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ABSTRACT In this work, the neural networks-based adaptive fault-tolerant control problem for nonlinear
systems with actuator faults and input quantization is investigated. To approximate the nonlinear functions in
the control system, radial basis function neural networks (RBFNN) are introduced. Additionally, an adaptive
fault-tolerant controller is presented for nonlinear systems to compensate for the effects of input quantization
and actuator fault using the backstepping approach and Lyapunov stability theory. It is demonstrated that with
the proposed control strategy, all signals in the closed-loop system are semi-globally uniformly ultimately
bounded and the tracking error converges to an arbitrarily small area of origin. The simulation results of an
electromechanical system are shown to verify the validity of the control approach.

INDEX TERMS Adaptive control, nonlinear systems, Lyapunov function, actuator faults, quantization,
electromechanical system.

I. INTRODUCTION
The adaptive backstepping control method has developed into
an effective way to deal with system uncertainties during the
past few decades, and many different adaptive backstepping
control techniques have been reported [1], [2], [3]. The back-
stepping control methodology offers an organized method for
addressing nonlinear systems without satisfying the matching
conditions. The complicated nonlinear system can be divided
into various subsystems, and the virtual controllers for each
subsystem can then be designed until the real control law is
attained [4]. Adaptive backstepping, on the other hand, can
only cope with systems with unknown parameters that appear
linearly connected to specific known nonlinear functions,
greatly restricting their application scope [5], [6], [7].

Due to their high approximation capabilities, fuzzy logic
systems and neural networks have been employed to
address the control difficulties of nonlinear systems [8].

The associate editor coordinating the review of this manuscript and

approving it for publication was Min Wang .

In recent years, a number of novel adaptive neural or fuzzy
control techniques for uncertain nonlinear systems have been
developed based on the approximation capabilities of neural
networks or fuzzy logic systems [9], [10]. The benefits of
adaptive neural (or fuzzy) backstepping control methods lie
in the fact that prior knowledge of the system’s nonlinear
functions is not required, nor are certain matching conditions
need to be satisfied. For nonlinear systems with unknown
functions, adaptive neural (or fuzzy) backstepping control,
which has received a lot of attention recently, offers a
systematic control mechanism [11]. For instance, the adaptive
fuzzy and NN state feedback decentralized control design
problem for large-scale uncertain nonlinear systems has
been reported [12]. The nonlinear strict-feedback continuous-
time systems with dead-zone and state constrained has
investigated using an adaptive fuzzy finite-time tracking
control technique [13]. For two classes of nonlinear discrete-
time systems with unknown control directions, the problem
of adaptive output-feedback control was investigated, and
a unified method to control design has been presented via
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neural networks [14]. A decentralized adaptive neural fault-
tolerant control has been reported for nonlinear intercon-
nected systems subjected input powers [15]. For nonlinear
systems subjected to constrains, an adaptive neural control
schemes has been reported in [16]. For multi-agent systems,
distributed adaptive control problem has been reported in [17]
via neural networks approximation.

Fault-tolerant control (FTC) is receiving a lot of attention
since actuator faults frequently result in unsatisfactory system
behavior and can even cause instability of the controlled
system [18]. Tragic accidents may occur if failures arise
because the stability of the systems won’t be assured. In order
to prevent performance degradation and to guarantee the
dependability and safety of the controlled system, fault
compensation is necessary [19]. Therefore, investigating
fault-tolerant control (FTC) design techniques that allow
for such failures while preserving acceptable system per-
formance is important. Numerous fuzzy or neural network
FTC approaches have recently been put out to address
actuator fault concerns [20], [21], [22]. The proposed control
method makes it possible to increase system dependability
and account for the impact of faults on the system. Fuzzy
and neural network approximations have been used to
address adaptive fault-tolerant control problems for nonlinear
switched systems and stochastic switched nonlinear systems
in [23] and [24]. For large-scale systemswith faulty actuators,
an adaptive fault-tolerant controller has been developed in
[25]. A new adaptive control has been developed utilizing
the dynamic surface control (DSC) technique for uncertain
nonlinear systems in the presence of actuator failures to
address the issue of computations burden caused by repeating
the differentiations in a virtual controller [26].

To the best of our knowledge, however, the fault-tolerant
control which takes into input quantization hasn’t received
any attention in the current literature. Recent years have
seen a rise in the prominence of quantized control in the
discipline of control engineering and in hybrid, digital,
and networked control systems, it has been widely used
[27]. In order to create a strong nonlinear behavior during
control design, a quantizer can be considered as a mapping
from a continuous region to a discrete set of numbers,
primarily as piecewise constant functions of time [28]. The
performance of the system will suffer from this behavior,
which may potentially cause instability. It is a fact that
quantization occurs frequently in modern applications [29].
Since then, research into the control problem of nonlinear
systems with quantization has shown to be fruitful, and
a number of efficient strategies have been investigated
[30], [31], [32], [33], [34]. A class of uncertain switched
nonlinear systems in strict feedback form has been studied
in [35] to examine the challenge of adaptive fuzzy quantized
output-feedback control and a hysteretic quantizers for
switched nonlinear uncertain systems have recently been
studied in [36]. For interconnected fuzzy systems a finite-
time adaptive control problem has been reported in [37]
with quantization and network attacks. For interconnected

semi-markovian systems, an adaptive quantized control
problem has been reported in [38] with actuator faults and
disturbances. A class of uncertain deterministic nonlinear
systems is being addressed, and an adaptive fuzzy quantized
control approach has been presented in [39]. An adaptive
quantized controller is introduced once a switched fuzzy
observer has been set up [40]. For nonlinear stochastic
systems, the authors presented two adaptive fuzzy quantized
control strategies [41]. For strict-feedback nonlinear systems
with quantized input signals was constructed, and an adaptive
control approach based on the backstepping method has been
developed in [42]. The problem of adaptive event-triggered
fault detection in semi-Markovian jump systems has been
investigated under output quantization [43].

According to the aforementioned considerations, few
works simultaneously consider nonlinear systems with actua-
tor faults and input quantization. It is difficult to deal with this
problem, which motivates us to do this research. In compari-
son to existing results, this paper investigates adaptive neural
networks-based adaptive fault-tolerant control of nonlinear
systems. Radial basis function neural networks are used to
deal with uncertainty in nonlinear systems. In summary, the
following are the key contributions of this work:
(i) In contrast to existing results [3], [7], [19], [30], [38],

this work proposed an adaptive neural fault-tolerant
control problem for strict-feedback nonlinear systems
with actuator faults while considering unknown failure
parameters. Although existing results [22], [25], [26]
have explored control design in the presence of
actuator faults, they do not account for the impact of
quantization. Additionally, in [44], the issues arising
from quantized input are effectively addressed through
the decomposition of the hysteresis quantizer.

(ii) An adaptive fault-tolerant controller with neural net-
work approximation capabilities is designed using Lya-
punov stability theory and the backstepping approach.
The proposed control strategy ensures that the close
signals are bounded and that the system output tracks
the reference signal with a small bounded error.
To demonstrate the effectiveness of the control strategy,
simulation results of an electromechanical system are
provided.

The rest of the paper is organized as follows: Section II
presents the formulation of the problem and preliminaries.
Stability analysis is presented in Section III along with
the design of an adaptive controller. Section IV presents a
simulation example, and Section V presents the conclusion.

II. PROBLEM FORMULATION AND PRELIMINARIES
In this paper, the following nonlinear system is considered in
strict-feedback form

χ̇i = χi+1 + φi(χ̄i), 1 ≤ i ≤ n− 1

χ̇n = 0(Q(ω)) + φn(χ̄n)

y = χ1 (1)
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where χ̄i = [χ1, χ2, . . . , χi]T ∈ Ri with i = 1, 2, . . . , n,
and y ∈ R represent the state variable and system output,
respectively. The functions φi(·) represent unknown smooth
nonlinear functions with φi(0) = 0. 0(Q(ω)) is the system
input subjected to actuator fault and quantization with ω

being the control input to be designed. The system input
0(Q(ω)) is defined as

0(Q(ω)) = ρ(t, tρ)Q(ω) + ωr (t, tr ), (2)

where ρ(t, tρ) takes values within the interval [0, 1] to repre-
sent actuation effectiveness. Additionally, ur (t, tr ) accounts
for uncontrollable additive actuation faults. The parameters
tρ and tr denote the respective time instances when the loss of
actuation effectiveness fault and the occurrence of an additive
actuation fault take place. Q(ω) is the hysteresis quantization
[45] which is defined as

Q(ω(t))

=



ωisgn(ω), if 1 + δ < |ω| ≤ ωi and ω̇ < 0,
or ωi < |ω| ≤ ωi(1 − δ),
and ω̇ > 0,

ωi(1 + δ)sgn(ω), if ωi< |ω|≤ωi(1 − δ) and ω̇<0,
or ωi(1 − δ) < |ω|

≤ ωi(1+δ)(1−δ), and ω̇ > 0,
0, if 0 ≤ |ω| < ωmin(1 + δ)

and ω̇ < 0,
or ωmin(1 + δ) ≤ |ω| ≤ ωmin,

and ω̇ > 0,
Q(ω(t−)), if ω̇ = 0,

(3)

where ωi = µ1−i
· ωmin (for i = 1, 2, . . .), 0 < µ < 1

determine the quantization density of Q(ω(t)), and δ =
1−µ
1+µ

,
Q(ω(t)) belongs to the set 2 = {0, ±ω, ±ωi(1 + δ)}. The
dead-zone range for Q(ω(t)) is ωmin, and ωmin > 0.
Remark 1: Quantization is a method that converts continuous
signals into a finite set of discrete signals, therefore consider-
ably lowering signal transmission load. The performance of
the control systemmight be impacted, and potentially become
unstable, due to the huge amount of nonlinearity and errors
that quantization introduces. Hysteresis quantizers are non-
uniform quantizers that have different quantization levels.
These quantizers are the most basic option accessible as they
reduce average communication instances and are simple to
implement. The hysteresis quantizer has more quantization
levels than the logarithmic quantizer, which is used to prevent
chattering [30].
Control Objective: The control goal of this study is to

construct an adaptive fault-tolerant controller that ensures
that all of the signals in the closed-loop system are bounded
and that the tracking error z1 = y − yd converges to zero.
To simplify the process of designing an adaptive fault-tolerant
controller, we need to introduce the following assumptions
and lemmas.

Assumption 1 [20]: The functions ρ(t, tρ) and ωr (t, tr ),
which change over time and are not precisely known, are
constrained within certain limits. Specifically, there exist
positive constants ρmin and ω̄max such that ρmin < ρ(t, tρ) ≤

1 and |ωr (t, tr )| ≤ ω̄max.
Assumption 2 [6]: The reference signal yd and its first

derivative ẏd are bounded and continuous.
Lemma 1 [45]: The hysteresis quantizer Q(ω(t)) can be

represented

Q(ω(t)) = ω(t) + h(t), (4)

where h(t) satisfies the following inequalities

h2 ≤ δ2ω2, for|ω| ≥ ωmin (5)

h2 ≤ ω2
min, for|ω| ≤ ωmin. (6)

Lemma 2 [12]: For all (u, v) ∈ R2, we have the following
condition

uv ≤
1
r
|u|r +

1
s
|v|s, (7)

where r > 1, s > 1, and (r − 1)(s− 1) = 1.
Lemma 3 [21]: Consider a continuous function φ̄(Z )

defined on the compact set�. It is guaranteed that there exists
a radial basis function neural network (RBFNN) W TU (Z )
such that

φ̄(Z ) = W TU (Z ) + δ(Z ), (8)

where |δ(Z )| ≤ ϵ with ϵ > 0, the weight vector is denoted
as W = [W1, . . . ,WN ]T , and U (Z ) = [U1(Z ), . . . ,UN (Z )]T

is the basic function vector, where N is the number of NN
nodes (N > 1). Each Ui(Z ) is a Gaussian function defined as
follows

Ui(Z ) = exp
(

−
∥Z − µi∥

T

ν2

)
(9)

whereµi and ν represent the center and width of the Gaussian
functions, respectively.
Remark 2: RBFNN are highly effective at learning

complex structures and nonlinear relationships from the
input data, which makes them ideal for approximating
unknown functions within nonlinear systems. On the other
hand, fuzzy logic systems (FLS) that depend on linguistic
variables and rules are often used in studies for adaptive
control of nonlinear systems. Their ability to capture complex
nonlinear interactions, however, might make it more difficult
to estimate unknown functions within these complex systems
with accuracy.

The block diagram of proposed control scheme is pre-
sented in Fig. 1.

III. ADAPTIVE FAULT-TOLERANT CONTROLLER DESIGN
AND STABILITY ANALYSIS
This section introduces a backstepping-based adaptive
controller design for system (1). The backstepping-based
adaptive control architecture consists of n steps. Before
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FIGURE 1. The block diagram of proposed control scheme.

continuing with the control design, the following coordinates
need to be changed:

z1 = χ1 − yd , (10)

zi = χi − ζi−1, i = 2, . . . , n (11)

where ζi−1 denotes a virtual control signal that will be
designed subsequently.

Step 1: By using (1) and z1 = χ1 − yd , one has

ż1 = χ2 + φ1 − ẏd = z2 + ζ1 + φ1 − ẏd . (12)

Take the Lyapunov function as

V1 =
1
2
z21 +

1
2ζ1

η21, (13)

where ζ1 is a positive design parameter, and η1 represents the
estimation error, with η̂1 being the estimated value of η1.
Now, differentiate (13) with respect to time, we have

V̇1 = z1(z2 + ζ1 + φ1 − ẏd ) −
1
α1

η1 ˙̂η1

= z1
(
z2 + ζ1 + φ̄1(Z1)

)
−

1
2
z21 −

1
α1

η1 ˙̂η1, (14)

where φ̄1(Z1) = φ1 − ẏd +
1
2 z1.

To address the challenge posed by the unknown nonlinear
function φ1 within φ̄1(Z1), RBFNN is using for approximat-
ing this function. For any ϵ1 > 0, one has

φ̄1(Z1) = W T
1 U1(Z1) + δ1(Z1), |δ1(Z1)| ≤ ϵ1, (15)

where Z1 = [χ1, χ2, . . . , χn, yd , ẏd ]T .
By utilizing the concept of completion of squares, we have

z1φ̄1(Z1) = z1(W T
1 U1(Z1) + δ1(Z1))

≤
1

2β2
1

z21∥W1∥
2UT

1 (Z1)U1(Z1) +
β2
1

2
+
z21
2

+
ϵ21

2

≤
1

2β2
1

z21η1U
T
1 (X1)U1(X1) +

β2
1

2
+
z21
2

+
ϵ21

2
,

(16)

where X1 = [χ1, yd , ẏd ]T , β1 > 0 is a design parameter,
η1 = ∥W1∥

2.
The virtual controller ζ1 is designed as

ζ1 = −c1z1 −
1

2β2
1

z21η̂1U
T
1 (X1)U1(X1), (17)

and the adaptation law is the designed as

˙̂η1 =
α1

2β2
1

z22U
T
1 (X1)U1(X1) − ϱ1η̂1, (18)

where c1 > 0, ϱ1 > 0 represent the positive design
parameters.

Substituting equations (16)-(18) into (14), we have

V̇1 ≤ −c1z21 + z1z2 +
ϱ1

β1
η1η̂1 +

1
2
β2
1 +

1
2
ϵ21 . (19)

Step i (2 ≤ i ≤ n− 1). By using (1) and (11), one has

żi = zi+1 + ζi + φi(χ ) − ζ̇i−1. (20)

The following Lyapunov function is chosen as

Vi = Vi−1 +
1
2
z2i +

1
2α1

η̃2i . (21)

Taking the time derivative of (21), we get

V̇i ≤ −

i−1∑
j=1

cjz2j + zi−1zi +
i−1∑
j=1

ϱj

α1
η̃jη̂j +

i−1∑
j=1

α2
j

2
+

ϵ2j

2

+ zi(zi+1 + ζi + φ̄i(Zi)) −
1
2
z2i , (22)

where

φ̄i(Zi) = zi−1 + φi − ζ̇i−1 +
1
2
zi. (23)

The unknown function φ̄i(Zi) can be approximated by
RBFNN as

φ̄i(Zi) = W T
i Ui(Zi) + δi(Zi), |δi(Zi)| ≤ ϵi, (24)

where Zi = [χ1, χ2, . . . , χn, ¯̂ηTi−1, ȳ
(i)T
d ]T .

By using Young’s inequality, we get

ziφ̄i(Zi) = zi(W T
i Ui(Zi) + δi(Zi))

≤
1

2β2
i

z2i ∥Wi∥
2UT

i (Zi)Ui(Zi) +
β2
i

2
+
z2i
2

+
ϵ2i

2

≤
1

2β2
i

z2i ηiU
T
i (Xi)Ui(Xi) +

β2
i

2
+
z2i
2

+
ϵ2i

2
, (25)

where Xi = [χ1, χ2, . . . , χi, ¯̂ηTi−1, ȳ
(i)T
d ]T with ¯̂ηi−1

=

[η̂1, . . . , η̂i−1]T and ȳ(i)Td = [yd , . . . , y
(i)
d ]T , ηi = ∥Wi∥

2,
and βi > 0 is a design parameter.
The virtual controller ζi is define as

ζi = −cizi −
1

2β2
i

ziη̂iUT
i (Xi)Ui(Xi), (26)

and the adaptation law is define as

˙̂ηi =
αi

2β2
i

z2i U
T
i (Xi)Ui(Xi) − ϱiη̂i, (27)

where ci, ϱi are positive design parameters.
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Substituting equations (25)-(27) into (22), one has

V̇i ≤ −

i∑
j=1

ciz2j + zizi+1 +

i∑
j=1

ϱj

αj
η̃jη̂j +

i∑
j=1

(
β2
j

2
+

ϵ2j

2

)
.

(28)

Step n: By using (1), (2), (4) (11) and by taking the time
derivative of zn, we obtain

żn = 0(Q(ω)) + φn(x) − ζ̇n−1

=
(
ρ(t, tρ)ω(t)

+ρ(t, tρ)h(t) + ωr (t, tr )
)
+ φn(x) − ζ̇n−1. (29)

Choose the following Lyapunov function as

Vn = Vn−1 +
1
2
z2n +

1
2αn

η̃2n. (30)

The time derivative of (30) gives

V̇n ≤ −

n−1∑
j=1

kjz2j + zn−1zn +

n−1∑
j=1

ϱj

αj
η̃jη̂j +

n−1∑
j=1

β2
j

2
+

ϵ2j

2

+ zn
((

ρ(t, tρ)ω(t)+ρ(t, tρ)h(t) + ωr (t, tr )
)
+φ̄n(Zn)

)
−

1
2
z2n, (31)

where

φ̄n(Zn) = zn−1 + φn(x) − ζ̇n−1 +
1
2
zn. (32)

The unknown function φ̄n(Zn) can be approximated by the
RBFNN such that for any ϵn > 0, we get

φ̄n(Zn) = W T
n Un(Zn) + δn(Zn), |δn(Zn)| ≤ ϵn, (33)

where Zn = [χ1, χ2, . . . , χn, ¯̂ηTn−1, ȳ
(n)T
d ]T .

Moreover, we have

znφ̄n(Zn) = zn(W T
n Un(Zn) + δn(Zn))

≤
1

2β2
n
z2n∥Wn∥

2UT
n (Zn)Un(Zn) +

β2
n

2
+
z2n
2

+
ϵ2n

2

≤
1

2β2
n
z2nηnU

T
n (Xn)U(Xn) +

β2
n

2
+
z2n
2

+
ϵ2n

2
,

(34)

where Xn = Zn, ηi = ∥Wn∥
2, and βn > 0 is a design

parameter.
The real control law is define as

ω = −cnzn −
1

2β2
nρmin

znηnUT
n (Xn)Un(Xn). (35)

By Lemma 2 and Assumption 1, one has

znωr (t, tr ) ≤
1
2
z2n +

1
2
ω̄2
max. (36)

From Assumptions 1, Lemma 2, and (35), one has

ρ(t, tρ)ω ≤ −cnρminz2n −
1

2β2
n
z2nηnU

T
n (Xn)Un(Xn), (37)

ρ(t, tρ)h(t) ≤
1
2
z2n +

1
2
ω2
minρ

2
min. (38)

The adaptation law is defined as
˙̂ηn =

αn

2β2
n
z2nU

T
n (Xn)Un(Xn) − ϱnηn, (39)

where kn and ϱn are positive design parameters.
Using (34)-(39) into (38), we have

V̇n ≤ −

n−1∑
j=1

cnz2j −cnρminz2n+
n∑
j=1

ϱj

bj
η̃jη̂j +

n∑
j=1

(
β2
j

2
+

ϵ2j

2

)

+
1
2
ω̄2
max +

1
2
ω2
minρ

2
min. (40)

Theorem 1: Consider the non-strict-feedback system (1)
with Assumptions 1-2 taken into account, along with actuator
faults (2) and hysteresis quantizer (3). Given bounded initial
conditions, the proposed control approach, comprising the
actual controller ω (35), virtual control law ζi (17), (26), and
adaptive laws η̂i (18), (27), and (39), ensures the boundedness
of all signals within the closed-loop system. Furthermore, the
tracking error z1 = y− yd satisfies

lim
t→∞

z1(t) = 0. (41)

Proof: First, it was established that

η̃iηi ≤ −
1
2
η̃2i +

1
2
η2i . (42)

Then (40), becomes

V̇n ≤ −

n−1∑
j=1

cnz2j −cnρminz2n+
n∑
j=1

ϱj

bj
η̃jη̂j+

n∑
j=1

(
β2
j

2
+

ϵ2j

2

)

+
1
2
ω̄2
max +

1
2
ω2
minρ

2
min, (43)

where a0 = min{2ci, . . . , 2cn−1, 2cnρmin, β1, . . . , βn}, and

b0 =
∑n

j=1

(
β2
j
2 +

ϵ2j
2

)
+

1
2ω

2
max +

1
2ω

2
minρ

2
min +∑n

i=1
ϱj
2βj

η2j .
Using these notations, one has

V̇ ≤ −a0V + b0. (44)

Furthermore, we have

V (t) ≤

(
V (0) −

b0
a0

)
e−a0t +

b0
a0

. (45)

Equation (45) ensures that all signals in the closed-loop
system remain bounded. Specifically, we have

z21 ≤ 2
(
V (0) −

b0
a0

)
e−a0t + 2

b0
a0

. (46)

As a result, equation (41) follows immediately. The proposed
control approach not only achieves closed-loop system
stabilization but also assures precise tracking performance
for nonlinear systems in the face of actuator faults and input
quantization. Hence, the proof is completed.
Remark 3: The choices made for design parameters ci, ϱ,

and βi can have a substantial influence on the tracking error,
as demonstrated by inequality (46) and the expressions for
the design parameters a0 and b0. Increasing ci and ϱ while
decreasing βi can reduce tracking error but raises control
input. Thus, choosing the appropriate design parameters in
simulations is important for enhancing control performance.
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FIGURE 2. The electromechanical system.

IV. SIMULATION RESULTS
To evaluate the effectiveness of the developed control
algorithm, an electromechanical system [46] is employed,
as depicted in Figure 2. The system’s mathematical model
is expressed by the following equations:{

Mq̈+ Bq̇+ N sin(q) = I
İ = V0−RI − KT q̇,

(47)

where the parameters are defined as M =
J
KT

+
mL20
3KT

+

M0L20
KT

+
2M0R20
5KT

, B =
B0
KT

, and N =
mL0G
2KT

+
M0L0G
KT

, where
m represents the link mass, the rotor inertia is J , the load
mass isM0, the armature inductance is L, the viscous friction
coefficient is B0, the link length is L0, the armature resistance
is R, and the back EMF coefficient is KT , the load radius
is R0, the armature inductance is L, and the link length is
L0. q is the angular motor position, q̇ represents the angular
motor velocity, q̈ represents the angular motor acceleration.
The term I (t) stands for the motor armature current, KT
stands for the coefficient describing the electromechanical
conversion of armature current to torque, and G stands for
the gravitational constant. The values for the parameters are
same as in [46]. Equation (47) can be recast as follows by
taking into account the electromechanical system and adding
the variable changes χ1 = q, χ2 = q̇, χ3 = I , and u =

V0
M

χ̇1 = χ2,

χ̇2 =
χ3

M
−
N
M

sin(χ1) −
B
M

χ2,

χ̇3 =
u
L

−
K
L

χ2 −
R
L

χ3,

where y = χ1. Additionally, the reference signal is chosen as
yd = 0.5 sin(t) − cos(0.5t).
The virtual control signals, the actual control law, and the

adaptive laws are defined as

ζi = −cizi −
1

2β2
i

ziη̂iUT
i (Xi)Ui(Xi), i = 1, 2 (48)

ω = −cnzn −
1

2β2
nρmin

znηnUT
n (Xn)Un(Xn), (49)

˙̂ηi =
αi

2β2
i

z2i U
T
i (Xi)Ui(Xi) − ϱiη̂i, i = 1, 2, 3. (50)

In the simulation, the quantized parameters are set as δ = 0.3,
µ = 0.2 and µmin = 0.8. The actuator fault is selected as
ρ(t, tρ)Q(ω)+ωr (t, tr ) where ρ(t, tρ) = 0.2+0.8exp(−0.2t)
and ωr (t, tr ) = cos2(χ1)χ2. In the simulation, the controller

FIGURE 3. Trajectories of y and yd .

FIGURE 4. Tracking error z1.

FIGURE 5. The state variable χ2 and χ3.

FIGURE 6. Trajectories of ω and 0(Q(ω)).

design parameters are selected through a trial-and-error
approach. The controller design parameters are chosen as
c1 = 10, c2 = 20 β1 = β2 = β3 = 1, α1 = α2 =

α3 = 0.5, ϱ1 = ϱ2 = ϱ3 = 0.05. The width ν and
centres µi of the Gaussian functions are chosen as 2 and
[−2, 2], respectively.The initial conditions are χ1(0) = 0.5
χ2(0) = 0.4, χ3(0) = 0.2, η̂1(0) = 0, η̂2(0) = 0, η̂3(0) = 0.
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FIGURE 7. The responses of adaptive laws η̂1, η̂2 and η̂3.

The simulation results are shown in Figs. 3-7. The
output y and desired signal yd trajectories are shown in
Fig. 3. It displays effective tracking performance is achieved.
Fig. 4 provides an illustration of the tracking error z1. The
trajectories of the states χ2 and χ3 are shown in Fig. 5. Fig. 6
shows the responses to system input 0(Q(ω)) and control
input ω. The adaptive laws η̂1, η̂2, and η̂3 are shown to be
bounded in Figure 7. Figures 3-7 show that by employing
the developed controller, all closed-loop system signals are
bounded by suitably enhancing the parameters. This signifies
that the simulation results validate the suggested controller.

V. CONCLUSION
This work investigates the adaptive fault-tolerant control
problem of a class of nonlinear systems with actuator faults
and input quantization. Radial basis function neural networks
(RBFNN) are used in the control system to approximate
nonlinear functions. In addition, utilizing the backstepping
approach and Lyapunov stability theory, an adaptive fault-
tolerant controller for nonlinear systems is proposed to
compensate for the impacts of input quantization and
actuator faults. With the proposed control method, all
signals in the closed-loop system are semi-globally uniformly
ultimately bounded, and the tracking error converges to
an arbitrarily small area of origin. To validate the control
strategy, simulation results of an electromechanical system
are provided. The limitation of the proposed method resides
in the selection of appropriate design parameters and initial
conditions during simulation, often determined via trial and
error. This iterative process can be time-consuming. The
proposed control scheme demonstrates applicability across
various real-world systems, including inverted pendulum
control systems and chemical reactor systems. In the future,
we will investigate the stochastic nonlinear systems with
sensor faults and quantization by apply the proposed control
method to real-world engineering issues.
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