtained by asinhCAOA is smaller than
that of other algorithms cited under the four load demands,
which better proves the superiority of the improved method
of asinhCAOA.
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TABLE 15. Experimental data for solving the 150mw demand ceed
problem.

TABLE 16. Experimental data for solving the 175mw demand ceed
problem.

TABLE 17. Experimental data for solving the 200mw demand ceed
problem.

TABLE 18. Experimental data for solving the 225mw demand ceed
problem.

B. RANDOM DISTURBANCE PENALTY FUNCTION TEST
The above experiment verifies the performance of arith-
metic optimization algorithm based on Cauchy mutation
trigonometric function search in solving CEED problems.
After comprehensive comparison of the total cost of each
method, asinhCAOA with the best effect is selected among

FIGURE 12. The convergence curve of solving the 150MW demand CEED
problem.

FIGURE 13. The convergence curve of solving the 175MW demand CEED
problem.

the six improved methods. The next step of the experiment
is to test the performance of the random disturbance penalty
function. The case of 6 units is simulated and solved by
asinhCAOA, which is the same as the previous section. The
proposed random disturbance penalty function selects five
different functions, which are cosine function, hyperbolic
sine function, tangent function, hyperbolic tangent func-
tion and V-type function. For the convenience of recording,
asinhCAOA is abbreviated as CAOA. The five punish-
ment strategies are denoted as cos_CAOA, asinh_CAOA,
tan_CAOA, tanh_CAOA and V_CAOA; The fixed penalty
strategy is denoted as F_CAOA. In this experiment, the popu-
lation number is set to 50, the maximum number of iterations
is 200, and each methods is run for 20 times to take the
average. The experimental results are shown in Table 15-18
and Fig. 12-15. The data recorded in Table 15-18 are average
values.
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FIGURE 14. The convergence curve of solving the 200MW demand CEED
problem.

FIGURE 15. The convergence curve of solving the 225MW demand CEED
problem.

By observing Table 15-18 and Figure 12-15, it can
be concluded that Compared with F_CAOA, cos_CAOA,
tan_CAOA, tanh_CAOA and V_CAOA, the total cost
obtained by using asinh_CAOA penalty strategy is
10205.68($/h), 12,206.51 ($/h) and 16,686.75 ($/h) when
solving 150MW, 175MWand 225MW load demands, respec-
tively. When the load demand is 200MW, tan_CAOA works
best, and the total cost is 14364.74($/h). When the load
demand is 150MW, 175MW, 200MW and 225MW, the total
cost of asinh_CAOA is reduced by 0.14%, 0.83%, 0.35% and
0.28% respectively compared with the fixed penalty strategy.
However, in general, the stability of the random disturbance
penalty strategy needs to be improved.

VI. CONCLUSION
In this thesis, an arithmetic optimization algorithm based on
Cauchy mutation trigonometric function search is proposed.
MOP is replaced by oscillating factor and Cauchy muta-
tion, and 6 kinds of trigonometric function search are used
to replace fixed value parameters in AOA position update

formula. In order to test the optimization performance of
arithmetic optimization algorithm based on Cauchy muta-
tion trigonometric function search, 23 benchmark functions
are applied to test the optimization effect, and asinhCAOA
with the best optimization effect is selected, and then the
performance of other algorithms is compared. Then the AOA
based on Cauchy mutation trigonometric function search is
applied to solve CEED problem and compared with other
methods. The experimental data show that the improved AOA
algorithm is effective in solving CEED problem. Finally, it is
verified by experiments that the effect of random disturbance
penalty function is obviously better than that of fixed penalty
function, but the stability of this penalty strategy still needs
to be improved.
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