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ABSTRACT In this paper, the stability problem of load frequency control (LFC) based power systems with
two additive interval time-varying delays is studied. Firstly, considering the time delays of transmission
from control center to regulator and sensor to control center, the mathematical model of two-area LFC
power system based on proportional integral control is established. Secondly, under the condition that the
lower bounds of interval time-varying delays are non-zero, an augmented Lyaounov-Krasovskii functional
(LKF) is constructed, and a new delay-dependent stability criterion is derived. Since the extension of LKF
introduces the nonlinear term of time-varying delay square, a new negative definite integral inequality
transformation lemma is used to transform the nonlinear matrix inequality in the stability criterion into linear
matrix inequality (LMI) equally-without introducing additional conservatism. Finally, the maximum stability
margin of the LFC power systems is obtained by using MATLAB LMI-toolbox, and simulation results based
on Simulink-toolbox show the effectiveness of the stability criterion.

INDEX TERMS Interval time-varying delays, load frequency control, power systems, Lyapunov-Krasovskii

functional, LMI.

I. INTRODUCTION

Load frequency control (LFC) is an important method to
regulate and control the frequency of the power grid, which
can keep the frequency stable within the power system area
and exchange power with the neighboring areas [1], [2], [3].
The traditional centralized LFC scheme uses a dedicated
communication channel to transmit control signals, and the
transmission delay is very small which can be ignored
[4]. With the continuous development of power grid scale,
the open internet has replaced the dedicated networks as
the primary communication channels of large-scale data
transmission and exchange due to its advantages of low
cost and strong flexibility [5], [6]. However, long distance
information processing and transmission inevitably result
in communication delays, network congestion or failure,
and potential network attacks [7]. The researchers show
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that when the communication delays are large, the dynamic
performance of the power system may be reduced or even
unstable [8]. Therefore, the effect of time delay on the
stability of power system is one of the problems to be solved.

The stability analysis of time-delay systems is always
a basic problem in the research of time-delay systems.
Time-delay systems have time-delay factors, whose states
are not only dependent on the inputs and states of the
present time, but also related to the inputs and states of
the past time. Therefore, stability analysis of time-delay
systems is a challenging task that requires a series of
specialized mathematical tools and methods. At present, the
most common method is Lyapunov stability theory. The
complete Lyapunov-Krasovskii functional (LKF) can provide
sufficient and necessary conditions for the stability of linear
systems with constant delays, while the simple LKF only
provides sufficient conditions for the stability of systems with
time-varying delays. Due to the inevitable conservatism of
sufficient conditions, the current research focuses on how to
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reduce the conservatism of stability criteria. There are two
main methods: one is to construct a novel LKF, and the
other is to derive a tight inequality amplification technique.
For example, the implicit LKF [9], the time-dependent LKF
[10], the vector LKF [11], some other augmented LKFs [12],
[13], [14], [15], the delay-fraction theory [16], [17], relaxed
quadratic function negative-determination lemmas [18], [19],
and so on.

With the continuous development of stability methods
for time-delay systems, the analysis method of time-delay
systems has been gradually applied to the stability research
of time-delay LFC power systems in recent decades. At the
beginning, frequency domain method was used to study the
delay-dependent stability of LFC schemes, however it can
only deal with constant delay [20]. For LFC power system
with time-varying delays, Lyapunov stability theory is still
used to obtain less conservative stability criteria. Based on
Lyapunov stability theory and linear matrix inequality (LMI)
method, an approximate method for obtaining delay margin
is proposed in [21]. In order to improve the accuracy of
delay margin, [22], [23], [24], [25] derived a less conservative
random delay-dependent stability criterion. At the same time,
the load disturbance is modeled as a bounded uncertainty
parameter, and a new inequality technique is used to further
reduce the conservatism of the stability criteria for the LFC
power systems with time-varying delays [26]. In addition,
in order to ensure the stability and anti-interference ability
of time-delay LFC power system, researchers have designed
many control strategies, such as PI control [27], network
predictive control [28], [29], [30], nonlinear control [31],
[32], and so on. PI control has good robustness and
independent on the exact model of the power system, which
is widely used in the industrial field at present. To solve the
stability problem of LFC power systems with time-varying
delay based on PI controllers, a large number of scholars have
given good results [6], [33], [34], [35], [36], [37]. However,
these results only consider the case where the lower bound
of the time-varying delay is zero. In practice, it is known
that the range of delay with non-zero lower bound are often
encountered, and such systems are referred to as interval
time-delay systems. To the best of the authors’ knowledge,
most of the existing studies seldom consider the delay of
the non-zero bound. Therefore, it is necessary to study the
effect of non-zero bound of interval time-varying delay on the
performance of LFC power systems in open communication
networks.

This paper mainly studies the stability of two-area LFC
power system with interval time-varying delays. Not only
the transmission delay from the sensor center to the control
center, but also the transmission delay from the control
center to the regulation center are considered. Using the
Lyapunov stability theory and integral inequality technique,
a new stability criterion based on LMI is derived. The main
contributions are summarized below.

o The stability of two-area LFC power system with

interval time-varying delays, whose the lower bounds
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are not 0, is investigated, which is ignored in the
published literature.

« Based on the interval time-varying delays, a novel LKF
is constructed, which divides the interval time-varying
delay into different time-varying subintervals and con-
tains additional delay-dependent state information.

o In order to obtain the stability criterion with low
conservatism, the square term of time-varying delay
is introduced in the LKF, resulting in a nonlinear
matrix inequality form of the stability criterion. A novel
negative definite integral inequality transformation
lemma is used to equivalently transform the nonlinear
matrix inequalities into LMIs without introducing extra
conservatism.

Notation: In this paper, R", R represent the n-
dimensional vector and the n X m matrix space, respec-
tively. S", §'} mean the sets of symmetric and positive
definite real matrix spaces. n-order block diagonal matrix
diag {S1, S2, - -+, S,} with diagonal partitioned elements
S1,82,---,8y.e;(i=1,..., m)areacolumn block matrix in
which only the i—th block is the identity matrix and the others

are 0 matrices. Such as, e3 = [007 0---0 |. This symbol
—

% in a block symmetric matrix denotlgs 3transpose of the

corresponding symmetric element. col{-} denotes a column

vector. [1(hy(t), ha(t)) denotes IT is the binary function of

hi(t) and hy(t). Sym{Z} = E + &T.

Il. PROBLEM FORMULATION AND PRELIMINARY
This section considers the time-delay model of two-area
LFC power system based on PI controller, where the basic
framework is shown in Figure 1. e (i = 1, 2) represent the
time delay when the signal is transmitted from the sensor to
the control center and from the control center to the governor.
There is a contact line model in the power system of two
areas. Af;, AP12, APy, APpi, APgi, AP (i = 1,2) are
the deviation of frequency, tie-line power exchange, valve
position, mechanical output of generator, load disturbance
and setpoint, respectively. M;, D;, Tgi, Tcpi, Bi, Ri and ACE;
are the moment of inertia of generator unit, generator unit
damping coefficient, time constant of the governor, time
constant of the turbine, the frequency bias factor of area,
speed drop and area control error.

According to Figure 1 and literature [1], the state-space
equation of LFC power system is expressed as the following
equation (1).

x(t) = Ax(t) + BAP.(t) + D, AP, )
y(t) = Cx(@),
where the system parameters are as follows:
xL@t) = |:Af1 AP,;1 AP, /ACE1 AP1»
Afy APpp APy /ACEz] ,
140547
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FIGURE 1. The basic diagram of the simplified LFC of two-area power system.
T 1 T
y(t) = |:ACE1 /ACE1 ACE, /ACE2:| , B = diag{B1, B>}, B; = |:0 0 T 0 0] ,
gl
APL(1) = [AP:(1) APo(1)], o Too ol
AP = [AP41(t) AP (1)), SR R } ’
(A1 Az [Cii Cn
A = N =
| A2 A22:| ¢ Cu Cn ]’
r D 1 | r
P 1 0 0 —— C“:ﬂlOOOl’
M, Mi : My i 0 0O 0 1 0
0 —T T 0 0 Cir — [0 0 0 O
A = | chl chll , 12 = o 0 o0 ol
— 0 —-—— 0 0 =
R T T, Cy = 0 0 0 0 ]:|
Bi 0 0 0 1 |10 0 0 0 0]
L 27 Tip 0 0 0 0 | (B 0 0 O
- - Cn = )
0 0O 0 0 10 0 0 1
0 0 0 O D, = diag{Dy1, Dy2},
A12 = 0 0 0 0 y r 1 T
0 0 0 O D, = —VOOOO] ,
2T, 0 0 O | - 1 7
_ 1 7 1
. Dy=[——00 O} .
0O 0 0 O 7 w "M
Az = 8 8 8 8 8 ’ LFC is implemented by PI controller with control error
000 0 0 1] ACE as input:
b1 0o o0 APei(t) 2 uy(t) = —Kp1 ACE| — K7y /ACEI, @)
M, M,
1 1
0 - 0 APy(1) £ ux(t) = —Kpp ACE; — Kpp / ACE;, (3)
Ap = Ty Tenz ;
_ 1 0 _ L 0 where Kp; and Kj; are the control gain matrices, and ACE; (i =
RoTp T 1, 2) indicate area control errors. Since there are time-varying
L A 0 0 0 delays h1; 2 hi(t) and hy 2 ho(t) in the feedback channel
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and the forward channel respectively, we have the following
formula
ACE;| = B1Afi t — hi), ACEy = B Af> (t — hiy),
APc1 (t) = u1 (t —ha), AP (t) = up (1 — hy) ,
where the frequency bias factors 81, B> > 0, and hy; and
hyt are differentiable and bounded. Given the non-negative
constants A1y, h1, ho1, hy and w1, (o, the time-varying delays
satisfy the following conditions
hiy < hiy < hy, hoy < hoe < hy,
gl < i Vhyl < pa, Vi> 0. “
Letting K = diag{K;, K2}, K1 = [Kpi Kn1, K2 =
[Kp2 K12], (1) = AP4(t), hy = hi; + hyy and h = hy + hy,
the closed-loop LFC power systems can be rewritten in the
following form.
x(t) = Ax(t) + A1x(t — hy) + Dyo(1)
y(t) = Cx(1) )
where ¢(t) is a continuous vector function on [—h, 0],
representing the initial conditions.

Al = [Ain A112:|
| A1 Az |’
[ 0 0 O 0 0
0 0 O 0 0
Al = K 0 0 A A .
Ty Ty1 Ty
0 0 O 0 0
| 0 0 0 o0 0
[0 0 0 0
0O 0 0 O
Aip=10 0 0 O,
O 0 0 O
(0 0 0 0
[0 0 0 0 0
0O 0 0 O 0
Am=lg o o o -Emi.
Ty
(00 0 0 0
0 0 0 0
0 0 O 0
An=| _Knb _Kn
Tg Tg2
0 0 O 0

Definition I [22]: For time-delay LFC power systems,
the unknown external load disturbances can be described
as nonlinear disturbances of current and delay state vectors,
which can be expressed as the flowing equation.

Dyw (1) =1 (x (1) x (t =h (1)), ©)
which satisfies the constraints of the following inequalities
In O =@ llx O +vix (@ —h @) (N
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Here, @ and v are known positive scalars. The inequality (7)
is further generalized to

n(H'n(-) < T (OETEx(r)
+ 2Tt —h @) )NTNx(t —h (1)), (8)

where E and N are known positive definite matrices with
appropriate dimension.

Lemma 1 [16]: For any matrix Q € S’j_ and a vector
function g : [m, n] — R", the following integral inequality
holds

o’ Qo, )

/ 7 (0)0z(0)do >

m n—m
where

0 = diag{0, 30,50},

¢ = col{e1, 02, 03},

01 = g(n) — g(my),
02 = g(n) + g(m)

2 n
- —/ 8(0)do,
n—mJ,

6 n
QSZQI——/ g(6)do
n—mJ),
+L/”( —0)g(0)do
—my ), 8

Lemma 2 [15]: For given constant scalar « € (0, 1],
matrices A1, Az € S, vy, vy € R™, if there are ¢1, 62 € §",
Ty, T» € R™ ™ guch that

Al—g1 T
|: * A2i| >0,
Aq 7
>0,
[ * Ay — 52]

then the following inequality is true.

Lora T 20Tl + (1 T
o 1U1+1 vy Aqup > 2vu; [T + (1 —a)T2]un

+ v [A1 + (1 —a)g1]u
+ vl [ A2 + agr]us.

Lemma 3 [19]: For given matrices P; € P, (i =0, 1, 2),
¢ € R?, the following inequality

¢ (x?Py + 1Py + Po)t <0

holds for all 7, € [rq, 12], if and only if there are a matrix
M e S’i and a skew symmetric matrix N € R¥*¥ such that

Po %Pl _[C:|T|:—M Ni||:C:|<0
« P, J * M J ’
where C = [%21 0],J =[] —I]andto =1 — 7).
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lll. MAIN RESULTS

In this section, a new stability criterion of two-area LFC
power systems with interval time-varying delays is derived.
To simplify the derivation, the following symbols and
matrices are given.

ho = hiy — hit, hyy = hy — hyg, ho = hyy — hay,
hio = hy — hoy, o = h1 — hii, hao = hy — hay,
ho = hi1 + hat, hpo = h — ho, ho = hy — ho,
ho=h—hy, hig =1—hiy, hag =1— hy,

ha = 1=he, Zvy=hZin+Z12, Zor=h1Zo1+Z02,
Z3r = hyZ31 + Z32, Zar = hoyZay + Zaa,

t—hy, x(9) t—h; x(0)
Pt =/ —d0, p3 =/ —d0,
t t

—hy hi —h hso
t—hyy x(0) t—hyg x(0)
05t =/ W do, p =/ W do,
t—hy, t1 t—hy t0
=he (t — hy; — 0)x(6)
P21 =/ +d€,
t—hy htl
t—h
't (t — hy — 0)x(0)
P4t =/ +d9,
1—h hy
=hi (¢ — hyy — 0)x(0)
P61 =/ ——————db,
t—h], htl
=ho (1 — ho — 0)x(0)
081 =/ ——————db,
=" R
@o1; = col{x(t), x(t — h11), x(t — hyy), x(t — h1)},
®02¢ = col{x(?), x(t — ho), x(t — hy), x(t — h)},
t—hy
@1; = col{x(t — h11), x(t — hyy), . x(0)do},
t—=nj;
t—=hy;
@21 = col{x(t — hyy), x(t — hy), x(0)do},
t—h
z—h:)
@3r = col{x(t — ho), x(t — hy), x(0)do},
t—h;
t—hy
@4r = col{x(t — h¢), x(t — h), x(0)do},

t—h

t—hy)
05(s) = ol £(s), x(5), @oir. / x(6)d8

s T;hlt
X / x(@)d@,/ x(0)d6},
t—hy; t—hy

t—hy,
v6(s) = col{x(s), x(s), (p01,,/ x(0)do,

t—hy N
/ x(@)d@,/ x(0)d6},
t—hy, t—hy

t—hg
@7(s) = col{x(s), x(s), (pozt,/ x(0)do,

s t—hy
/ x(@)d@,/ x(0)do},
t—hy t—h

t—hy
05(5) = col(i(s), x(s). g0, / X(0)do,
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t—ho N
/ x(e)de,/ x(0)d6},
t—hy t—h

& = col{x(2), x(t — hie), x(t — hy), x(t — h1), x(t — h),
x(t — h11), x(t — ho), x(2), X(t — h1y), x(t — hy),
x(t — hy), x(t — h), x(t — h1y), X(t — hiy),
x(t — ho), P1rs P21 P3t» Pars
0515 P61> PT1> P81, Dw@(t)}.

Theorem 1: For given scalars hy1, hoy, hy, ho, (1, 2, @,
v, positive definite matrices £ = diag{eq,---, e} and N =
diag{ny, --- , n,}, if there are Z,1, X, € S*", Z,» € S, ¥, €
R33n g, e S", D, € S, 0, € S}, G, e R14x141 and
U, € R**"_guch that

hZin +2Zi2 >0, hioZp + 2o > 0, (10)
hoZz1 + 23 > 0,  hpoZs +Zg > 0, (11)
(Hi — X, Y H, Y,
L * H> i|>0’ [* 1:12—X2:|>0’ (12)
[H3; — X3 Y3 H Yy
- 1 ,
£210() 5911(1/1') _ [Cl :| [_Di Gi:| |:C1 :| 0
J * D; J1 ’
* 21(y1) ! i
(14)
r 1
260 s2060 |_[C] -2 Gl[a]_,
2 J |l |
* 2:(80) 2 * kL2
(15)

Then, the system (3) is stable for h;; € [hi1, hil, h1, = yi €
{—pi,miyand iy £ 8 € {—p ), (= 1,20k =3, 47 =
1,2,3,4).

Here,

h h
=270, 5= —1],
2 2

h h
C=|270|, Hh=|2 _pf,
2 2
H, = diag{H,, 3H,, 5H,},
210y = hi AT, Z1 Avy + by AS 201 Ay
+ Sym {AlT; (Z12 — h11Z11) Any
+AY (M Za1 + Z) A21}
+ AL01451 — AQ; 02 A3
+ha (4502461 — 45,01 453)
+ Sym {A{()QlAl + AgOQzAz}
+ hiohiahieq (Hy — Ha) el
+h%0€13H26{3 — FlT (1:11 ~|—X1) I
+ ITHy I + Sym {F{erz} ,
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£211(y;) = Sym {hnAlleuAlz + ;lnAg]ZzlAzz + Sym {A§3231A32 - A£3241A42}
+ALzy AN + AL (Zin — hiZn) A + AL03470 — AL Qs As4
+ALL (221 + Z2) Ay — A§3221A21} + hy (AgTzQ4A82 - A7T4Q3A74)
+sym {4501 451 — AL 02463 +sym {45,034 + AL,0444]
+AT,014, +A£1Q2A2} Ap = col{ey, e3, es, €24},

T T H() = col {Ael,Ale3, €24, —68} s
 hiaSym [A62Q2A61 B A54Q1A53] Ay = col{eg, e2, —hi1e19}, Az = col{0,0, e19},
— hiohiaes (Hi — Ha) e§ Ay3 = col{eys, eg, e¢ — higer},
+ h%o (F]TXIFI + 1“27)(21“2) Ap1 = col{er, eq, hieis}, Axpp = col{0, 0, —eis},

1 Apz = col{ey, e11, €2 — higes},
+ h—los}’m [FlTYI I — FlTYZFZ} s A3z = col{e7, ez, —hjpea1}, Azp = col{0,0, er;1},
Aszz = col{eyq, €10, 7 — hges},

1) =S m{ATzlA »— ALz, A22}
O b Ag1 = col {es. es. her} . Agy = col {00, —e7)

+ hn AT, Z11 A + ;llegzzzlA22 Auz = col {10, 12, €3 — hges)
+ 450145 — Agy 02 At Asy = col{e13, eg, e1, €6, €2, €4, 0, —hy1e19, h1e1s},
+ hig (A£2Q2A62 — AL,0 A54) Asy = c0l{0,0,0,0,0,0,0, er9, —e15} ,
Sym [A1T2Q1A1 n A%2Q2A2} , Asz = col{ey, 2, e1, €6, €2, e4, —hy1€19, 0, hieys},
. Asq = ¢01{0,0,0,0,0,0, e19,0, —ei5},
Q06 = hio0A31 231831 + hoAjy Zay Aay Agl = col{eg, ez, e1, €6, €2, €4, 0, —hy1e19, hieis},
+ Sym {A3T3 (Zs> — hoZa1) Asi Ag> = col{0,0,0,0,0,0,0, 9, —e1s)

Agz = col{eq, e4, e1, €6, €2, e4, h1eis5, —hi1e19, 0},

+ AL (hZay + Zap) A41} + AL 0347
Agq = c01{0,0,0,0,0,0, —eis, e19, 0},

T T T
~ ApQaAss + hadyy Qadst = ha A3 03473 A7 =col{eis, e7,e1, €7, e3,e5,0, —hpeay, hey7},
+ Sym {43905 45 + 4§0Q: 44 A7z = ¢0l{0,0,0,0,0,0,0, e21, —e17},
+ hyohahero (Hs — Hy) el + hipe1aHael, A7z = col{eyo, e3, e1, e7, e3, e5, —hpez1, 0, hey7},
- FSTH?,FE; - F3TX3F3 A74 == COI {0’ 03 07 07 Oa 07 6219 07 _817} k]

Agy = col{ejo, e3, €1, e7, €3, es5, 0, —hoeay, hey7},
Ago = 0l {0,0,0,0,0,0,0, e21, —e17) ,
: Agz = col{ern, es, e1, €7, €3, e5, he17, —hpery, 0},
21(80) = Sym[htoA3T1 Z31 83 + o A4y Zar Awa Agy = c01{0,0,0,0,0,0, —ey7, €21, 0},

+ IT Ayl + Sym {F3T Yaly + A7 UHO}

— 6241654 + wzelETEelT + v2e3NTNe3T,

Ay = col{eg — ez, —hi1e19, —hi1e1, —hiies, —hiiea,
+ ARZ31 Az + A (Zs, — hoZ31) As ) .
T P T —hi1eq, hij(e19 — e20), hijexo, huhlels} ,
+ Ayz (Zao + hZ41) Ago — A43241A41}
Aq1 = col{0, ey9, e1, eq, €2, e4, —2h11€20, (h11 + h1)eis},

+ Sym {A7TZQ3A71 - A§4Q4A83} Az =c0l{0,0,0,0,0,0, er9 — e, €20, —€15} ,
Ao = col{ey — eq, hyeys, hiey, hieg, hiez, hyeq,

2 2
hi(eis — e16), —hi1h1eyo, hlel6} ,

Az = col {0, —ey5, —e1, —eq, —e2, —ey4,

+ hgSym {Ag2Q4A81 - A7T4Q3A73}

+ Sym {A§1Q3A3 + ALQ4A4}

T

- hfiohdelo (H3 — Ha)eyo —2h1(e15 — ei6), (h11 + hi)ero, —2hiei6},

+ (F3TX3F3 + F3TX3F3) A =c01{0,0,0,0,0,0, e;5 — e16, —€19, €16} ,
10

1 , , Azp = col {e7 — e3, hiers, —hoez1, —hpe1, —hpes,
+—S m{F YsIy — I YF},
hio Y 373047 03 0404 —hoes, —hoes, hj(ea1 — e22), h3en, —hohen} ,

92(5k) = ht0A§ZZ31A32 + E10A£2241A42 A31 = col {0, er,e1,e7,es3,es, —2/’12(6‘21 — 622),
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—2hgers, (h + hg)er7},
A3z =c01{0,0,0,0,0,0, e21 — ez, €22, —€17},

Agp = col {63 —es, hey7, hey, heq, hes, hes, h*(e17—e13),

—hpheyy, hzé’lS} ,
Agqy = col{0, e17, —ey, —e7, —e3, —es, —2h(e17 — e13),
(h+ ho)ea1, —2heys},
A42 = col {0, 0, 0, 0, 0, 0, e17 —e18, —€21, 618} s
A1 =col{0,0, eg, €13, hige9,
ei1, e6, —higez, higez — es},
Ay = col{0, 0, es, €13, hiqe9,
e11, higez, es — higes, —eq},
Az = col{0, 0, es, e14, €10, €12, €1, —hge3, hgez — es},
A4 = col{0,0, eg, e14, €10, €5, hgez, e7 — hges, —es},
It = col{ex —eq, €2 + €4 — 2ey5,
er — eq — beys + 12e16}
I) = col{eg — ep, e + ep — 2ey9,
e6 — e — bejg + 12ex0},
I3 = col{es — es5, e3 + es — 2ey7,
ey —e3 — b6e17 + 12e18},
I’y =col{e7 — e3,e7 +e3 — 2ery,
ey —e7 — 6ex1 + 12e2} .

Proof: Construct the following LKF.

3
V)= Vult) (16)

u=1
with
Vi (1) = 0l Zupi + 03, 2o
+ §03TtZ3t§03t + ¢£Z4t§04t,

t—hyy
Va(t) = / 9 (0)0195(0)db
t

—hy

t—hy;

+ / ) oL (0)0206(0)db
=
t—hgy

+ / A 0)0310)d5
t—n;
t—hy

+ / 0§ 00300,
ti

t—=hy;
Vi (1) = hlo/ (hy — t + 0)xT (9)H 1 x(0)dO
t—hy

t—hll
+ hio / (hy —t + O)xL (O)HLx(0)dO
t—hy,

t—h;
+ hpo / (h—t+ 0)xT (9)H3x(0)d6
t—h

t—hg
+ hho/ (h —t + 0)xT (0)Hyx(0)d6.
t—h;
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Zi(t),(i=1,2,3,4) are affine functions of hy, €
[A11, h1] and h; € [hg, h]. Obviously, V(t) > 0 according
to Zpp > 0 and the inequalities (10) and (11). Calculating the
derivative of V (¢), we get

Vi = o}, Z1p1 + 291, Zuions

+ (PthZZt§02t + 2¢2Ttth(p2,

+ 0323003 + 205 2303

+ §04{124t(p4t + 2¢Z;Z4t Qar

=T O@ 1 +hi AT ha Zn (A +hy A @)

+ (1)@ it Ax) bt Zog Q21 +h11 A2)E (1)

+ T (A3 +h A o Z31 (As1 +h A (1)

+ T () a1 +hy AT hioZay At +hy A (1)

+ 20T (0A 01 Zn +Z) A1 +hy A ()

+ 26T (DAL (101 221 +Z22) (A1 1 A E (1)

+ 20T (AL 0231+ Z32) (A31+h A3 (1)

+2¢0 70 AL (oZar + Zan) (Aqr + i Ag) (), (17)
Va =3 (t = hit) Qugs (¢ — )

— @5 (t = h) Qa6 (1 — 1)

+¢7 (t — ho) Q397 (t — ho)

— @5 (1 = 1) Qags (1 — )

— hia@3 (t = hi) Qigs (¢ — hiy)

+ hia@l (t = hip) Qa9 (t — hiy)

— ha@] (t =) Q37 (1 — hy)

+hawg (t = hy) Qags (1 — hy)

t—hyy r 9
+2/ @5 (0)dOQ1—gs ()
t—hyy ot

t—hy; T B
+2/ @6 (0)d00r—ge (0)
t—hy at

t—ho 9
+2 / 9T (0)dO03—¢7 ()
t—h; ot

t—h; 5
+2 / 95 ©)d60i7 0 6)
=¢" 0 ((A51 + hi Asp)" Q1 (Asy + hiy As)
— hia (As3 + hi; Asg)" Q1 (Ass + hle54)) 4]
+7M (hld (As1 + hi:A62)" Q2 (As1 + hi As2)
— (A3 + M Aes)" Q2 (Aes + hltA64)) ¢
+¢" 0 (An +mAD)" 03 (A7 +hiAr)
— ha (Azs + hiAa)! Q3 (Azs + i A7) € ()
+¢h @) (hd (Ag1 + hi Ag2)" Q4 (Agi + hy Ag)
— (Ag3 + h Aga)" Q4 (Ags + htA84)) )
+2¢7 () ((Alo FhiAn 4 A) Q1A
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T

+ (Azo + hi: Ao + h%,Azz) O A
T

+ (A30 + h Az + h,2A32) 0343

T
+ (A4o + h Agr + h,2A42) Q4A4) ¢@, (18)
Vi = W37 (¢ — hy))Hai(t — hip)
+ W20k T (t — ho)Hax(t — ho)
+ hiohiaha 37 (t — hyy) (Hy — Ha) X(t — hyy)
+ huohahsox™ (t — hy) (H3 — Hy) 5(t — hy)

t—hy,
— hyo / L(O)H, x(0)do
t—hy

t—hyy
— hio / T (0)Hox(0)do

t—hy;

t—hy
— o / T (0)H3x(0)do
t—h

t—ho
—hho/ 1T (0) Hax (0) do, (19)
t—h;

Letting o = ;’Tl(’) o = h% the integral terms in V(1)

can be rewritten and simplified to the following inequalities
according to lemmas 1 and 2.

t—hy;
— hyo / T (O)H x(0)do
t—hy

t
— ho / T (0)Hox(0)do
t—hy;

1 _
< —&cT () M H e (1)
1 _
— ¢ (O D ()
—
<—¢" @ [FIT [1—a) Xy +H ]Iy

+2rf [a¥i + (1 —a) Y2l I

+ 1Y [Hy + aXo| I ]z OF (20)

t—hy
— o / T (0)H3x(0)do
t—h

t—hg
— hio / T (0) Hax (0) dO
t—hy
1 _
< _E{T (t) I{ H3Is5¢ (1)
1 __

— 15t ONH 0
<T@ [FJ [(1—B) X3+ H3| I3

+20Y [BY3 + (1 - ) Yl Iy

+ 1] [H + X4 m]g ) @21)
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For an any matrix U = col {Uy, U, Uz, Uy}, the following
equation holds.

x@ 1°
0 X()t'c(_t)ht) U|:Ax(t)+A1x(t—ht)
Dow (1)
+wa(t)—)'c(t):|
= ") AUMg (1) . (22)

It is obvious that the following inequality holds from the
constraint condition (8).

(Dpw) Dyw — wxT (t) ETEx (1)
2Tt —h@)NTNx(t —h(1)) <0. (23)

Finally, the equations (16)—(23) in the derivation process
are summarized and sorted into the following inequalities.

V () < QT I:htle/Z (ht) + h ¥ (ht) + % (ht)] &
+¢ |:h%,‘1’21 (he) + hidny (Rar)

+ W10 (h1r) :|§z (24)

According to Lemma 3, if and only if there exist D, €
Sﬂro" and skew-symmetric matrices G, € R14nx14n (r =
1,2,3,4), the non-linear inequality (24) can be converted
to the LMIs (14) and (15) in Theorem 1. And then V() <
0 holds. Therefore, by Lyapunov stability theorem, it can
guarantee that two-area LFC power system with interval
time-varying delay (4) is asymptotically stable. The proof is
completed. B

TABLE 1. The two-area LFC power system parameters.

Areas\ parameters  Tg;  Tep; R; Bi M; D,
Area-1 0.1 0.3 0.05 21 10 1
Area-2 0.17 0.4 0.05 215 12 1.5

Remark 1: For nominal LFC systems where there is no
extra load disturbance, the delay-dependent stability criterion
for ascertaining internal stability of the system can be
deduced from the main result by letting @ = v = 0.

IV. NUMERICAL EXAMPLES

In this section, we will directly show the effectiveness of
the stability criterion in this paper by using examples of
commonly used two-region nominal LFC power systems.
Given o = v = 0, different Kp; = Kp and K;; = K,
(i = 1,2) values, the maximum allowable delay upper
bound (MADUBS) of two-area LFC power systems can be
obtained by solving the LMISs of the stability criterion through
MATLAB LMI-toolbox. The two-area LFC power system
parameters are shown in Table 1 with 772 = 0.1986 pu/rad.
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TABLE 2. The MADUBs h, for different h,;, 17 and p,.

ha1 0.5 1 1.5
1 \p2 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8
0.1 2439 2437 2433 | 2,656 2.650 2.543 | 2785 2.668  2.548
0.2 2324 2331 2339 | 2417 2410 2408 | 2.683 2.564 2.443
0.5 2255 2261 2276 | 2329 2320 2315 | 2337 2331 2323
0.8 1935 1924 1917 | 2.025 2.019 2017 | 2.046 2.031 2.022
15 T T
i
é 5
5] 0 AMMAMMMMMA A
< wwvwwvw aad
-5
ol . . . . . . . -15 . . . . . .
100 200 300 400 500 600 700 800 0 100 200 300 400 500 600
time (Sec.) time (Sec.)
= 3

300 400 500 600 700
time (Sec.)

800

300 400 500 600 700
time (Sec.)

200 800

FIGURE 2. Frequency deviation and control error responses of two-area LFC power system with

(Kp, K;) = (0.05,0.4) and h;; = 0.5, h; = 1.5.

TABLE 3. The MADUBs h; for different hy;, 1y and p,.

h11 0.2 1 1.5

1 \p2 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8
0.1 1.689 1.683 1.681 | 1.701 1.695 1.690 | 1.714 1.708 1.700
0.2 1.685 1.679 1.675 | 1.694 1.691 1.683 | 1.711 1.703  1.694
0.5 1.680 1.673 1.669 | 1.688 1.681 1.675 | 1.705 1.695 1.685
0.8 1.671 1.668 1.661 | 1.681 1.676 1.672 | 1.688 1.682 1.678

A. MADUBS SOLUTION

Case I: Kp = 0.05, K; = 0.4: In Table 2, for given hj;
0.5 and h; = 1.5, the MADUBs of &, with different A1, u1,
1o are obtained by solving LMlIs in theorem 1 through Matlab
LMlI-toolbox. In Table 3, for given hy; = 0.8 and hy, = 2,
the MADUBs of h; with different A1y, w1, @ are obtained
by solving LMIs in theorem 1. From the tables, we can find
that the MADUBs increase as the lower bound %;; or &y
of the delays increases. These corresponding results cannot
be obtained using the methods in the references, because the
cases where the lower bounds of the delays are non-zero are
ignored.

Case II: Different Kp and K; values: For given hj; = 0.5,
hy 1.5 and hy; 1.5, the MADUBs h) are calculated
under different @y, ny in Table 4. For given hyg 0.5,
hy 2 and hy 1, Table 4 give the corresponding
MADUBSs h; with different (1, wo. It’s obvious from these
tables that the MADUBs decreases as jt1, 2 increases under
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fixed hy1, h or ha1, hy and (Kp, K7). For given hyy, hy or hop,
hy and w1, w2, Kp, the MADUBS increase as K; decreases,
whereas the MADUBs increases as Kp increases for
given Kj.

B. SIMULATION

In order to verify that the MADUBs are within the range
of the actual values of the LFC power systems, some
system state response curves under some MADUBs are given
in this section. Assume that the initial condition of the
simulation is the area load increases by 0.1 step load at t =
20s. Time-varying delays and (Kp, K;) assumptions are as
follows:

o In Figure 2, (Kp, K;) = (0.05,0.4) and hy;
hy =1.5:

a. hlt

h2t= 2

0.5,

1 — 0.5s5in0.2¢,

4285 1285 . 0.4f .
— 72 SMi3gss
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FIGURE 3. Frequency deviation and control error responses of two-area LFC power system with
(Kp, K;) = (0.05,0.4) and hy; = 0.8, hy = 2.

15 15
3T shh 3 sfh
= I 2 nl“
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|
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FIGURE 4. Frequency deviation and control error responses of two-area LFC power system with h;; = 0.5,
hy =1.5and hy; =1.5.

b. hi; = 1 — 0.5sint, a. (Kp,K;) = (0.1,0.05), hy; = 1 — 0.5sin0.2t,
hoy = 3.3215 13215sm 136t . hoy = 32.2724 _ 29.2724””28454.
= 1315° = 724 >
o In Figure 3, (Kp, K;) = (0.05,0.4) and hp; = 0.8, b. (Kp,K;)=(0.1,0.4), hy; =1 — 0.5sin0.41,
hy = 2: B — 4325 _ 1325 . L6t .
A hy, 3214 _ 0214 021 2 2 2 1325°
- M= 73 2 0.214 .
i o InFigure 5, hp; = 0.5,y =2 and by = 1:
hy =1.4-0. 6sm3;
b. hlt = @ — @Sln01667t2’ a. (KP, KI) = (0’ 015),
_ 14873 12.873 0.2t
hi; = 1.4 —0.6sin%; hir = =57 — =57 singy g7,
o InFigure 4, h;; = 0.5, h; = 1.5and by = 1.5 hy =% — Lsin%%;
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TABLE 4. The MADUBs h, for different 1q, 5 and (Kp, K;).

gain matrices Kr 0.05 0.15 0.4
Kp 1 \p2 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8
0.1 28932 28927 28918 | 11.887 11.884 11.881 | 2.525 2517 2513
0 0.2 28.928 28922 28919 | 11.879 11.875 11.872 | 2.521 2515 2.509
0.5 28915 28911 28904 | 11.871 11.868 11.862 | 2.498 2493 2.490
0.1 29.654  29.635 29.627 | 12.157 12.152 12.148 | 2.785 2.781  2.778
0.05 0.2 29.638  29.621  29.619 | 12.155 12.149 12.144 | 2.780 2.777 2771
0.5 29.619  29.605 29.588 | 12.143  12.137 12.130 | 2.732 2709  2.700
0.1 31.224  31.217 31211 | 12177 12,174 12171 | 2.829  2.827 2.827
0.1 0.2 31.218 31207 31.200 | 12.172 12.168 12.160 | 2.825 2.825 2.825
0.5 31.210  31.198 31.191 | 12.162 12.157 12151 | 2.744 2714 2.701
TABLE 5. The MADUBs h; for different 1, 1, and (Kp, K;).
gain matrices Ki 0.05 0.15 0.4
Kp 141\ 142 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8
0.1 31.773  31.767  31.759 | 13873  13.867 13.861 | 1.128 1.128  1.127
0 0.2 31.766  31.758  31.747 | 13.869 13.863 13.857 | 1.128 1.126  1.125
0.5 31.755 31.749 31.666 | 13.855 13.847 13.840 | 1.126 1.124 1.121
0.1 33785 337781  33.773 | 14.555 14543 14539 | 2.879 2.868  2.799
0.05 0.2 33.777 337765 33.759 | 14.551 14538 14.531 | 2.800 2.769 2.701
0.5 33.766 33759 33744 | 14.513 14.508 14.511 | 2.284 2251 2.198
0.1 35.998 35989 35981 | 14.577 14.569 14559 | 2.888 2.876  2.805
0.1 0.2 35980 35977 35971 | 14570 14561 14550 | 2.810 2777  2.707
0.5 35963 35957 35944 | 14.562 14557 14.547 | 2293 2261 2.205

ACE1(pu)

0 50 100 150 200 250 300 350 400
time (Sec.)

Af, (pu)

50 100 150 200 250 300 350 400
time (Sec.)

ACEz(pu)

0 50 100 150 200 250 300 350 400
time (Sec.)

Af,(pu)

50 100 150 200 250 300 350 400
time (Sec.)

FIGURE 5. Frequency deviation and control error responses of two-area LFC power system with h,; = 0.5,

hz =2andh" =1

b. (Kp, K1) = (0.05,0.4),

hi, = 14.840 12.840
1t = 2 - 2

. t
SN 13840°

hy = 22—5 - %sin%.

V. CONCLUSION

This paper deals with the stability problem of PI-type
interval time-varying delay two-area LFC power systems.
The lower bounds of the considered interval time-varying
delays are non-zero, which are ignored in the literature. The

140556

relevant LKFs are augmented with some additional state
variables with lower-bound non-zero time delay information.
Combined with the free weight matrix integral inequality
technique, a low conservative stability criterion based on
LMI approach is obtained. At the same time, a negative-
definite inequality equivalent transformation lemma is used
to transform the contained nonlinear matrix inequalities
into the corresponding LMIs to avoid introducing additional
conservatism. Finally, in the numerical simulation examples,
the Matlab LMI-toolbox is used to solve the LMIs in the

VOLUME 11, 2023



Y. Ling et al.: Stability Analysis of Two-Area LFC Power Systems

IEEE Access

theorem, and the MADUBs within the stability margin of the
two-area LFC power system are obtained.
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