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ABSTRACT In this paper, the stability problem of load frequency control (LFC) based power systems with
two additive interval time-varying delays is studied. Firstly, considering the time delays of transmission
from control center to regulator and sensor to control center, the mathematical model of two-area LFC
power system based on proportional integral control is established. Secondly, under the condition that the
lower bounds of interval time-varying delays are non-zero, an augmented Lyaounov-Krasovskii functional
(LKF) is constructed, and a new delay-dependent stability criterion is derived. Since the extension of LKF
introduces the nonlinear term of time-varying delay square, a new negative definite integral inequality
transformation lemma is used to transform the nonlinear matrix inequality in the stability criterion into linear
matrix inequality (LMI) equally-without introducing additional conservatism. Finally, themaximum stability
margin of the LFC power systems is obtained by usingMATLAB LMI-toolbox, and simulation results based
on Simulink-toolbox show the effectiveness of the stability criterion.

INDEX TERMS Interval time-varying delays, load frequency control, power systems, Lyapunov-Krasovskii
functional, LMI.

I. INTRODUCTION
Load frequency control (LFC) is an important method to
regulate and control the frequency of the power grid, which
can keep the frequency stable within the power system area
and exchange power with the neighboring areas [1], [2], [3].
The traditional centralized LFC scheme uses a dedicated
communication channel to transmit control signals, and the
transmission delay is very small which can be ignored
[4]. With the continuous development of power grid scale,
the open internet has replaced the dedicated networks as
the primary communication channels of large-scale data
transmission and exchange due to its advantages of low
cost and strong flexibility [5], [6]. However, long distance
information processing and transmission inevitably result
in communication delays, network congestion or failure,
and potential network attacks [7]. The researchers show
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that when the communication delays are large, the dynamic
performance of the power system may be reduced or even
unstable [8]. Therefore, the effect of time delay on the
stability of power system is one of the problems to be solved.

The stability analysis of time-delay systems is always
a basic problem in the research of time-delay systems.
Time-delay systems have time-delay factors, whose states
are not only dependent on the inputs and states of the
present time, but also related to the inputs and states of
the past time. Therefore, stability analysis of time-delay
systems is a challenging task that requires a series of
specialized mathematical tools and methods. At present, the
most common method is Lyapunov stability theory. The
complete Lyapunov-Krasovskii functional (LKF) can provide
sufficient and necessary conditions for the stability of linear
systems with constant delays, while the simple LKF only
provides sufficient conditions for the stability of systems with
time-varying delays. Due to the inevitable conservatism of
sufficient conditions, the current research focuses on how to
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reduce the conservatism of stability criteria. There are two
main methods: one is to construct a novel LKF, and the
other is to derive a tight inequality amplification technique.
For example, the implicit LKF [9], the time-dependent LKF
[10], the vector LKF [11], some other augmented LKFs [12],
[13], [14], [15], the delay-fraction theory [16], [17], relaxed
quadratic function negative-determination lemmas [18], [19],
and so on.

With the continuous development of stability methods
for time-delay systems, the analysis method of time-delay
systems has been gradually applied to the stability research
of time-delay LFC power systems in recent decades. At the
beginning, frequency domain method was used to study the
delay-dependent stability of LFC schemes, however it can
only deal with constant delay [20]. For LFC power system
with time-varying delays, Lyapunov stability theory is still
used to obtain less conservative stability criteria. Based on
Lyapunov stability theory and linear matrix inequality (LMI)
method, an approximate method for obtaining delay margin
is proposed in [21]. In order to improve the accuracy of
delay margin, [22], [23], [24], [25] derived a less conservative
random delay-dependent stability criterion. At the same time,
the load disturbance is modeled as a bounded uncertainty
parameter, and a new inequality technique is used to further
reduce the conservatism of the stability criteria for the LFC
power systems with time-varying delays [26]. In addition,
in order to ensure the stability and anti-interference ability
of time-delay LFC power system, researchers have designed
many control strategies, such as PI control [27], network
predictive control [28], [29], [30], nonlinear control [31],
[32], and so on. PI control has good robustness and
independent on the exact model of the power system, which
is widely used in the industrial field at present. To solve the
stability problem of LFC power systems with time-varying
delay based on PI controllers, a large number of scholars have
given good results [6], [33], [34], [35], [36], [37]. However,
these results only consider the case where the lower bound
of the time-varying delay is zero. In practice, it is known
that the range of delay with non-zero lower bound are often
encountered, and such systems are referred to as interval
time-delay systems. To the best of the authors’ knowledge,
most of the existing studies seldom consider the delay of
the non-zero bound. Therefore, it is necessary to study the
effect of non-zero bound of interval time-varying delay on the
performance of LFC power systems in open communication
networks.

This paper mainly studies the stability of two-area LFC
power system with interval time-varying delays. Not only
the transmission delay from the sensor center to the control
center, but also the transmission delay from the control
center to the regulation center are considered. Using the
Lyapunov stability theory and integral inequality technique,
a new stability criterion based on LMI is derived. The main
contributions are summarized below.

• The stability of two-area LFC power system with
interval time-varying delays, whose the lower bounds

are not 0, is investigated, which is ignored in the
published literature.

• Based on the interval time-varying delays, a novel LKF
is constructed, which divides the interval time-varying
delay into different time-varying subintervals and con-
tains additional delay-dependent state information.

• In order to obtain the stability criterion with low
conservatism, the square term of time-varying delay
is introduced in the LKF, resulting in a nonlinear
matrix inequality form of the stability criterion. A novel
negative definite integral inequality transformation
lemma is used to equivalently transform the nonlinear
matrix inequalities into LMIs without introducing extra
conservatism.

Notation: In this paper, Rn, Rn×m represent the n-
dimensional vector and the n × m matrix space, respec-
tively. Sn, Sn+ mean the sets of symmetric and positive
definite real matrix spaces. n-order block diagonal matrix
diag {S1, S2, · · · , Sn} with diagonal partitioned elements
S1, S2, · · · , Sn. ei (i = 1, . . . ,m) are a column blockmatrix in
which only the i−th block is the identity matrix and the others

are 0 matrices. Such as, e3 =

0 0 I 0 · · · 0︸ ︷︷ ︸
m−3

. This symbol

∗ in a block symmetric matrix denotes transpose of the
corresponding symmetric element. col{·} denotes a column
vector. 5(h1(t), h2(t)) denotes 5 is the binary function of
h1(t) and h2(t). Sym{4} = 4 + 4T .

II. PROBLEM FORMULATION AND PRELIMINARY
This section considers the time-delay model of two-area
LFC power system based on PI controller, where the basic
framework is shown in Figure 1. e−shi (i = 1, 2) represent the
time delay when the signal is transmitted from the sensor to
the control center and from the control center to the governor.
There is a contact line model in the power system of two
areas. ∆fi, ∆P12, ∆Pvi, ∆Pmi, ∆Pdi, ∆Pci (i = 1, 2) are
the deviation of frequency, tie-line power exchange, valve
position, mechanical output of generator, load disturbance
and setpoint, respectively. Mi, Di, Tgi, Tchi, βi, Ri and ACEi
are the moment of inertia of generator unit, generator unit
damping coefficient, time constant of the governor, time
constant of the turbine, the frequency bias factor of area,
speed drop and area control error.

According to Figure 1 and literature [1], the state-space
equation of LFC power system is expressed as the following
equation (1).{

ẋ(t) = Ax(t) + B∆Pc(t) + Dω∆Pd
y(t) = Cx(t),

(1)

where the system parameters are as follows:

xT (t) =

[
∆f1 ∆Pm1 ∆Pv1

∫
ACE1 ∆P12

∆f2 ∆Pm2 ∆Pv2

∫
ACE2

]
,
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FIGURE 1. The basic diagram of the simplified LFC of two-area power system.

yT (t) =

[
ACE1

∫
ACE1 ACE2

∫
ACE2

]
,

∆PTc (t) = [∆Pc1(t) ∆Pc2(t)] ,

∆PTd = [∆Pd1(t) ∆Pd2(t)] ,

A =

[
A11 A12
A21 A22

]
,

A11 =



−
D1

M1

1
M1

0 0 −
1
M1

0 −
1
Tch1

1
Tch1

0 0

−
1

R1Tg1
0 −

1
Tg1

0 0

β1 0 0 0 1
2πT12 0 0 0 0


,

A12 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

−2πT12 0 0 0

 ,

A21 =


0 0 0 0

1
M2

0 0 0 0 0
0 0 0 0 0
0 0 0 0 −1

 ,

A22 =



−
D2

M2

1
M2

0 0

0 −
1
Tch2

1
Tch2

0

−
1

R2Tg2
0 −

1
Tg2

0

β2 0 0 0


,

B = diag{B1,B2}, B1 =

[
0 0

1
Tg1

0 0
]T

,

B2 =

[
0 0

1
Tg2

0
]T

,

C =

[
C11 C12
C21 C22

]
,

C11 =

[
β1 0 0 0 1
0 0 0 1 0

]
,

C12 =

[
0 0 0 0
0 0 0 0

]
,

C21 =

[
0 0 0 0 1
0 0 0 0 0

]
,

C22 =

[
β2 0 0 0
0 0 0 1

]
,

Dω = diag{Dω1,Dω2},

Dω1 =

[
−

1
M1

0 0 0 0
]T

,

Dω2 =

[
−

1
M2

0 0 0
]T

.

LFC is implemented by PI controller with control error
ACE as input:

∆Pc1(t) ≜ u1(t) = −KP1ACE1 − KI1

∫
ACE1, (2)

∆Pc2(t) ≜ u2(t) = −KP2ACE2 − KI2

∫
ACE2, (3)

whereKPi andKIi are the control gainmatrices, andACEi (i =
1, 2) indicate area control errors. Since there are time-varying
delays h1t ≜ h1(t) and h2t ≜ h2(t) in the feedback channel
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and the forward channel respectively, we have the following
formula

ACE1 = β1∆f1 (t − h1t) , ACE2 = β2∆f2 (t − h1t) ,

∆Pc1 (t) = u1 (t − h2t) , ∆Pc2 (t) = u2 (t − h2t) ,

where the frequency bias factors β1, β2 > 0, and h1t and
h2t are differentiable and bounded. Given the non-negative
constants h11, h1, h21, h2 and µ1, µ2, the time-varying delays
satisfy the following conditions

h11 ≤ h1t ≤ h1, h21 ≤ h2t ≤ h2,

|ḣ1t | ≤ µ1, |ḣ2t | ≤ µ2, ∀ t > 0. (4)

Letting K = diag {K1,K2} , K1 =
[
KP1 KI1

]
, K2 =[

KP2 KI2
]
, ω(t) = ∆Pd (t), ht = h1t + h2t and h = h1 + h2,

the closed-loop LFC power systems can be rewritten in the
following form.

ẋ(t) = Ax(t) + A1x(t − ht ) + Dωω(t)
y(t) = Cx(t)
x(t) = φ(t), t ∈ [−h, 0],

(5)

where φ(t) is a continuous vector function on [−h, 0],
representing the initial conditions.

A1 =

[
A111 A112
A121 A122

]
,

A111 =


0 0 0 0 0
0 0 0 0 0

−
KP1β1

Tg1
0 0 −

KI1
Tg1

−
KP1
Tg1

0 0 0 0 0
0 0 0 0 0

 ,

A112 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,

A121 =


0 0 0 0 0
0 0 0 0 0

0 0 0 0 −
KP2
Tg2

0 0 0 0 0

 ,

A122 =


0 0 0 0
0 0 0 0

−
KP2β2
Tg2

0 0 −
KI2
Tg2

0 0 0 0

 .

Definition 1 [22]: For time-delay LFC power systems,
the unknown external load disturbances can be described
as nonlinear disturbances of current and delay state vectors,
which can be expressed as the flowing equation.

D̂ww (t) = η (x (t) , x (t − h (t))) , (6)

which satisfies the constraints of the following inequalities

∥η (·)∥ ≤ ϖ∥x (t)∥ + ν∥x (t − h (t))∥. (7)

Here, ϖ and ν are known positive scalars. The inequality (7)
is further generalized to

η( · )T η( · ) ≤ ϖ 2xT (t)ETEx(t)

+ ν2xT (t − h (t) )NTNx(t − h (t) ), (8)

where E and N are known positive definite matrices with
appropriate dimension.
Lemma 1 [16]: For any matrix Q ∈ Sn+ and a vector

function g : [m, n] −→ Rn, the following integral inequality
holds ∫ n

m
ġT (θ )Qġ(θ )dθ ≥

1
n− m

ϱT Q̄ϱ, (9)

where

Q̄ = diag {Q, 3Q, 5Q} ,

ϱ = col {ϱ1, ϱ2, ϱ3} ,

ϱ1 = g(n) − g(m),

ϱ2 = g(n) + g(m)

−
2

n− m

∫ n

m
g(θ )dθ,

ϱ3 = ϱ1 −
6

n− m

∫ n

m
g(θ )dθ

+
12

(n− m)2

∫ n

m
(n− θ )g(θ )dθ.

Lemma 2 [15]: For given constant scalar α ∈ (0, 1],
matrices Λ1, Λ2 ∈ Sm+, υ1, υ2 ∈ Rm, if there are ς1, ς2 ∈ Sm,
Υ1, Υ2 ∈ Rm×m such that[

Λ1 − ς1 Υ1
∗ Λ2

]
>0,[

Λ1 Υ2
∗ Λ2 − ς2

]
>0,

then the following inequality is true.

1
α

υT1 Λ1υ1 +
1

1 − α
υT2 Λ2υ2 ≥ 2υT1 [αΥ1 + (1 − α)Υ2]υ2

+ υT1 [Λ1 + (1 − α)ς1]υ1
+ υT2 [Λ2 + ας2]υ2.

Lemma 3 [19]: For given matrices Pi ∈ Sp, (i = 0, 1, 2),
ζ ∈ Rp, the following inequality

ζ T (τ 2t P2 + τtP1 + P0)ζ < 0

holds for all τt ∈ [τ1, τ2], if and only if there are a matrix
M ∈ Sp+ and a skew symmetric matrix N ∈ Rk×k such that[

P0
1
2
P1

∗ P2

]
−

[
C
J

]T [
−M N
∗ M

] [
C
J

]
< 0,

where C =
[

τ12
2 I 0

]
, J =

[
τ12
2 I − I

]
and τ12 = τ2 − τ1.
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III. MAIN RESULTS
In this section, a new stability criterion of two-area LFC
power systems with interval time-varying delays is derived.
To simplify the derivation, the following symbols and
matrices are given.

ht1 = h1t − h11, h̄t1 = h1 − h1t , ht2 = h2t − h21,

h̄t2 = h2 − h2t , h10 = h1 − h11, h20 = h2 − h21,

h0 = h11 + h21, hh0 = h− h0, ht0 = ht − h0,

h̄t0 = h− ht , h1d = 1 − ḣ1t , h2d = 1 − ḣ2t ,

hd = 1−ḣt , Z1t =h1tZ11+Z12, Z2t = h̄1tZ21+Z22,

Z3t = h2tZ31 + Z32, Z4t = h̄2tZ41 + Z42,

ρ1t =

∫ t−h1t

t−h1

x(θ )

h̄t1
dθ, ρ3t =

∫ t−ht

t−h

x(θ )

h̄t0
dθ,

ρ5t =

∫ t−h11

t−h1t

x(θ )
ht1

dθ, ρ7t =

∫ t−h0

t−ht

x(θ )
ht0

dθ,

ρ2t =

∫ t−h1t

t−h1

(t − h1t − θ )x(θ )

h̄2t1
dθ,

ρ4t =

∫ t−ht

t−h

(t − ht − θ )x(θ )

h̄2t0
dθ,

ρ6t =

∫ t−h11

t−h1t

(t − h11 − θ )x(θ )

h2t1
dθ,

ρ8t =

∫ t−h0

t−ht

(t − h0 − θ )x(θ )

h2t0
dθ,

ϕ01t = col{x(t), x(t − h11), x(t − h1t ), x(t − h1)},

ϕ02t = col{x(t), x(t − h0), x(t − ht ), x(t − h)},

ϕ1t = col{x(t − h11), x(t − h1t ),
∫ t−h11

t−h1t
x(θ )dθ},

ϕ2t = col{x(t − h1t ), x(t − h1),
∫ t−h1t

t−h1
x(θ )dθ},

ϕ3t = col{x(t − h0), x(t − ht ),
∫ t−h0

t−ht
x(θ )dθ},

ϕ4t = col{x(t − ht ), x(t − h),
∫ t−ht

t−h
x(θ )dθ},

ϕ5(s) = col{ẋ(s), x(s), ϕ01t ,

∫ t−h11

s
x(θ )dθ

×

∫ s

t−h1t
x(θ )dθ,

∫ t−h1t

t−h1
x(θ )dθ},

ϕ6(s) = col{ẋ(s), x(s), ϕ01t ,

∫ t−h1t

s
x(θ )dθ,∫ t−h11

t−h1t
x(θ )dθ,

∫ s

t−h1
x(θ )dθ},

ϕ7(s) = col{ẋ(s), x(s), ϕ02t ,

∫ t−h0

s
x(θ )dθ,∫ s

t−ht
x(θ )dθ,

∫ t−ht

t−h
x(θ )dθ},

ϕ8(s) = col{ẋ(s), x(s), ϕ02t ,

∫ t−ht

s
x(θ )dθ,

∫ t−h0

t−ht
x(θ )dθ,

∫ s

t−h
x(θ )dθ},

ζt = col{x(t), x(t − h1t ), x(t − ht ), x(t − h1), x(t − h),

x(t − h11), x(t − h0), ẋ(t), ẋ(t − h1t ), ẋ(t − ht ),

ẋ(t − h1), ẋ(t − h), ẋ(t − h11), ẋ(t − h11),

ẋ(t − h0), ρ1t , ρ2t , ρ3t , ρ4t ,

ρ5t , ρ6t , ρ7t , ρ8t ,Dωω(t)}.

Theorem 1: For given scalars h11, h21, h1, h2, µ1, µ2, ϖ ,
ν, positive definite matrices E = diag{ε1, · · · , εn} and N =

diag{n1, · · · , nn}, if there are Zr1,Xr ∈ S3n, Zr2 ∈ S3n
+ , Yr ∈

R3n×3n, Hr ∈ Sn+, Dr ∈ S14n
+ , Qr ∈ S8n

+ , Gr ∈ R14n×14n and
Ur ∈ R4n×n, such that

h11Z11 + Z12 > 0, h10Z21 + Z22 > 0, (10)

h0Z31 + Z32 > 0, hh0Z41 + Z42 > 0, (11)[
H̄1 − X1 Y1

∗ H̄2

]
> 0,

[
H̄1 Y2
∗ H̄2 − X2

]
> 0, (12)[

H̄3 − X3 Y3
∗ H̄4

]
> 0,

[
H̄3 Y4
∗ H̄4 − X4

]
> 0, (13)[

Ω10(γi)
1
2
Ω11(γi)

∗ Ω21(γi)

]
−

[
C1
J1

]T [
−Di Gi
∗ Di

] [
C1
J1

]
0,

(14)[
Ω0(δk )

1
2
Ω1(δk )

∗ Ω2(δk )

]
−

[
C2
J2

]T [
−Dk Gk

∗ Dk

] [
C2
J2

]
<0.

(15)

Then, the system (3) is stable for hit ∈ [hi1, hi], ḣ1t ≜ γi ∈

{−µ1, µ1} and ḣt ≜ δk ∈ {−µ, µ}, (i = 1, 2; k = 3, 4; r =

1, 2, 3, 4).
Here,

C1 =

[
h10
2
I 0

]
, J1 =

[
h10
2
I − I

]
,

C2 =

[
hh0
2
I 0

]
, J2 =

[
hh0
2
I − I

]
,

H̄r = diag{Hr , 3Hr , 5Hr },

Ω10(γi) = ḣ1t∆T
11Z11∆11 +

˙̄h1t∆T
21Z21∆21

+ Sym
{
∆T

13 (Z12 − h11Z11) ∆11

+∆T
23 (h1Z21 + Z22) ∆21

}
+ ∆T

51Q1∆51 − ∆T
63Q2∆63

+ h1d
(
∆T

61Q2∆61 − ∆T
53Q1∆53

)
+ Sym

{
ΛT

10Q1Λ1 + ΛT
20Q2Λ2

}
+ h10h1dh1e9 (H1 − H2) eT9
+ h210e13H2eT13 − Γ T

1
(
H̄1 + X1

)
Γ1

+ Γ T
2 H̄2Γ2 + Sym

{
Γ T
1 Y2Γ2

}
,
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Ω11(γi) = Sym
{
ḣ1t∆T

11Z11∆12 +
˙̄h1t∆T

21Z21∆22

+∆T
13Z11∆11 + ∆T

13 (Z12 − h11Z11) ∆12

+∆T
23 (h1Z21 + Z22) ∆22 − ∆T

23Z21∆21

}
+ Sym

{
∆T

52Q1∆51 − ∆T
64Q2∆63

+ΛT
11Q1Λ1 + ΛT

21Q2Λ2

}
+ h1dSym

{
∆T

62Q2∆61 − ∆T
54Q1∆53

}
− h10h1de9 (H1 − H2) eT9

+
1
h10

(
Γ T
1 X1Γ1 + Γ T

2 X2Γ2

)
+

1
h10

Sym
{
Γ T
1 Y1Γ2 − Γ T

1 Y2Γ2

}
,

Ω21(γi) = Sym
{
∆T

13Z11∆12 − ∆T
23Z21∆22

}
+ ḣt1∆T

12Z11∆12 +
˙̄h1t∆T

22Z21∆22

+ ∆T
52Q1∆52 − ∆T

64Q2∆64

+ h1d
(
∆T

62Q2∆62 − ∆T
54Q1∆54

)
Sym

{
ΛT

12Q1Λ1 + ΛT
22Q2Λ2

}
,

Ω0(δk ) = ḣt0∆T
31Z31∆31 +

˙̄ht0∆T
41Z41∆41

+ Sym
{
∆T

33 (Z32 − h0Z31) ∆31

+∆T
43 (hZ41 + Z42) ∆41

}
+ ∆T

71Q3∆71

− ∆T
83Q4∆83 + hd∆T

81Q4∆81 − hd∆T
73Q3∆73

+ Sym
{
ΛT

30Q3Λ3 + ΛT
40Q4Λ4

}
+ hh0hdhe10 (H3 − H4) eT10 + h2h0e14H4eT14
− Γ T

3 H̄3Γ3 − Γ T
3 X3Γ3

+ Γ T
4 H̄4Γ4 + Sym

{
Γ T
3 Y4Γ4 + ∆T

0UΠ0

}
− e24IeT24 + ϖ 2e1ETEeT1 + ν2e3NTNeT3 ,

Ω1(δk ) = Sym
{
ḣt0∆T

31Z31∆32 +
˙̄ht0∆T

41Z41∆42

+ ∆T
33Z31∆31 + ∆T

33 (Z32 − h0Z31) ∆32

+ ∆T
43 (Z42 + hZ41) ∆42 − ∆T

43Z41∆41

}
+ Sym

{
∆T

72Q3∆71 − ∆T
84Q4∆83

}
+ hdSym

{
∆T

82Q4∆81 − ∆T
74Q3∆73

}
+ Sym

{
ΛT

31Q3Λ3 + ΛT
41Q4Λ4

}
− hh0hde10 (H3 − H4) eT10

+
1
hh0

(
Γ T
3 X3Γ3 + Γ T

3 X3Γ3

)
+

1
hh0

Sym
{
Γ T
3 Y3Γ4 − Γ T

3 Y4Γ4

}
,

Ω2(δk ) = ḣt0∆T
32Z31∆32 +

˙̄ht0∆T
42Z41∆42

+ Sym
{
∆T

33Z31∆32 − ∆T
43Z41∆42

}
+ ∆T

72Q3∆72 − ∆T
84Q4∆84

+ hd
(
∆T

82Q4∆82 − ∆T
74Q3∆74

)
+ Sym

{
ΛT

32Q3Λ3 + ΛT
42Q4Λ4

}
.

∆0 = col {e1, e3, e8, e24} ,

Π0 = col {Ae1,A1e3, e24, −e8} ,

∆11 = col {e6, e2, −h11e19} , ∆12 = col {0, 0, e19} ,

∆13 = col {e13, e9, e6 − h1de2} ,

∆21 = col {e2, e4, h1e15} , ∆22 = col {0, 0, −e15} ,

∆23 = col {e9, e11, e2 − h1de4} ,

∆31 = col {e7, e3, −h10e21} , ∆32 = col {0, 0, e21} ,

∆33 = col {e14, e10, e7 − hde3} ,

∆41 = col {e3, e5, he17} , ∆42 = col {0, 0, −e17} ,

∆43 = col {e10, e12, e3 − hde5} ,

∆51 = col {e13, e6, e1, e6, e2, e4, 0, −h11e19, h1e15} ,

∆52 = col {0, 0, 0, 0, 0, 0, 0, e19, −e15} ,

∆53 = col {e9, e2, e1, e6, e2, e4, −h11e19, 0, h1e15} ,

∆54 = col {0, 0, 0, 0, 0, 0, e19, 0, −e15} ,

∆61 = col {e9, e2, e1, e6, e2, e4, 0, −h11e19, h1e15} ,

∆62 = col {0, 0, 0, 0, 0, 0, 0, e19, −e15} ,

∆63 = col {e11, e4, e1, e6, e2, e4, h1e15, −h11e19, 0} ,

∆64 = col {0, 0, 0, 0, 0, 0, −e15, e19, 0} ,

∆71 = col {e14, e7, e1, e7, e3, e5, 0, −h0e21, he17} ,

∆72 = col {0, 0, 0, 0, 0, 0, 0, e21, −e17} ,

∆73 = col {e10, e3, e1, e7, e3, e5, −h0e21, 0, he17} ,

∆74 = col {0, 0, 0, 0, 0, 0, e21, 0, −e17} ,

∆81 = col {e10, e3, e1, e7, e3, e5, 0, −h0e21, he17} ,

∆82 = col {0, 0, 0, 0, 0, 0, 0, e21, −e17} ,

∆83 = col {e12, e5, e1, e7, e3, e5, he17, −h0e21, 0} ,

∆84 = col {0, 0, 0, 0, 0, 0, −e17, e21, 0} ,

Λ10 = col {e6 − e2, −h11e19, −h11e1, −h11e6, −h11e2,

−h11e4, h211(e19 − e20), h211e20, h11h1e15
}

,

Λ11 = col {0, e19, e1, e6, e2, e4, −2h11e20, (h11 + h1)e15} ,

Λ12 = col {0, 0, 0, 0, 0, 0, e19 − e20, e20, −e15} ,

Λ20 = col {e2 − e4, h1e15, h1e1, h1e6, h1e2, h1e4,

h21(e15 − e16), −h11h1e19, h21e16
}

,

Λ21 = col {0, −e15, −e1, −e6, −e2, −e4,

−2h1(e15 − e16), (h11 + h1)e19, −2h1e16} ,

Λ22 = col {0, 0, 0, 0, 0, 0, e15 − e16, −e19, e16} ,

Λ30 = col {e7 − e3, h1e15, −h0e21, −h0e1, −h0e7,

−h0e3, −h0e5, h20(e21 − e22), h20e22, −h0he17
}

,

Λ31 = col {0, e21, e1, e7, e3, e5, −2h2(e21 − e22),
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−2h0e22, (h+ h0)e17} ,

Λ32 = col {0, 0, 0, 0, 0, 0, e21 − e22, e22, −e17} ,

Λ40 = col
{
e3−e5, he17, he1, he7, he3, he5, h2(e17−e18),

−h0he21, h2e18
}

,

Λ41 = col {0, e17, −e1, −e7, −e3, −e5, −2h(e17 − e18),

(h+ h0)e21, −2he18} ,

Λ42 = col {0, 0, 0, 0, 0, 0, e17 − e18, −e21, e18} ,

Λ1 = col {0, 0, e8, e13, h1de9,

e11, e6, −h1de2, h1de2 − e4} ,

Λ2 = col {0, 0, e8, e13, h1de9,

e11, h1de2, e6 − h1de2, −e4} ,

Λ3 = col {0, 0, e8, e14, e10, e12, e1, −hde3, hde3 − e5} ,

Λ4 = col {0, 0, e8, e14, e10, e5, hde3, e7 − hde3, −e5} ,

Γ1 = col {e2 − e4, e2 + e4 − 2e15,

e2 − e4 − 6e15 + 12e16} ,

Γ2 = col {e6 − e2, e6 + e2 − 2e19,

e6 − e2 − 6e19 + 12e20} ,

Γ3 = col {e3 − e5, e3 + e5 − 2e17,

e2 − e3 − 6e17 + 12e18} ,

Γ4 = col {e7 − e3, e7 + e3 − 2e21,

e2 − e7 − 6e21 + 12e22} .

Proof: Construct the following LKF.

V (t) =

3∑
u=1

Vu (t) (16)

with

V1 (t) = ϕT1tZ1tϕ1t + ϕT2tZ2tϕ2t

+ ϕT3tZ3tϕ3t + ϕT4tZ4tϕ4t ,

V2 (t) =

∫ t−h11

t−h1t
ϕT5 (θ )Q1ϕ5(θ )dθ

+

∫ t−h1t

t−h1
ϕT6 (θ )Q2ϕ6(θ )dθ

+

∫ t−h0

t−ht
ϕT7 (θ )Q3ϕ7(θ )dθ

+

∫ t−ht

t−h
ϕT8 (θ )Q4ϕ8(θ )dθ,

V3 (t) = h10

∫ t−h1t

t−h1
(h1 − t + θ )ẋT (θ )H1ẋ(θ )dθ

+ h10

∫ t−h11

t−h1t
(h1 − t + θ )ẋT (θ )H2ẋ(θ )dθ

+ hh0

∫ t−ht

t−h
(h− t + θ )ẋT (θ )H3ẋ(θ )dθ

+ hh0

∫ t−h0

t−ht
(h− t + θ )ẋT (θ )H4ẋ(θ )dθ.

Zi (t) , (i = 1, 2, 3, 4) are affine functions of h1t ∈

[h11, h1] and ht ∈ [h0, h]. Obviously, V (t) > 0 according
to Zi2 > 0 and the inequalities (10) and (11). Calculating the
derivative of V (t), we get

V̇1 = ϕT1t Ż1tϕ1t + 2ϕ̇T1tZ1tϕ1t

+ ϕT2t Ż2tϕ2t + 2ϕ̇T2tZ2tϕ2t

+ ϕT3t Ż3tϕ3t + 2ϕ̇T3tZ3tϕ3t

+ ϕT4t Ż4tϕ4t + 2ϕ̇T4tZ4tϕ4t

= ζ T (t)(∆11+h1t∆12)
T ḣt1Z11(∆11+h1t∆12)ζ (t)

+ ζ T (t)(∆21+h1t∆22)
T ˙̄ht1Z21(∆21+h1t∆22)ζ (t)

+ ζ T (t)(∆31+ht∆32)
T ḣt0Z31(∆31+ht∆32)ζ (t)

+ ζ T (t) (∆41+ht∆42)
T ˙̄ht0Z41(∆41+ht∆42)ζ (t)

+ 2ζ T (t)∆T
13(ht1Z11+Z12)(∆11+h1t∆12)ζ (t)

+ 2ζ T (t)∆T
23

(̄
ht1Z21+Z22

)
(∆21+h1t∆22)ζ (t)

+ 2ζ T (t)∆T
33(ht0Z31+Z32)(∆31+ht∆32)ζ (t)

+2ζ T(t)∆T
43

(̄
ht0Z41 + Z42

)
(∆41 + ht∆42)ζ(t), (17)

V̇2 = ϕT5 (t − h11)Q1ϕ5 (t − h11)

− ϕT6 (t − h1)Q2ϕ6 (t − h1)

+ ϕT7 (t − h0)Q3ϕ7 (t − h0)

− ϕT8 (t − h)Q4ϕ8 (t − h)

− h1dϕT5 (t − h1t)Q1ϕ5 (t − h1t)

+ h1dϕT6 (t − h1t)Q2ϕ6 (t − h1t)

− hdϕT7 (t − ht)Q3ϕ7 (t − ht)

+ hdϕT8 (t − ht)Q4ϕ8 (t − ht)

+ 2
∫ t−h11

t−h1t
ϕT5 (θ) dθQ1

∂

∂t
ϕ5 (θ)

+ 2
∫ t−h1t

t−h1
ϕT6 (θ) dθQ2

∂

∂t
ϕ6 (θ)

+ 2
∫ t−h0

t−ht
ϕT7 (θ) dθQ3

∂

∂t
ϕ7 (θ)

+ 2
∫ t−ht

t−h
ϕT8 (θ) dθQ4

∂

∂t
ϕ8 (θ)

= ζ T (t)
(
(∆51 + h1t∆52)

T Q1 (∆51 + h1t∆52)

− h1d (∆53 + h1t∆54)
T Q1 (∆53 + h1t∆54)

)
ζ (t)

+ ζ T (t)
(
h1d (∆61 + h1t∆62)

T Q2 (∆61 + h1t∆62)

− (∆63 + h1t∆64)
T Q2 (∆63 + h1t∆64)

)
ζ (t)

+ ζ T (t)
(
(∆71 + ht∆72)

T Q3 (∆71 + ht∆72)

− hd (∆73 + ht∆74)
T Q3 (∆73 + ht∆74)

)
ζ (t)

+ ζ T (t)
(
hd (∆81 + ht∆82)

T Q4 (∆81 + ht∆82)

− (∆83 + ht∆84)
T Q4 (∆83 + ht∆84)

)
ζ (t)

+ 2ζ T (t)
((

Λ10 + h1tΛ11 + h21tΛ12

)T
Q1Λ1
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+

(
Λ20 + h1tΛ21 + h21tΛ22

)T
Q2Λ2

+

(
Λ30 + htΛ31 + h2t Λ32

)T
Q3Λ3

+

(
Λ40 + htΛ41 + h2t Λ42

)T
Q4Λ4

)
ζ (t) , (18)

V̇3 = h210ẋ
T (t − h11)H2ẋ(t − h11)

+ h2h0ẋ
T (t − h0)H4ẋ(t − h0)

+ h10h1d h̄t1ẋT (t − h1t ) (H1 − H2) ẋ(t − h1t )

+ hh0hd h̄t0ẋT (t − ht ) (H3 − H4) ẋ(t − ht )

− h10

∫ t−h1t

t−h1
ẋT (θ )H1ẋ(θ )dθ

− h10

∫ t−h11

t−h1t
ẋT (θ )H2ẋ(θ )dθ

− hh0

∫ t−ht

t−h
ẋT (θ )H3ẋ(θ )dθ

− hh0

∫ t−h0

t−ht
ẋT (θ)H4ẋ (θ) dθ, (19)

Letting α =
h1t
h10

, α =
ht
hh0

, the integral terms in V̇3(t)
can be rewritten and simplified to the following inequalities
according to lemmas 1 and 2.

− h10

∫ t−h1t

t−h1
ẋT (θ )H1ẋ(θ )dθ

− h10

∫ t

t−h1t
ẋT (θ )H2ẋ(θ )dθ

≤ −
1
α

ζ T (t) Γ T
1 H1Γ1ζ (t)

−
1

1 − α
ζ T (t) Γ T

2 H2Γ2ζ (t)

≤ −ζ T (t)
{
Γ T
1

[
(1 − α)X1 + H̄1

]
Γ1

+ 2Γ T
1 [αY1 + (1 − α)Y2]Γ2

+ Γ T
2

[
H̄2 + αX2

]
Γ2

}
ζ (t) , (20)

− hh0

∫ t−ht

t−h
ẋT (θ )H3ẋ(θ )dθ

− hh0

∫ t−h0

t−ht
ẋT (θ)H4ẋ (θ) dθ

≤ −
1
β

ζ T (t) Γ T
3 H3Γ3ζ (t)

−
1

1 − β
ζ T (t) Γ T

4 H4Γ4ζ (t)

≤ −ζ T (t)
{
Γ T
3

[
(1 − β)X3 + H3

]
Γ3

+ 2Γ T
3 [βY3 + (1 − β)Y4]Γ4

+ Γ T
4

[
H̄4 + βX4

]
Γ4

}
ζ (t) (21)

For an anymatrixU = col {U1,U2,U3,U4}, the following
equation holds.

0 =


x (t)

x (t − ht)
ẋ (t)

Dωw (t)


T

U
[
Ax (t) + A1x (t − ht)

+ Dωw (t) − ẋ (t)
]

= ζ T (t) ∆T
0UΠ0ζ (t) . (22)

It is obvious that the following inequality holds from the
constraint condition (8).

(Dωw)TDωw− ϖ 2xT (t)ETEx (t)

− ν2xT (t − h (t))NTNx (t − h (t)) ≤ 0. (23)

Finally, the equations (16)–(23) in the derivation process
are summarized and sorted into the following inequalities.

V̇ (t) ≤ ζ Tt

[
h2t Ψ2

(
ḣt

)
+ htΨ1

(
ḣt

)
+ Ψ0

(
ḣt

)]
ζt

+ ζ Tt

[
h21tΨ21

(
ḣ1t

)
+ h1tΨ11

(
ḣ1t

)
+ Ψ10

(
ḣ1t

) ]
ζt (24)

According to Lemma 3, if and only if there exist Dr ∈

S10n
+ and skew-symmetric matrices Gr ∈ R14n×14n, (r =

1, 2, 3, 4), the non-linear inequality (24) can be converted
to the LMIs (14) and (15) in Theorem 1. And then V̇ (t) <

0 holds. Therefore, by Lyapunov stability theorem, it can
guarantee that two-area LFC power system with interval
time-varying delay (4) is asymptotically stable. The proof is
completed. ■

TABLE 1. The two-area LFC power system parameters.

Remark 1: For nominal LFC systems where there is no
extra load disturbance, the delay-dependent stability criterion
for ascertaining internal stability of the system can be
deduced from the main result by letting ϖ = ν = 0.

IV. NUMERICAL EXAMPLES
In this section, we will directly show the effectiveness of
the stability criterion in this paper by using examples of
commonly used two-region nominal LFC power systems.
Given ϖ = ν = 0, different KPi = KP and KIi = KI ,
(i = 1, 2) values, the maximum allowable delay upper
bound (MADUBs) of two-area LFC power systems can be
obtained by solving the LMIs of the stability criterion through
MATLAB LMI-toolbox. The two-area LFC power system
parameters are shown in Table 1 with T12 = 0.1986 pu/rad.
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TABLE 2. The MADUBs h2 for different h21, µ1 and µ2.

FIGURE 2. Frequency deviation and control error responses of two-area LFC power system with
(KP , KI ) = (0.05, 0.4) and h11 = 0.5, h1 = 1.5.

TABLE 3. The MADUBs h1 for different h11, µ1 and µ2.

A. MADUBS SOLUTION
Case I: KP = 0.05, KI = 0.4: In Table 2, for given h11 =

0.5 and h1 = 1.5, the MADUBs of h2 with different h21, µ1,
µ2 are obtained by solving LMIs in theorem 1 throughMatlab
LMI-toolbox. In Table 3, for given h21 = 0.8 and h2 = 2,
the MADUBs of h1 with different h11, µ1, µ2 are obtained
by solving LMIs in theorem 1. From the tables, we can find
that the MADUBs increase as the lower bound h11 or h21
of the delays increases. These corresponding results cannot
be obtained using the methods in the references, because the
cases where the lower bounds of the delays are non-zero are
ignored.
Case II: Different KP and KI values: For given h11 = 0.5,

h1 = 1.5 and h21 = 1.5, the MADUBs h2 are calculated
under different µ1, µ2 in Table 4. For given h21 = 0.5,
h2 = 2 and h11 = 1, Table 4 give the corresponding
MADUBs h1 with different µ1, µ2. It’s obvious from these
tables that the MADUBs decreases as µ1, µ2 increases under

fixed h11, h1 or h21, h2 and (KP,KI ). For given h11, h1 or h21,
h2 and µ1, µ2, KP, the MADUBs increase as KI decreases,
whereas the MADUBs increases as KP increases for
given KI .

B. SIMULATION
In order to verify that the MADUBs are within the range
of the actual values of the LFC power systems, some
system state response curves under someMADUBs are given
in this section. Assume that the initial condition of the
simulation is the area load increases by 0.1 step load at t =

20s. Time-varying delays and (KP,KI ) assumptions are as
follows:

• In Figure 2, (KP,KI ) = (0.05, 0.4) and h11 = 0.5,
h1 = 1.5:

a. h1t = 1 − 0.5sin0.2t ,

h2t =
4.285
2 −

1.285
2 sin 0.4t

1.285 ;
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FIGURE 3. Frequency deviation and control error responses of two-area LFC power system with
(KP , KI ) = (0.05, 0.4) and h21 = 0.8, h2 = 2.

FIGURE 4. Frequency deviation and control error responses of two-area LFC power system with h11 = 0.5,
h1 = 1.5 and h21 = 1.5.

b. h1t = 1 − 0.5sint ,

h2t =
3.315
2 −

1.315
2 sin 1.6t

1.315 ;
• In Figure 3, (KP,KI ) = (0.05, 0.4) and h21 = 0.8,
h2 = 2:
a. h1t =

3.214
2 −

0.214
2 sin 0.2t

0.214 ,

h2t = 1.4 − 0.6sin t3 ;
b. h1t =

2.672
2 −

0.672
2 sin 1.6t

0.672 ,

h1t = 1.4 − 0.6sin 4t3 ;
• In Figure 4, h11 = 0.5, h1 = 1.5 and h21 = 1.5:

a. (KP,KI ) = (0.1, 0.05), h1t = 1 − 0.5sin0.2t ,

h2t =
32.724

2 −
29.724

2 sin 0.4t
29.724 ;

b. (KP,KI ) = (0.1, 0.4), h1t = 1 − 0.5sin0.4t ,

h2t =
4.325
2 −

1.325
2 sin 1.6t

1.325 ;

• In Figure 5, h21 = 0.5, h2 = 2 and h11 = 1:

a. (KP,KI ) = (0, 0.15),

h1t =
14.873

2 −
12.873

2 sin 0.2t
12.873 ,

h2t =
2.5
2 −

1.5
2 sin

0.4t
1.5 ;
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TABLE 4. The MADUBs h2 for different µ1, µ2 and (KP , KI ).

TABLE 5. The MADUBs h1 for different µ1, µ2 and (KP , KI ).

FIGURE 5. Frequency deviation and control error responses of two-area LFC power system with h21 = 0.5,
h2 = 2 and h11 = 1.

b. (KP,KI ) = (0.05, 0.4),

h1t =
14.840

2 −
12.840

2 sin t
12.840 ,

h2t =
2.5
2 −

1.5
2 sin

1.6t
1.5 .

V. CONCLUSION
This paper deals with the stability problem of PI-type
interval time-varying delay two-area LFC power systems.
The lower bounds of the considered interval time-varying
delays are non-zero, which are ignored in the literature. The

relevant LKFs are augmented with some additional state
variables with lower-bound non-zero time delay information.
Combined with the free weight matrix integral inequality
technique, a low conservative stability criterion based on
LMI approach is obtained. At the same time, a negative-
definite inequality equivalent transformation lemma is used
to transform the contained nonlinear matrix inequalities
into the corresponding LMIs to avoid introducing additional
conservatism. Finally, in the numerical simulation examples,
the Matlab LMI-toolbox is used to solve the LMIs in the
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theorem, and the MADUBs within the stability margin of the
two-area LFC power system are obtained.
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