
Received 15 October 2023, accepted 24 November 2023, date of publication 30 November 2023,
date of current version 14 December 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3338377

A Safety System for Maximizing Operated UAVs
Capacity Under Regulation Constraints
GAMIL AHMED AND TAREK R. SHELTAMI
Computer Engineering Department, Interdisciplinary Research Center of Smart Mobility and Logistics, King Fahd University of Petroleum and Minerals,
Dhahran 31261, Saudi Arabia

Corresponding author: Tarek R. Sheltami (tarek@kfupm.edu.sa)

This work was supported by the Interdisciplinary Center of Smart Mobility and Logistics at the King Fahd University of Petroleum and
Minerals under Project INML2300.

ABSTRACT Recently, the emergence of Unmanned Aerial Vehicles (UAVs) has garnered significant
attention due to their widespread applications, such as surveillance, mapping, reconnaissance, as well as
commercial delivery, and photography. Despite the tremendous applications of UAVs, there are potential
risks associated with drones that may impact flight safety. For instance, launching and releasing drones near
airfields can pose serious threats to flight safety. Another challenge is the flying altitude. Flying at high
altitudes might cause a collision with other aircraft, and flying at low altitudes can also pose a significant
threat due to obstacles in the environment. Various regulations, such as airspace restrictions, flight altitude
limits, and safety requirements, can limit the number of UAVs operating in a particular area. This, in turn,
makes it challenging to specify the number of UAVs that can operate safely. To address these challenges,
we propose an optimization strategy to maximize the number of UAVs that can operate while adhering to
regulatory constraints. The problem is formulated and solved using an improved version of a population-
based meta-heuristic, IPSO. In the proposed approach, we consider two distinct objective functions. The
first one is the local objective function, which aims to minimize the energy consumption of the generated
path by IPSO. This objective function is crucial in ensuring that the generated path is energy-efficient. The
second objective function is the global objective function of the proposed approach, and aims tomaximize the
number of UAVs that can operate in a specific area. The proposed approach studies the impact of regulations
such as obstacles and flying altitude on a region capacity. The results show that the proposed approach
successfully increases the the region capacity, i.e., number of UAVs, to the maximum possible while ensuring
safety and regulatory constraints.

INDEX TERMS Regulation constraints, region capacity, UAVs formation, path planning, IPSO.

I. INTRODUCTION
Due to advancements in science and technology, drones
have become increasingly diverse and widely used in
various applications, including monitoring traffic, tracking
environmental conditions, and delivering goods [1]. They
offer great flexibility and can work effectively in various
locations and situations that humans can’t access [2], [3],
[4]. Drones can also fly very close to target objects, enabling
them to provide more precise measurements and perform
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more targeted actions. These features make drones an ideal
choice and viable solution to address issues for smart city
applications that require faster and more efficient delivery
services [5], [6], [7]. With their numerous advantages, drones
are already being employed in smart cities to enhance
urban life by documenting accident scenes, and monitoring
construction sites [8], [9]. The use of drones for everyday
consumer services is growing and becoming a reality [10].

Despite the tremendous applications of UAVs, there are
also potential risks associated with drones that may impact
national defense, security, flight safety. The risk of UAVs
accidents with other members in the sky increases as the
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number of drones increases. This poses a threat not only to
civil aviation regarding security and infrastructure but also to
traffic safety. Nowadays, there have been several high-profile
incidents involving drones [11]. Additionally, there have been
numerous instances where drones have come dangerously
close to colliding with airplanes. According to data collected
by the FAA in 2015, pilots reported over 700 near-miss
incidents involving drones between January and August of
that year [12]. Furthermore, a study by [13] analyzed a dataset
of drone accidents and incidents in Australia and found that
two major causes were equipment malfunctions and a lack
of coordination between aerial activities. With the growing
interest in drones among commercial entities, it is crucial
to prioritize safety for people, properties, and other airspace
users such as helicopters during drone operations. Launching
and releasing drones near airfields, known as no-fly zones
(NFZs), where aircraft operation can pose serious threats to
flight safety, especially if small drones are launched during
the takeoff or landing of aircraft. The airspace surrounding
airports is heavily monitored and regulated to protect the
safety of manned flights, and unauthorized drone operations
in these areas can create a significant risk of collisions
or other safety hazards. Many countries have implemented
strict rules and guidelines for UAV flights near airports,
which could involve restricted zones, altitude limitations, and
other restrictions. As a result, it’s crucial to verify the local
regulations and airspace limitations ahead of flyingUAVs and
to avoid flying close to airports or within restricted airspace.
Figure 1 shows the buildings and other environmental
constructions in the urban space with different rules. For the
urban dangerous obstacles in the global map environment.

Additionally, drones with weights ranging from a few
hundred grams to several tens of kilograms and the ability
to fly at altitudes from one hundred meters to thousands
of meters can pose a danger to people, vehicles, and
infrastructure in case of an incident.

It has to be stressed that the safety of UAV operations
can be significantly impacted by the altitude at which they
operate, particularly with regard to collision avoidance. UAVs
flying at higher altitudes are at a greater risk of colliding
with other aircraft or obstacles, especially in non-segregated
airspace. One of the primary concerns associated with UAVs
operating at higher altitudes is the increased likelihood of
collisions with other aircraft and can pose a significant threat
to commercial aviation, especially if they enter controlled
airspace that are considered NFZs. Also, flying at low altitude
can pose a significant threat due to obstacles filled the
environment.

Moreover, the increasing number of UAVs in the airspace
may lead to congestion, making it difficult to manage and
regulate UAV traffic. More importantly, the intra collision
with other UAVs represent another challenge to UAVs safety.
The risk of accidents increases as the number of UAVs in
operation area increases. Therefore, it is crucial to establish
a robust system that ensures UAVs safety by applying

regulation constraints and guarantees operation safety of
UAVs in a given region.

Another challenge of UAV is its limited battery life
which is a significant limitation for unmanned aerial vehicles
(UAVs), which commonly rely on rechargeable batteries
for power. To increase a UAV’s flight time, the UAV
should be endowed with energy efficient collision-free path
generator that can generate flight paths with minimum energy
consumption.

To cope with the above challenges, we propose a safety
system for UAVs that determines the maximum region
capacity, i.e., maximum number of UAVs that can operate
safely within a given region, while fulfilling with regulation
and terrain constraints. The proposed approach starts with
a certain number of UAVs and incrementally increases the
number of UAVs until a collision is detected. An optimization
technique is applied in our proposed system in which
regulation, terrain, and UAVs constraints are considered and
maximum allowable flying UAVs is achieved. The system
receives regulation constraints such as maximum altitude,
speed, as well as region constraints such as obstacles,
threats, and NFZs, and generates a maximum number of
UAVs with their energy-efficient paths, that can operate
in the specified region. The IPSO approach is applied to
obtain a collision free paths for all UAVs. We propose two
objective functions, namely, local objective function, and
global objective function. The local objective function is
utilized within IPSO to generate a minimum energy paths
for all UAVs, while the global objective function aims to
maximize the number of UAVs that can operate in a specific
region. The system studies different altitudes and different
obstacles sizes.

The contribution of this work can be summarized as follow:
1) We propose a safety system for UAVs that determines

maximum number of UAVs that can operate safely
within a given region, while fulfilling with regulation
and terrain constraints.

2) The problem is formulated as a maximization opti-
mization problem with the aim of achieving maximum
allowable flying UAVs and consider regulation, terrain,
and UAVs constraints such as maximum altitude,
speed, as well as region constraints such as obstacles,
threats, and NFZs.

3) The IPSO approach is applied to obtain a collision
free paths for all UAVs. We propose two objective
functions, namely, local objective function, and global
objective function. The local objective function is
utilized within IPSO to generate a minimum energy
paths for all UAVs, while the global objective function
aims to maximize the number of UAVs that can operate
in a specific region.

4) The system studies different altitudes and different
obstacles sizes.

The rest of this paper is organized as follows: section II
gives the literature review. In section III, improved particle
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FIGURE 1. Example map of urban 3D environment modeling.

swarm optimization is discussed. The UAVs path planning
description is illustrated in section IV which includes path
representation, and obstacles modelling. Section V discusses
the Systemmodel description for maximizing region capacity
which includes design of constraint, objective functions,
problem formulation, and optimization algorithm of the
System model. Section VI presents simulation results and
the corresponding analysis. The work is finally concluded in
Section VII.

II. LITERATURE REVIEW
As science and technology have advanced, drones have
become increasingly diverse and widely utilized across mul-
tiple fields, providing significant socioeconomic advantages
such as enhancing agriculture [14], [15], and reducing labor
costs. However, there are also potential hazards associated
with drones that could impact flight safety, and social order
and safety. The state of the art can be grouped into three
groups: UAV safety and privacy, regulation and constraints,
and UAV management.

A. UAV SAFETY AND PRIVACY
The safety of flight can be compromised by launching UAVs
or drones near airfields where civil and military aircraft
operate, particularly if small drones are launched during
takeoff or landing, as this could result in a catastrophic
aviation disaster.

The use of drones poses a threat to social security, order,
and safety due to their weight, which can range from a

few hundred grams to several tens of kilograms, and their
ability to fly at altitudes ranging from one hundred meters to
thousands of meters. In the event of an incident, drones could
endanger people, vehicles, and infrastructure [16].

In [17], the authors conducted a comparison of safety
and privacy regulations for UAVs across several regions
and countries. Specifically, they collected and analyzed
information regarding regulatory frameworks and guidelines
from different regions including the United States, Europe,
China, and Australia. Through this analysis, the study
involved the variations and similarities in safety and privacy
regulations among the regions and identified forbidden areas
in the existing regulatory systems.

The work in [18] explained a reference scenario and
an adversarial model and examined previously pub-
lished privacy-preserving schemes related to Remote ID.
These schemes were categorized by attributes such as
drone/operator identity privacy, location privacy, compli-
ance with Remote ID requirements, and communication
technology.

B. REGULATION AND CONSTRAINT
Several studies have addressed the regulation of drones and
their impact on behavioral privacy [19], regulatory compli-
ance [20], user perspectives, public safety, data protection,
and ethics. Furthermore, numerous researchers have focused
on the primary factors that affect drone policy compliance
and the safe integration of drones into the national airspace
system. The study conducted by Henderson investigated the
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views of New Zealand drone users on safety regulations for
drones [21]. The study indicated that the current regulatory
system was appropriate, with only a minority advocating
for stricter or less strict regulations. The work in [18] also
provided a summary of the current regulations for Remote
ID, which was used to track and identify drones in specific
airspace systems.

Fedorko conducted a research study on the lawful use
of drones in the Slovak Republic [22]. The rise in drone
usage is expected to create a new competitive environment for
operating companies and cooperative enterprises. However,
the existing legislation pertaining to drone usage does not
adequately address this challenge due to the flexible legal
use of drones, including employee monitoring and document
delivery.

Stöcker et al. outlined the key aspects of drone regulations
[23]. Their study comprised a comprehensive review of
global regulations and primary criteria. By analyzing the data
and applying appropriate analysis techniques, the authors
provided an overview of the past, present, and future trends in
drone regulations. In doing so, they examined and discussed
the legal frameworks for operating drones with regard to
privacy, data protection, and public safety.

In [10], the paper examined how drone operation in an
urban environment was managed and regulated through a
case study in a Brazilian city where drones were utilized
for aerial photography and surveys. The authors investigated
the regulatory framework for drone operations in Brazil and
the difficulties associated with their use in urban settings.
They underlined the importance of developing regulations
that stroke a balance between the benefits of drone technology
and the need to safeguard public safety and privacy. The
study suggested the use of geofencing and other technological
solutions as methods of enforcing regulations and reducing
potential risks associated with drone operations in urban
areas.

The work in [24] investigated the regulations governing
the on-road testing of connected and automated vehicles
(CAVs) and evaluated the potential for achieving global
safety harmonization. The authors examined the regulatory
structures in different countries, such as the United States,
China, and Germany, and analyzed the differences and sim-
ilarities among them. The study highlighted the difficulties
in achieving global safety harmonization due to variations
in regulatory approaches and the absence of a common
set of standards. The authors put forward a framework for
unifying regulations based on key principles such as safety,
performance, and transparency.

C. UAV MANAGEMENT
Dung et al. introduced regulations for drones and suggested
drone following models to manage drones in urban envi-
ronments [25]. The presence of multiple drones in the sky
poses a higher risk of accidents, thereby endangering urban
air transport infrastructure, such as buildings and public areas,

as well as the safety of the environment [26]. Therefore,
managing drones in urban areas has become crucial. The
studies proposed a new approach to drone management
called the drone-following model, which involves the one-
by-one following of drone vehicles in urban air transport.
This approach is based on defining drone acceleration, which
depends on variations in velocities and gaps between the
given drone and its front one. The numerical simulation
results showed that maintaining a safe distance between
drones prevented traffic flow accidents. However, to improve
the proposedmethod, the equations of motion for drones need
to be incorporated into these models, despite the fact that
the numerically simulated results demonstrate the potential
for enhancing powerful simulation technologies or a new
prototype of controls.

TABLE 1. Summary of related works.

After reviewing the relevant literature, it can be inferred
that most countries acknowledge the proliferation of
UAV/drone usage and the potential risks they pose to humans,
and as a result, many efforts have been made to address these
concerns, although they have not been entirely successful.

To ensure safety, it is necessary to develop a safety system
to apply specific regulations for particular areas, particularly
in those that impact human activities.

III. IMPROVED PARTICLE SWARM OPTIMIZATION (IPSO)
A population based meta-heuristic particle swarm optimiza-
tion algorithm has been widely applied to a variety of
problems. The graphical representation of standard PSO
algorithm is shown in Fig. 2. The standard PSO algorithm
faces challenges such as getting stuck in local optima
and premature convergence. These issues can limit the
algorithm’s ability to find the global optimum or hinder its
exploration of the search space.

Local optima occur when particles converge towards a
sub-optimal solution in their local neighborhood, preventing
further exploration of potentially better solutions in other
regions of the search space. This can happen if the algorithm
lacks sufficient diversity or if particles are influenced too
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strongly by their immediate best-known positions. A prema-
ture convergence refers to the situation where the algorithm
stops exploring the search space prematurely and settles
on a sub-optimal solution. This can occur if the algorithm
converges too quickly, before thoroughly exploring the entire
search space. The premature convergence can be particularly
challenging when dealing with complex or multi-modal
optimization problems.

FIGURE 2. Graphical representation for standard PSO.

To cope with these challenges, The improved version of
PSO, IPSO, is proposed. The improving includes provides
better initialization of swarm particles, improved updating
strategy, and replacement of inactive particles. A chaos-based
initialization of particles using the logistic map is applied to
improve diversity of solution space. The following logistic
map initialization is utilized

Xn+1 = µXn(1− Xn) (1)

whereXn represents the nth chaotic variable,µ is a bifurcation
coefficient.

IPSO aims to achieve two main goals during the optimiza-
tion process, namely convergence and searching, in order
to find the optimal solution. Essentially, during the initial
stage of iterations, the focus should be on searching or
exploration to enhance diversity, while during the later
stage, emphasis should be on convergence. To address issues
such as premature convergence and insufficient exploration,
an adaptive mutation technique has been developed. This
involves updating the positions and velocities of particles
mathematically at each iteration as follow:

νt+1 = ωνt + c1r1(pBestt − xt )+ c2r2(gBestt − xt ) (2)

where ω is inertia weight and it is updated adaptively each
iteration for achieving a balance between local and global
search in optimization. To clarify, in optimization problems,
maintaining a balance between exploration and exploitation
is crucial, and this is where inertia weight adjustment plays a

vital role. Exploration involves searching for new solutions,
while exploitation focuses on refining existing solutions.
Striking the right balance is important because excessive
exploration can hinder convergence to the global optimum,
while excessive exploitation can lead to being stuck in local
optima. By adjusting the inertia weight, the algorithm can
control the trade-off between exploration and exploitation.
Initially, a higher inertia weight promotes exploration to
prevent premature convergence, while gradually reducing
the inertia weight shifts the focus towards exploitation to
fine-tune solutions. Achieving the optimal balance ensures
effective exploration of the search space while steadily
converging towards the best solution, resulting in improved
performance in optimization problems.

To achieve this, the concept of inertia weight is used to
balance the exploration and exploitation phases of the search.
In simple terms, a high value of ω promotes exploration of
the search space, while a low value facilitates exploitation. To
clarify this further, ω is adjusted linearly based on a certain
formula as follow

ω(t) = ωmin +
MaxIt − t
MaxIt

∗ (ωmax − ωmin) (3)

where MaxIt is maximum simulation time and t is current
simulation time, ωmin, ωmax are minimum and maximum
value of inertia, respectively.

The acceleration values c1 and c2 are used to determine
the weight of the stochastic acceleration term in particles’
velocity. When these values are multiplied by random vectors
r1 and r2, they can have a controlled stochastic effect
on the velocity. Furthermore, they represent the weight of
information sharing among particles. For instance, if both
c1 and c2 are set to zero, a particle relies solely on its own
knowledge. However, if c1 is greater than c2, particles tend to
move towards the local attractor, while if c2 is greater than c1,
particles tend towards the global attractor. It is better if c1 and
c2 are selected based on running experiments within the range
of cmin to cmax . The aim is to choose values that achieve both
exploration and exploitation. Finally, the position of particles
is calculated using the following formula.

x(t + 1) = x(t)+ ϵν(t + 1) (4)

The value of ϵ determines the speed at which the particle
moves. A high value of ϵ enables the system to quickly move
towards the best-known regions but may make it difficult to
perform fine-grained optimization. Conversely, a low value
of ϵ fine-tunes the solution and accelerates convergence. To
achieve a balance during the optimization process, the particle
should initially explore the search space and make large
jumps towards better regions. In later iterations, the speed
of particles should be reduced to achieve faster convergence.
Therefore, ϵ needs to be adapted dynamically with each
iteration and can be written as follow:

ϵ = ϵmax −
(ϵmax − ϵmin)t

MaxIt
(5)
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where ϵmax , ϵmin are constant value and ϵmax > ϵmin, t is
current simulation time and MaxIt is total simulation time.

IV. UAVS PATH PLANNING DESCRIPTION
In this system, we aim to provide a safety path for
maximum UAVs capacity flying from source locations to
their destinations safely. The mission environment may
include obstacles such as mountains, buildings, radars, and
other threats. Moreover, the UAVs formation includes many
drones flying in the environment. Thus, to plan the path of
UAVs formation, the terrain and formation constraints are
taken into account such as obstacles in the terrain, and UAVs
formation. The UAVs formation should be able to avoid
colliding with these obstacles. To do so, objective function
should include all these threats and obstacles in addition to
regulation constraints and reflects the impact of them on
performance.

The positions of UAVs formation can be represented as
follow:

(p1, v1), (p2, v2), . . . , (pN , vN ) (6)

To describe a three dimensional path planning problem, let
N is the number of way points for each particle, then the
ith particle’s position and velocity vector can be respectively
written as in [27] as follow

pi = pi(x1, y1, z1), pi(x2, y2, z2), . . . , pi(xN , yN , zN ) (7)

vi = vi(x1, y1, z1), vi(x2, y2, z2), . . . , vi(xN ,yN ,zN ) (8)

A. IOD PATH REPRESENTATION
Optimization algorithms are utilized in path planning to
determine a viable route for a drone to travel from a starting
point to a destination point within a complex environment.
The path should be suitable for use by the algorithm, and
the flying space must be confined. In the context of 3D path
planning, the boundary of the flying space can be described
as in [27]

(x, y, z)|xmin ≤ x ≤ xmax , ymin ≤ y ≤ ymax , zmin ≤ z ≤ zmax
(9)

where xmin, ymin, zmin are the lower bounds of the flying space
and xmax , ymax , zmax are the upper bounds of the flying space.

B. OBSTACLE MODEL
In this work, the space boundaries and locations of obstacles
are assumed to be known in advance. We model the obstacle
as a half sphere as in [27], as follow

Ok = (xk , yk , zk , rk ) (10)

where xk , yk , zk are the three-dimensional coordinate of kth

obstacle and rk is the corresponding radius of the obstacle.

xk = rk cos(θ ) sin(φ)+ xk0 (11)

yk = rk sin(θ ) sin(φ)+ yk0 (12)

zk = rk cos(φ)+ zk0 (13)

where xk0, yk0, zk0 is the center coordinate of kth obstacle,
θ ∈ [0 2π ], and φ ∈ [0 π

2 ].

V. DESCRIPTION OF SYSTEM MODEL
The proposed approach aims to maximize the number of
UAVs operated in a target region while adhering regulations.
To do so, the following steps can be taken:

1) Determine regulation constraints: Determine the maxi-
mum speed at which the UAVs can safely operate while
maintaining collision avoidance rules.

2) Establish collision avoidance rules: Establishing colli-
sion avoidance rules is essential to ensure that theUAVs
do not collide during flight. This can be accomplished
by maintaining the minimum safe distance between
UAVs, as well as rules for avoiding obstacles in the
airspace

3) Optimize flight paths to maximize the number of UAVs
that can fly within the collision avoidance and speed
constraints. This can be done using algorithms that
consider the UAV’s minimum safe distance, and other
factors.

4) Monitor and adjust: Finally, monitor the UAVs during
flight and adjust the flight paths as necessary to ensure
UAVs safety within the collision avoidance and other
constraints.

By following these steps, it is possible to maximize the
number of UAVs flying under collision avoidance and UAV
speed constraints. To accomplish this task, constraints are
properly formulated and included in the problem.

A. DESIGN OF CONSTRAINTS
• Obstacles constraint: Let N_Obs is the number of
obstacles and NFZs, and Nd is a number of UAVs.
The obstacle constraint,Obc(i, j), i=1,2,.., Nd , and j=1,
2,. . . , N_Obs, can be obtained as follow

Obc(i, j)

=

√
(Uxi − Oxj)2 + (Uyi − Oyj)2 + (Uzi − Ozj)2

(14)

If any point of UAV’s path goes through obstacles, the
path is penalized by a high value to discard it. Thus,
the cost of collision with obstacle can be formulated as
follow

J1 =

{
inf , if Obc(i, j) < R_obsj
0, Otherwise

• UAV member constraint: This constraint is to avoid
collisions among UAVs in the flying space. The distance
between UAVs is determined as follow

Uc(i, j)

=

√
(Uxi − Uxj)2 + (Uyi − Uyj)2 + (Uzi − Uzj)2

(15)
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This constraint keeps tracking the distance between
UAVs. If the distance between any two UAVs is smaller
than a safety distance (SD), the paths are discarded. For
doing so, the cost of collision with other members can
be formulated as follow

J2 =

{
inf , if Uc(i, j) < SD
0, Otherwise

• Altitude constraint: The UAVs altitude constraint should
not exceed 120 m. So, the constraint can be written as

J3 =

{
inf , if UAV_altitude > 120 m
0, Otherwise

• Speed constraint: The UAV’smaximum speed constraint
should not exceed 44 mps. So, the constraint can be
written as

J4 =

{
inf , if UAV_speed > 44 mps
0, Otherwise

B. DESIGN OF LOCAL OBJECTIVE FUNCTION
The objective function is a mathematical concept that
determines how various variables contribute to a specific
value, and the optimization algorithm either maximizes or
minimizes this value. In this subsection, we design the local
objective function that is applied in IPSO to obtain the paths
of UAVs.

One of the most important objective in UAV path planning
is the energy consumption, and the path with minimum
energy required is desirable. In this work, we apply the energy
model used in [28] to calculate the energy for path. Therefore,
the objective function can be written as follow

Obj_Func = fEnergy + J1 + J2 + J3 + J4 (16)

where fEnergy is a function of energy path, and J1, J2, J3, and
J4 are violation costs of obstacle collision, member collision,
altitude, and speed violation. The aim is to minimize these
quantities.

C. PROBLEM FORMULATION
The problem of maximizing the number of UAVs flying
under regulation, UAVs, and terrain constraints can be
formulated as a maximization optimization problem. The
objective is to maximize the number of UAVs that can fly
in a given airspace while adhering to regulatory constraints,
and collision avoidance rules. The variables in this problem
are the number of UAVs and their corresponding flight paths.
The following constraints are considered in this problem: In
this study, it is important to emphasize that the terms ‘‘UAVs
capacity’’ and ‘‘region capacity’’ are used interchangeably.

Collision avoidance constraint: this constraint dictates the
minimum safe distance between UAVs, as well as constraint
to avoid obstacles in the airspace and environment as
explained above. The following assumptions can be made in
formulating this problem:

• Each UAV is of the same type and has similar flight
characteristics.

• The weather-related hazards of airspace are discarded.
With these components defined, we can formulate the
problem as a maximization optimization problem, with the
objective of maximizing the number of UAVs that can fly in
a given airspace subject to the regulatory constraints, collision
avoidance, and UAV speed constraints. The problem is solved
using approximation optimization techniques, IPSO. The
solution will provide the optimal number of UAVs and their
corresponding flight paths that achieves the objective while
adhering to the regulation constraints.

Let R is a region of interest that involves Nr forbidden
regions or NFZs, in which UAVs are not allowed to
fly through them, and MO obstacles randomly distributed
throughout the region. So, N_Obs = MO + Nr .
We assume that UAVs are tasked to fly from starting

positions (SPs) to target positions (TPs). UAVs are not
allowed to fly above 120 m altitude, and greater than 44 m/s
speed. The aim is to find the maximum available UAVs in this
region without colliding with obstacles or with other UAVs.
For simplicity, the shape of a region is assumed to be a square
or rectangular.

Therefore, the problem can be formulated as follows: The
global objective function can be written as

Max J = UAV s Capacity (17)

Subject to the following constraints:
• The distance between any UAVi and obstaclej,
Obc(i,j) > R_obsj. i ∈ [1,Nd ], and j ∈ [1,N_Obs].

• A safety distance should be maintained between UAVs,
Uc(i,j) > SD, i, j ∈ [1,Nd ].

• Maximum UAV speed < 44 mps.
• Maximum flying altitude ≤ 120 m.

D. OPTIMIZATION ALGORITHM FOR THE SYSTEM MODEL
This subsection describes in details the proposed approach,
and the IPSO for UAVs path planning algorithm.

The proposed approach illustrated in algorithm 1 and 2, and
flowchart, Fig. 3, provides a valuable tool for determining
the maximum capacity of UAVs that can operate safely
within a given area while fulfilling with regulation and
terrain constraints. As depicted in flow chart of the developed
algorithm, Figure 3, it uses an iterative approach, startingwith
a certain number of UAVs and incrementally increasing the
number of UAVs until a collision is detected.T he maximum
capacity of UAVs is determined by considering the number
of UAVs present before a collision occurs.

To optimize the path of the UAVs, the algorithm uti-
lizes the improved particle swarm optimization algorithm,
a variant of the particle swarm optimization algorithm. An
IPSO introduces new particle update rules to improve the
performance of PSO. This optimization technique ensures
that the UAVs plan their paths while maintaining a safe
distance between them and complyingwith the regulation and
terrain constraints.
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FIGURE 3. Flowchart of the proposed optimization approach.

Algorithm 2 is an enhanced version of PSO that comprises
several parts. The algorithm begins with the initialization
stage, which is responsible for initializing all variables, and
creating the initial solution, as well as determines the position
and velocity of each particle. The path planning generator
takes into account various parameters and environmental
constraints and produces viable paths for all drones, along
with the corresponding energy cost.

To make things clearer, we’ll provide a more detailed
explanation of the algorithm. The algorithm receives regu-
lation, region, and UAVs constraints, and returns the UAVs
paths. To begin, the algorithm sets the maximum number of
iterations and generates an initial population of particles. The
particles’ positions and velocities are generated using chaotic
initialization within the search space using an equation 1.
The cost of the initial population is then calculated by
passing each particle’s position to a cost function that
evaluates the energy value of the corresponding solution.
After initialization phase, the algorithm executes a loop that
continues until the maximum number of iterations have been

reached. In each iteration, the position and velocity of each
particle are evolved with iteration. This is done by updating
the positions and velocities of the particles, evaluating the
cost of the new population, i.e., energy consumption, and
tracking the best solution found so far. The algorithm
uses three key parameters, the inertia weight, mutation,
and the acceleration coefficients, to control the particles’
movements.

The inertia weight determines how much of the particle’s
previous velocity is retained when calculating the new
velocity, while the acceleration coefficients determine the
impact of the particle’s personal best and the swarm’s best
solution on the particle’s movement. The IPSO parameters
are updated using an equation 3 and 5 that depends on
the current iteration number and the maximum number
of iterations to enable adaptive mutation of the generated
solution. The algorithm updates the velocity and position
of each particle using the equation 2, and equation 4,
respectively, that considers the current position, velocity,
personal best, and global best solutions.
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Algorithm 1 Maximum UAVs Capacity Under Regulation
Constraints
1: Input:
2: RC← Regulation Constrains
3: TC← Terrain Constraints
4: UC← UAVs Members’ Constraints
5: Output:
6: MC←Maximum UAVs Capacity
7: Initialization:
8: Nd ←Initial number of UAVs
9: Collision-Flag(CF)←0
10: Formulation←Formulate the problem as a maximization

optimization problem
11: while CF==0 do
12: Nd ← Nd + 1
13: UAVs-Paths←IPSO(Nd ,RC,TC,UC,SD)

%[algorithm 2]
14: CF←Check-Collision(UAVs-Paths)
15: end while
16: MC← Nd -1
17: Return Maximum allowable UAVs capacity (MC)

Algorithm 2 Improved PSO Algorithm for UAVs Path
Planning
1: Input:
2: Nd← number of UAVs
3: RC← regulation constraints
4: TC← terrain constraints
5: UC← UAV self constraints
6: Output: Optimal paths of all UAVs
7: INITIALIZATION:
8: MaxIter← maximum iteration
9: InitSol← initialize positions and velocities with logistic

map by Eq1
10: Initial_EnergyCost← Evaluate(InitSol)
11: Iter=1
12: while Iter<MaxIter do
13: Update IPSO parameters by Eq3 and Eq5
14: Update the velocities of particles for all populations

using Eq2
15: Update the positions of particles for all populations

using Eq4
16: New_EnergyCost← Evaluate the energy cost of

generated particles
17: BestSol← Select Best Solution so far
18: Replace inactive particles
19: Increment Iter
20: end while
21: Return Optimal paths for all UAVs

The new position and velocity are calculated by consid-
ering the particle’s distance to its personal best solution and
its distance to the global best solution. More importantly,
the algorithm keeps track of particles that can’t participate

in solution improvement, and replaces inactive particles by
fresh one to prevent sticking in a local optimum. The cost
of the new population is evaluated by passing each particle’s
new position to the cost function. The best solution found so
far is determined by selecting the path with the lowest energy
consumption among all particles in the population, which is
known as the global best solution. The iteration counter is
incremented by 1, and the while loop ends once the maximum
number of iterations is reached. The algorithm returns the best
paths for all UAVs.

To detect collisions between the UAVs, the algorithm 1
uses a Check-Collision function that checks if the constraint
safety distance between any two UAVs is maintained.
Moreover, the Check-Collision function also checks for
collision with terrain obstacles. If a collision is detected, the
algorithm stops and returns the maximum capacity of UAVs.
The Collision-Flag (CF) is raised to indicate the occurrence
of a collision.

It is important to note that the algorithm assumes that
the regulation and terrain constraints are fixed and do not
change during UAVs’ operations. Additionally, the algorithm
assumes that the UAVs have the same characteristics, such as
flight speed and range.

TABLE 2. Parameters setting.

VI. SIMULATION RESULTS AND DISCUSSION
Simulation is an effective way to verify results. It is
noteworthy to describe in detail how the simulation results are
recorded in the figures. This section illustrates the simulation
of the proposed method for fixed and variable altitudes.

The matlab environment is used for simulation on PC with
an Intel Core i7 CPU, 1.90GHz (8 CPUs), and 16 GB Ram.

A. PARAMETERS SETTING
In this study, we consider three scenarios; in scenario1: a
region size is 1000 m × 1000 m. The number of obstacles
and NFZs are set to 6 and 3, respectively, which are
randomly distributed throughout the region. In scenario2,
a region size is 2000 m × 2000 m. Eighteen obstacles and
five NFZs are randomly distributed throughout the region.
In both scenarios, drones are flying at fixed altitude of 60 m,
100 m, and 120 m, a safety distance between UAVs is set
to 10 m, and sizes of obstacles and NFZs are ranging from
50 m to 104.12 m.

In the third scenario, a region size is 500 m × 500 m.
Number of obstacles and NFZs, are 5 and 3, respectively, that
are randomly distributed throughout the region. The sizes of
obstacles andNFZs are ranging from 15m to 70m. TheUAVs
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FIGURE 4. Scenario 1: Normalized region capacity with respect to UAVs.

are flying at 50 m, 60 m, 80 m, and 100 m altitudes. we repeat
the simulation 30 times, and the results are the average of
30 runs.

In all scenarios, the population size is set to 200 and the
maximum number of iterations is set to 300. The parameters
setting are presented in Table 2. The performance (region
capacity) is defined by themaximumnumber of UAVs arrived
to their destinations successfully.

B. RESULTS AND DISCUSSION
In this part, we will study the effectiveness of the pro-
posed optimization approach according to maximum region
capacity.

FIGURE 5. Scenario 2: Normalized region capacity with respect to UAVs.

1) IMPACT OF REGION OBSTACLES AND NFZS ON REGION
CAPACITY
In this subsection, we study the impact of obstacles and
NFZs on the overall capacity of a given region. In our study,
UAVs are allowed to fly at different fixed altitudes, while the
dimensions of x and y can vary. By analyzing two specific
scenarios, we aim to determine the maximum number of
UAVs that can safely operate within this environment.

In the first scenario, we observe the behavior of UAVs
within the region and the number of UAVs progressively
increases till reach the maximum region capacity in which
a collision occurs, indicating that any further increase in the
number of UAVs would compromise safety. We present the
results of this scenario in Fig. 4. Similarly, in the second
scenario, we investigate the maximum number of UAVs that
can operate safely in the presence of obstacles and NFZs. The
results of this analysis are depicted in Fig. 5. To provide a
visual representation of the UAVs’ trajectories, we include
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FIGURE 6. Two and three dimensional view for UAVs paths by IPSO.

both two-dimensional and three-dimensional views in Fig. 6.
These figures clearly demonstrate the feasible paths taken by
all UAVs, without any conflicts with terrain obstacles.

By examining these figures and analyzing the impact of
obstacles and NFZs, we can gain valuable insights into the
region’s capacity for UAV operations. This information is
essential for ensuring the safe and efficient utilization of
UAVs within the given environment.

2) IMPACT OF OBSTACLES AND NFZS ON REGION CAPACITY
In this particular section, we delve into the impact that
obstacles and NFZs have on the overall capacity of the region,
focusing specifically on scenario 2. Within NFZs, UAVs
are strictly prohibited from flying above them, even at high
altitudes. Conversely, when encountering obstacles, UAVs
have the option to circumvent them by flying over them. Our
objective is to examine how the presence of NFZs affects the
region’s capacity.

To conduct this study, we gradually increase the number of
obstacles and NFZs in the scenario. Specifically, we consider
different quantities, starting from zero and incrementing by
intervals of 5 (i.e., 0, 5, 11, 17, 23). The resulting findings
are presented in Fig. 7. The figure clearly demonstrates that
as the number of obstacles and NFZs increases, the region’s
capacity decreases. This showcases the tangible impact that
obstacles and NFZs have on the overall capacity of the region.

By observing this trend, we can gain valuable insights into
the limitations imposed by obstacles and NFZs, which are
crucial factors to consider when planning UAV operations
in the area. By thoroughly analyzing these results, we can
make informed decisions and develop strategies to overcome
the challenges posed by obstacles and NFZs, ultimately
enhancing the region’s capacity for UAV operations while
ensuring compliance with safety regulations and restrictions.

FIGURE 7. Normalized region capacity for different number of obstacles
and NFZs exist.

3) EFFECT OF UAV ALTITUDE ON REGION CAPACITY
In this subsection, we study the impact of flying altitude on
a region capacity. We consider two scenarios, fixed level and
multi-level altitudes. Results are depicted in Fig. 8.

The altitude of a UAV is a key factor that affects the region
capacity and collision risk. As the UAV flies at a higher
altitude, it creates a larger buffer zone between the drone and
the ground obstacles, which can reduce the risk of collision.
This is because the UAV has a wider field of view that
allows it to detect obstacles from a greater distance, giving it
more time to adjust its flight path and avoid collisions. Also,
high altitude allows UAV to fly above obstacles and thus;
reduces the impact of obstacles. As a result, when the flying
altitude increases, the number of drones that can operate also
increases due to a reduction in the impact of terrain obstacles.
This advantage tends to grow higher in multi-level altitudes.
This is because in multi-level altitudes, the UAVs’ member
constraint can be addressed by flying in different levels, and
thus avoid collision with other UAVs. It can be observed from
Fig. 8 that flying at an altitude above 80 m does not increase
the maximum capacity. This is because the maximum height
of obstacles is limited to 70 m, and therefore, there is no
effect of obstacles on the maximum capacity. Nevertheless,
flying at higher altitudes also increases the possibility of
collision with other aircraft, including commercial planes
and other drones. The airspace at higher altitudes is more
congested, thus leading to a greater potential for conflicts
between different flying objects. Therefore, while flying at
a higher altitude can reduce the risk of collision with ground
obstacles, it may also increase the risk of collision with other
flying objects.
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The proposed approach address this issue by restricting the
flying altitude to flying constraint, which is less that 120 m
altitude. Additionally, the proposed approach considers the
collision with other drones in the formation by maintaining a
sufficient safety distance between drones to avoid collision.

FIGURE 8. Region capacity with respect to different altitudes for fixed
and multi-level altitudes.

VII. CONCLUSION
In this work, we proposed a safety system for maximizing the
capacity of UAVs while adhering to regulation constraints.
The proposed system considered various factors such as
NFZs, altitude limits, and terrain obstacles to optimize the
trajectory of the UAVs. The algorithm provided a reliable
method for determining the maximum capacity of UAVs
that could operate safely within a given area while adhering
with regulation and terrain constraints. The proposed safety
system was evaluated through simulations, and the results
demonstrated its effectiveness in maximizing the capacity of
UAVs while adhering to regulation constraints. The results
of our simulations demonstrated that the proposed system
successfully increased UAVs capacity to the maximum
possible while maintaining safety and adhering to regulatory
constraints. This has significant implications for real-world
UAV operations, particularly in complex and regulated air
spaces. By employing our system, it can optimize operations,
improve efficiency, and maximize the number of UAVs that
can operate safely within a given area.

For future work and improvements to our system, one
potential avenue for further investigation is the integration
of real-time data and dynamic airspace constraints into the
optimization process. This would allow the system to adapt
to changing conditions and optimize UAV trajectories in real-
time, enhancing operational efficiency and safety.
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