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ABSTRACT Deep Learning (DL) methods, such as Convolution Neural Networks (CNNs), have shown
great potential in diagnosing complex diseases. Among these diseases, Rhegmatogenous Retinal Detachment
(RRD) stands out as a critical condition necessitating precise diagnosis and postoperative Visual Acuity
(VA) prediction. This research introduces a DL-based Computer-Aided Diagnosis (CAD) system that
utilizes Optical Coherence Tomography (OCT) images for both the diagnosis of RRD and the prediction of
postoperative VA. The CAD system utilizes DL techniques and a diverse dataset, including OCT images of
patients with RRD from the Hedi Raies Ophthalmology Institute of Tunis and a large public dataset of normal
subjects OCT. Preprocessing steps, such as image cropping, enhancement, denoising, and resizing, are
applied to the tomographic images. Data oversampling and augmentation techniques address class imbalance
and improve the dataset by generating additional samples. Various DL models, including pre-trained
CNN models (VGG-16, Inception-V3, Inception-ResNet-V2), Bilinear (BCNN) (BCNN (VGG − 16)2 and
BCNN (Inception − V3)2), and a custom CNN architecture, are implemented for RRD diagnosis and
postoperative VA prediction. The experimental outcomes demonstrate the effectiveness of the proposed
CAD system in accurately diagnosing RRD and predicting postoperative VA. The system achieves high
accuracy, with 99.87% for diagnosing RRD and 98.06% for predicting postoperative VA using the BCNN
(VGG − 16)2 model. The developed CAD system represents a significant advancement in the field of RRD
and postoperative VA prediction. By combining DL and OCT imaging, the system provides automated and
accurate diagnosis, showing potential in improving patient care and treatment decisions.

INDEX TERMS Convolutional neural networks, deep learning, CAD system, rhegmatogenous retinal
detachment, OCT imaging.

I. INTRODUCTION
The remarkable advancements in artificial intelligence have
brought about transformative changes in various industries,
and healthcare is certainly no exception [1]. In particular,
the emergence of machine learning (ML) techniques, with
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a specific focus on deep learning (DL), has opened up new
horizons in the field of medical imaging analysis [2]. One
area that has seen significant progress is the development
of computer-aided diagnosis (CAD) systems [2], [3], [4].
These systems harness the power of DL algorithms to assist
healthcare professionals in the detection and diagnosis of a
wide range of diseases. Within the realm of ophthalmology,
the integration of CADbased onDL holds significant promise
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for addressing a critical condition known as Retinal Detach-
ment (RD) [5], [6]. This serious impairment occurs when
the neurosensory retina becomes separated from the under-
lying retinal pigment epithelium due to the accumulation
of subretinal fluid [6]. Rhegmatogenous Retinal Detachment
(RRD) is due to retinal tear, this is a surgical emergency
and carries severe visual impairment that can lead to blind-
ness [7], [8]. Early diagnosis is crucial for reattachment’s
success rate and improving visual outcomes. However, iden-
tifying RRD in early stages presents challenges, as it often
begins asymptomatically and progresses from the peripheral
retina. Moreover, final visual outcome depends on surgery
delay which is the most important preoperative prognosis
visual factor [7]. Among the valuable imaging techniques in
ophthalmology, optical coherence tomography (OCT) stands
out for providing high-resolution cross-sectional images of
the retina [9]. The integration of DL-driven CAD systems,
along with OCT imaging capabilities, has the potential to
revolutionize the diagnosis and management of RRD [10],
[11], [12], [13]. These systems automate the detection process
and leverage the computational power of DL algorithms to
accurately identify RRD and retinal layers evolution. Further-
more, they hold promise in predicting postoperative Visual
Acuity (VA), aiding in treatment planning and improving
patient outcomes. The primary objective of this research is
to develop a CAD system that utilizes DL on OCT images
to identify RRD stage and predict postoperative VA. This
addresses the significant challenge of predicting visual recov-
ery during the preoperative examination in the management
of RRD.

II. RELATED WORKS
In the literature, there has been an increasing amount of
research dedicated to exploring the utilization of DL meth-
ods in the field of retinal image analysis. By leveraging
the power of DL, researchers aim to enhance the accu-
racy and efficiency of diagnosing retinal diseases through
automated analysis of retinal images. For instance, Feng et
al. [14] introduced a DL-based approach for the automated
diagnosis of Choroidal NeoVascularization (CNV), Diabetic
Macular Edema (DME), Drusen, and normal subjects in
OCT images. The proposed method leverages an ensemble
of four classification models, each employing an improved
ResNet-50 architecture, to analyze retinal OCT images. The
final predictions are obtained by calculating the average of
class probabilities estimated by the constituent networks.
The proposed method was evaluated on a dataset comprising
21357 retinal OCT images from the Shanghai Zhongshan
Hospital and the Shanghai First People’s Hospital. A 10-fold
cross-validation technique was employed for the evaluation
process. The experimental results highlight an impressive
classification accuracy of 97.3%, along with a sensitivity
of 96.3% and a specificity of 98.5%. In addition, Amit et
al. [15] proposed a DL model aimed at classifying OCT
images of the retina into four distinct categories of retinal dis-

eases (CNV, DME, Drusen, and normal). To accomplish this,
they employed the VGG-19 network, leveraging pre-trained
weights derived from the ImageNet dataset through Trans-
fer learning (TL) technique. Specifically, they modified the
VGG-19 architecture by removing its top layers and sub-
stituting them with a flatten layer, a dropout layer, and an
output dense layer. Importantly, all layers within the proposed
CNN model were made trainable. To assess the performance
of their CNN model, the researchers utilized the publicly
available dataset known as ‘‘Large Dataset of Labeled Optical
Coherence Tomography (OCT) and Chest X-ray Images.’’
This dataset comprises a total of 84568 OCT retinal scan
images and was used for training, validation, and testing
purposes. Furthermore, they also validated their proposed
method on an independent testing dataset obtained from
Duke University, Harvard University, and the University of
Michigan. This additional dataset consisted of OCT scanned
retinal images from 45 patients. The results demonstrated the
effectiveness of the proposed model, achieving an impres-
sive classification accuracy of 99.17%. Moreover, the model
exhibited high specificities of 99.5% and sensitivity of 99%.

Several research studies have been dedicated to focusing
specifically on the utilization of DL for the diagnosis of RD.
For instance, Hideharu et al. [10] conducted a study utiliz-
ing DL technique to automate the detection OF RRD from
Ultra-Widefield Fundus (UWF) images. The dataset con-
sisted of 831 UWF images, with 420 images from non-RRD
patients and 411 images from RRD patients, obtained from
the clinical database of the Ophthalmology Department of
Tsukazaki Hospital. Among these images, 665 were used for
training the model, while 166 images were used for model
validation. To enhance the training dataset, data augmentation
technique was applied, resulting in a total of 11970 images.
The researchers employed a custom CNN model, composed
of three convolutional layers followed by ReLU activation
layers, pooling layers, and two fully connected layers. The
final output layer employed a softmax function for binary
classification. The custom CNN model outperformed the
Support Vector Machine (SVM) method, achieving a sen-
sitivity of 97.6%, specificity of 96.5%, and an Area Under
the Curve (AUC) of 98.8%. Then, Zhongwen et al. [11]
proposed a cascaded DL system to automate the detection of
RD and differentiate between macula-on and macula-off RD
based on UWF images. The cascaded DL system consisted
of two models, both trained using the InceptionResNetV2
architecture. In their methodology, the first model was trained
to identify RD in the input images. Subsequently, the second
model was employed to further discern macula-on RD from
the RD images detected by the first model. The proposed
methodwas developed using a dataset of 11087UWF images.
To evaluate the performance of the DL models, the eligible
images were randomly divided into three sets: 70% for the
training set, 15% for the validation set, and 15% for the test
set. The first DL model, used for identifying RD, achieved
an impressive AUC of 98.9%, with a sensitivity of 96.1%
and specificity of 99.6%. On the other hand, the second DL
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model, employed for discerning macula-on RD frommacula-
off RD, achieved an AUC of 97.5%, with a sensitivity of
93.8% and specificity of 90.9%. In addition, Chenxi et al.
[12] carried out a study aimed at developing a combined
DL system for the detection of lattice degeneration, reti-
nal break, and RD in tessellated eyes using Optos images.
The system consisted of three binary classification CNN
models, each designed to detect one of the aforementioned
conditions. For training the binary classification models, the
seResNext-50 architecture was utilized. The outputs of these
three models were analyzed to generate the final prediction.
The proposed method was evaluated on a dataset of Optos
images consisting of 911 samples obtained from Beijing
Hua’er Eye Hospital. The dataset included images of lattice
degeneration (267), retinal breaks (49), RD (44), and normal
peripheral retina (609). It was divided into three subsets,
with 60% of the data used for training (employing data
augmentation techniques), 20% for model validation, and
20% for performance assessment. The results demonstrated
remarkable performance for the detection of RD, with an
AUC value of 100%, sensitivity of 87.5%, and specificity
of 100%. The overall accuracy of the system was found
to be 79.8%. Recently, Sonal et al. [13] conducted a study
aimed at diagnosing RD from non-RD images using various
pre-trained CNN models and the TL technique on color fun-
dus images. The study employed several well-known CNN
models, including AlexNet, Inception-V3, GoogleNet, VGG-
19, DenseNet, andResNet-50. Thesemodels were trained and
tested using publicly available datasets of RD and non-RD
fundus images. Specifically, the training set consisted of
1227 images, whereas the testing set comprised 400 images.
Through their experimentation, the researchers found that the
ResNet50 framework, implemented through TL, exhibited
the best classification performance. It achieved remarkable
values for accuracy (99.50%), sensitivity (99.00%), speci-
ficity (99.99%), precision (99.99%), and F1 score (99.49%).
This model outperformed other learning models in accurately
detecting RD and non-RD fundus images.

The application of DL techniques in diverse imaging
modalities, such as UWF images and Optos images, has
greatly enhanced the precision and efficiency of diagnosing
retinal diseases, with a particular focus on RD [10], [11], [12],
[13], [14], [15]. These studies have showcased significant
advancements, leading to improved patient care. However,
it is worth noting that the number of studies specifically tar-
geting RD diagnosis is limited.Moreover, a dedicatedmethod
for diagnosing RD and accurately predicting the final VA
outcome using OCT images is currently absent, highlighting
the need for further research in this area.

III. MATERIALS AND METHODS
A. PROPOSED METHOD
1) MAIN CONTRIBUTIONS
The proposed method addresses a specific and critical med-
ical condition, RRD, which necessitates precise diagnosis

and accurate postoperative VA prediction. Our research intro-
duces a DL-based CAD system meticulously tailored to
RRD diagnosis and postoperative VA prediction, harness-
ing the potential of OCT images. The uniqueness of the
proposed research study lies in several key contributions.
Firstly, we have painstakingly designed and developed a CAD
system, employing cutting-edge DL techniques, to automate
RRD identification and predict postoperative VA based on
preoperative OCT images. This system serves as a valuable
complement to the diagnostic expertise of medical profes-
sionals, offering automated and precise insights. The most
notable accomplishment of our study lies in the establishment
of a DL-powered framework for predicting postoperative VA
outcomes. Importantly, this system stands as the first of its
kind to leverage the sophisticated capabilities of DL tech-
niques for precise and reliable prediction of VA results. This
advancement holds substantial potential for enhancing patient
care and facilitating treatment decisions in the realm of RRD.

Furthermore, we extend our gratitude to the Hedi Raies
Institute of Tunis for their invaluable support, providing OCT
images from RRD patients. These images were meticulously
prepared and annotated by ophthalmologists, drawing from
postoperative patient follow-up spanning several months.

While the application of DL in medical imaging is not
novel, our distinct focus onRRD, coupledwith the integration
of DL for VA prediction, stands as the hallmark of our unique
contributions to the field.

2) THE STEPS OF THE PROPOSED METHOD
The proposed method encompasses a multi-step process. Ini-
tially, various image enhancement techniques are applied to
preprocess OCT images, involving image cropping to focus
on the relevant region, image quality enhancement, noise
reduction via a non-local mean filter, and resizing to a stan-
dardized 224 × 224 dimension. To address class imbalance,
data oversampling is performed in the dataset. Further-
more, data augmentation techniques such as rotation, shear,
zooming, and flipping are applied to augment the dataset.
Subsequently, the dataset is partitioned into training and vali-
dation sets. Concurrently, different DLmethods are employed
for RRD diagnosis and postoperative VA prediction. Pre-
trained CNN models, including VGG-16, Inception-V3, and
Inception-ResNet-V2, are utilized using TL. Additionally,
a Bilinear (BCNN) approach is applied using VGG-16 and
Inception-V3 model combinations; BCNN (VGG − 16)2 and
BCNN (Inception − v3)2. Furthermore, a customCNN archi-
tecture is developed and employed. The process for each
CNNmodel involves two distinct phases: training and valida-
tion, followed by testing and evaluation on separate datasets.
Initially, it is trained and evaluated for diagnosing RRD,
functioning as the primary model. Subsequently, the identical
model is reutilized for the subsequent training and eval-
uation phase, designated as the secondary model, with a
specific emphasis on predicting postoperative VA. The over-
all methodology and workflow of the proposed method are
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FIGURE 1. Block diagram of the proposed method.

depicted in Figure 1, providing a visual representation of the
different steps involved.

We developed ourmodels by utilizing anNVIDIAGeForce
GTX 1080 Ti equipped with 11 GB of graphics memory. The
development process involved Python 3 along with a range
of libraries, including TensorFlow, Keras, Sci-Kit-Image,
OpenCV, NumPy, Pandas, Matplotlib, and Sci-Kit-Learn,
among others.

B. PREPARATION OF DATASETS
1) DATA DESCRIPTION
In this study, we utilized two datasets of OCT images rep-
resenting both diseased and non-diseased patients. The first
dataset, obtained from a local Tunisian database, consists
of 468 OCT images from patients diagnosed with RRD
who sought medical attention between 2013 and 2020 at the
Ophthalmology Department of Institut Hédi Raies in Tunis.
The labeling process for this dataset involved capturing OCT
images after the surgery for each patient and categorizing
them into three groups based on the postoperative final VA
outcome, which were recorded as labels. These labels, rep-
resenting the postoperative VA, were then assigned to the
preoperative images to build a model capable of predicting
the postoperative VA from preoperative images. The preop-
erative images were categorized into three distinct classes,
namely Group A, Group B, and Group C, each representing
different ranges of final VA outcomes. GroupA signifies poor
visual recovery, Group B denotes average visual recovery,
and Group C indicates good visual recovery.

The second dataset used in this study is the ‘‘Large Dataset
of Labeled Optical Coherence Tomography (OCT) and Chest

X-Ray Images’’ [16]. It is publicly accessible and encom-
passes a wide range of OCT and chest X-ray images [16].
From this extensive collection, we specifically extracted a
subset of 486 OCT images that depict normal retinas.

These images are used in the development, which includes
both the training and validation phases, of the proposed
methodology. Additionally, two other datasets were specif-
ically created for testing the models of the proposed method.
The first dataset comprises 94 patients diagnosed with RRD
and 104 individuals without the condition, and it was cre-
ated for the initial CNN models. Furthermore, a second
dataset, containing 20 images from Group A, 22 from Group
B, and 23 from Group C, was created to test the second
CNN model.

Thus, the dataset utilized for developing the first CNN
models consisted of a total of 1152 images, compris-
ing 562 RRD and 590 normal images.Within the RRD subset,
468 OCT images were used for training and validation,
with 94 allocated for testing. Similarly, out of the 590 nor-
mal images, 486 underwent training and validation, while
104 were specifically reserved for testing. For the develop-
ment of the second CNNmodels, a dataset of 533 images was
categorized into Groups A, B, and C (257 in Group A, 204 in
GroupB, and 72 inGroupC). In this dataset, 468OCT images
were utilized for training and validation purposes: 237 from
Group A, 182 from Group B, and 49 from Group C. The
remaining 65 images (22 from Group A, 22 from Group B,
and 23 from Group C) were designated for testing.

A total of 562 RRD patients were part of the development
for the first CNN models, yet only 533 were involved in con-
structing the second CNN models. Notably, 29 RRD images
weren’t considered for the second CNN models due to their
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TABLE 1. Summary of image datasets for proposed method development
and testing.

classification solely as RRDwithout the specific visual acuity
labels corresponding to Groups A, B, and C.

Table 1 provides an overview of the total number of images
used in constructing the proposed method, encompassing
both the training and validation phases, as well as the sub-
sequent testing phase.

Figure 2 illustrates examples of images from each group
of the Tunisian database, as well as an example of the normal
class from the public database.

2) DATA PREPARATION AND PREPROCESSING
Prior to applying the CNN model, data preprocessing plays a
crucial role in enhancing DL performance [17]. The dataset
underwent several preprocessing steps as follows:

Firstly, image cropping was performed to eliminate irrele-
vant parts of the OCT images, focusing solely on the pertinent
retinal region. This step is essential to optimize the analysis.
Secondly, image enhancement techniques were employed to
improve image quality. By increasing the overall contrast
of the images, the impact of external factors such as light
occlusion and patient movements, which can hinder retinal
pathology detection, was mitigated. Next, noise reduction
was addressed using the non-local mean filter [23]. OCT
imaging often introduces significant noise due to coher-
ent beam reflection. Reducing this noise is crucial as it
can degrade image quality and impair the performance of
subsequent image processing algorithms. Following noise
reduction, the image size was standardized to 224×224 pixels
to meet the requirements of the pre-trained CNN models
utilized in the study.

These preprocessing steps were consistently applied to all
images within the datasets, both during their development
and testing phases. In the development phase, which included
datasets containing RRD and normal classes, as well as
datasets with three distinct groups (Group A, Group B, and
Group C), a random split was executed. This split allocated
80% of the images for training purposes, while the remaining
20% were set aside for validation. This division was essential
to ensure the effective training of the developed CNNmodels.
As For the test set, a separate and independent preparation
process was initiated from the outset. This involved metic-
ulous steps to ensure that the test dataset remained distinct
from any influence of the training or validation phases.

Tables 2 and 3 present a comprehensive breakdown of
dataset composition, encompassing training, testing, and val-
idation sets, along with the patient counts within each class.
These tables cover both the dataset containing RRD and
normal classes and the dataset comprising Group A, B, and C.

TABLE 2. Training, validation, and testing data for RRD and normal cases.

TABLE 3. Training, validation, and testing data for Groups A, B, and C.

Data oversampling and data augmentation techniques
were exclusively employed in the datasets used for the
development phase of the proposed method. This choice
was driven by the need to address data imbalances and
the limited quantity of data, both of which could signifi-
cantly affect the construction of robust CNN models. These
techniques were intentionally omitted from the testing set.
This decision was made on the basis that the testing set
serves a distinct purpose: evaluation rather than model con-
struction. Thus, to address the class imbalance within the
dataset, which initially comprised GroupAwith 237 samples,
Group B with 182 samples, and Group C with 49 samples,
data oversampling was implemented to create a more bal-
anced dataset. This approach ensured that each class within
the dataset contained 237 images, resulting in a total of
711 images. In contrast, the dataset containing RRD and nor-
mal cases already had a relatively balanced number of images
in each class, making data oversampling unnecessary for
this dataset. Moreover, data augmentation techniques were
applied. These data augmentation techniques included image
rotation, a shear factor of 0.2, zooming, as well as vertical and
horizontal flipping. As a result of this augmentation strategy,
the dataset size significantly expanded to a total of 5724 sam-
ples, compared to the initial count of 954 for the dataset
containing RRD and normal cases, and 4266 for the dataset
comprisingGroupA, B, and C, a substantial increase from the
initial 711. Extensive care was dedicated to guaranteeing the
absence of any overlap between the training and validation
subsets. Our approach involved taking deliberate measures to
prevent instances where data samples generated from a single
image would inadvertently find their way into both sets. This
precaution was fundamental to maintaining the independence
and integrity of the training and validation data, ensuring the
robustness of our model development and evaluation process.
Figure 3 presents various preprocessing steps applied to the
OCT images.

C. AN ANALYSIS OF EMPLOYED CNN ARCHITECTURE
This study proposes a cascaded DL model consisting of
two CNN models. The first model focuses on diagnos-
ing RRD in OCT images, while the second model aims
to classify the identified RRD cases based on their final
VA outcomes. To achieve this, we harnessed the potential
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FIGURE 2. Visual examples from tunisian database groups (Group A,
Group B, and Group C) and comparative image from the normal class in
the public database: A visual exploration of data diversity and
representation.

of TL by utilizing three pre-trained CNN models: VGG-
16, Inception-V3, and Inception-ResNet-V2 [18], [19], [20].
These models were initially trained on the extensive Ima-
geNet dataset, enabling them to learn valuable generic image
features. Additionally, we explored two variations of BCNN
architectures by combining the aforementioned pre-trained
models: BCNN (VGG − 16)2 and BCNN (Inception − v3)2

[21], [22]. Furthermore, we developed a custom CNN model
tailored specifically to address our research problem. The

categorical_crossentropy loss metric was selected to optimize
the models’ performance, and the Adam optimizer with a
learning rate of 0.001 was used during training. The proposed
method underwent 50 epochs of training, with a batch size of
32, to achieve the optimal performance.

1) TRANSFER LEARNING TECHNIQUE
TL is a powerful technique in DL that leverages the knowl-
edge acquired by pre-trained CNN models like AlexNet,
VGG, ResNet, and Inception. These models are trained on
extensive datasets and excel at extracting important features
from images [18], [19], [20], [21], [22]. By employing TL,
we can take advantage of these pre-trained models’ abil-
ity to recognize common patterns and structures in images,
even for different tasks. This approach saves computational
resources and time by building upon the existing knowl-
edge of the pre-trained models and adopting them for our
specific task. By transferring the learned representations,
we can achieve faster convergence and potentially improve
our model’s performance. In this study, we specifically chose
three popular pre-trained CNN models, namely VGG-16,
Inception-V3, and Inception-ResNet-V2, known for their
exceptional performance and feature extraction capabilities.
These models have been pre-trained on large-scale ImageNet
datasets, enabling them to learn generic visual features that
can be applied to various image recognition tasks. Through
TL, we utilize the learned representations from these models
to address our specific problem of classifying RRD in OCT
images.

Figure 4 illustrates the TL of the three pre-trained CNN
(VGG-16, Inception-V3, and Inception-ResNet-V2) models

2) PRE-TRAINED VGG-16 ARCHITECTURE
VGG16 is a widely recognized and influential CNN archi-
tecture in the field of DL [18]. It was introduced by the
Visual Geometry Group (VGG) at the University of Oxford
and has gained significant popularity and success in various
computer vision tasks. VGG16 is characterized by its deep
structure, consisting of 16 weight layers, which enables it
to capture intricate features and patterns in images. With its
uniform architecture and small convolutional filters, VGG-
16 achieves impressive performance in image classification
and object recognition tasks. Due to its effectiveness and
versatility, VGG-16 has become a go-to choice for many
researchers and practitioners when working on image-related
problems. Nevertheless, this pre-trained CNN model suffers
from an architectural imbalance where more convolution lay-
ers are sequentially stacked in the upper layers than in the
bottom layers due to resource constraints. This imbalance can
result in inefficiencies in memory usage and computation,
as the bottom layers, which possess higher spatial resolu-
tion, dominate the available resources. To overcome these
limitations, advanced CNN architectures like the pre-trained
Inception model have been developed. These architectures
adopt a different approach by initially reducing the spatial
resolution and subsequently introducing convolution layers.
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FIGURE 3. Preprocessing steps for OCT images.

This design choice aims to optimize resource allocation and
improve overall performance.

3) PRE-TRAINED INCEPTION-V3 ARCHITECTURE
The Inception-V3 architecture, created by Google’s research
team, is a popular pre-trainedCNNmodel extensively utilized
in computer vision applications [19]. It surpasses its pre-
decessors, Inception-V1 and V2, with its 48-layer structure
and a larger input size of 299 × 299. By enabling deeper
networks without a disproportionate increase in parameters,
Inception-V3 effectively balances complexity and depth. This
pre-trained CNN architecture excels at extracting features
from images while simultaneously minimizing computa-
tional complexity. Its key characteristic is the use of inception
modules, which employ parallel convolutional layers with
different filter sizes to capture information at multiple scales
and abstraction levels simultaneously. This allows the model
to learn rich representations by capturing both low-level
and high-level features. Inception-V3 also incorporates tech-
niques like factorized convolutions to reduce parameters and
computations while maintaining efficiency. It utilizes aux-
iliary classifiers to encourage the learning of discriminative
features and overcome the vanishing gradient problem.

4) PRE-TRAINED INCEPTION-RESNET-V2 ARCHITECTURE
The Inception-ResNet-V2 architecture is a powerful
pre-trained CNN model that combines the strengths of the
Inception and ResNet architectures [20]. It was developed by
the Google Brain team as an extension of the original Incep-
tion and ResNet models. Inception-ResNet-V2 is renowned

for its exceptional performance in image recognition tasks,
demonstrating state-of-the-art results on various benchmark
datasets. The architecture incorporates residual connections,
which help alleviate the vanishing gradient problem and
enable efficient training of very deep networks. It also utilizes
inception modules, similar to Inception-V3, to capture multi-
scale features and enhance the model’s ability to extract rich
representations. In addition, Inception-ResNet-V2 employs
batch normalization and factorized convolutions to improve
computational efficiency while maintaining high accuracy.

5) BILINEAR CNN MODEL DESCRIPTION
The Bilinear CNN (BCNN) architecture has gained signif-
icant attention in computer vision for its ability to capture
spatial interactions between features, making it effective in
tasks like image classification and object recognition [21],
[22]. BCNN utilizes bilinear pooling as a key component,
combining the output vectors of two separate CNN archi-
tectures through an outer product function. This pooling
operation captures pairwise feature interactions, enabling
BCNN to encode higher-order feature correlations and extract
fine-grained details and complex relationships in images.
By leveraging both low-level and high-level features simulta-
neously, BCNN models enhance their discriminative power.
These BCNN architectures provide a robust framework
for extracting informative features from images and have
the potential to improve our classification task. The bilin-
ear model in BCNN is defined by the formula, M =

F(fA, fB,P,C) where fA and fB are feature extractors, P is the
pooling function, andC is the classification function. Bilinear
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FIGURE 4. Transfer learning of pre-trained CNN Models (VGG16, Inception-V3, InceptionResNet-V2).

features are obtained by performing the outer product of fA
and fB, followed by pooling and normalization steps. The
bilinear form allows for end-to-end training and simplifies
gradient computation, making it an effective approach.

In this study, we explore two BCNN variants: BCNN
(VGG − 16)2 and BCNN (Inception − v3)2, which com-
bine pre-trained VGG16 and Inception-v3 models using
bilinear pooling. These variants involve the combination
of pre-trained VGG16 and Inception-v3 models using the
bilinear pooling technique. By leveraging the complemen-
tary strengths of these well-established CNN architectures,
we aim to harness the power of their learned representations
and the rich spatial interactions captured by bilinear pooling.
The BCNN (VGG − 16)2 variant merges two instances of the
VGG16 model, while the BCNN (Inception − v3)2 variant
combines two instances of the Inception-v3 model. Through
this exploration, we seek to leverage the benefits of both
architectures and exploit their synergistic effects in improving
the performance of our classification task.

Figure 5 presents the BCNN architecture employed in this
study.

6) CUSTOM CNN ARCHITECTURE DESCRIPTION
Given the complexity of the BCNN model, we have devel-
oped a custom CNN architecture from scratch. This custom
CNN model is specifically developed with a reduced number

of layers compared to pre-trained CNN models. Our goal
is to simplify the architecture while preserving its effec-
tiveness. The constructed CNN architecture consists of two
blocks, each comprising a convolutional layer with 32 filters
and a kernel size of 3 × 3. Following the convolutional
layer, a ReLU activation function is applied to introduce
non-linearity. Additionally, after each convolutional layer,
we have incorporated a MaxPooling layer with a kernel size
of 2 × 2. This pooling layer helps in downsampling the
spatial dimensions of the input. Following the block struc-
ture, a Flatten layer was included to convert the output into
a one-dimensional tensor. Subsequently, two dense layers
are employed. The first dense layer consists of 128 nodes
and employs the ReLU activation function to introduce non-
linearity. Finally, the second dense layer is composed of
2 nodes, and the Softmax activation function is applied for
the purpose of classification. Figure 6 presents the custom
CNN Architecture employed in this study.

IV. RESULTS
During this study, we have developed two cascaded mod-
els using DL techniques. The first model was specifically
designed to detect RRD, while the second model focused on
the prediction of postoperative VA. Each model was trained
and evaluated using appropriate datasets.
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FIGURE 5. Bilinear pooling CNN architecture.

TABLE 4. Results of various CNN models FOR RRD diagnosis.

TABLE 5. Results of various CNN models for va prediction.

TABLE 6. Global performance evaluation of different CNN models.

These two models were developed using six CNN mod-
els: pre-trained VGG-16, pre-trained Inception-V3, pre-
trained Inception-ResNet-V2, BCNN (VGG − 16)2, BCNN
(Inception − V3)2, and a custom CNN model.
The performance and results of all six CNN models, are

presented in Table 4 and Table 5. These tables provide an

overview of the models’ accuracy, precision, recall, sensitiv-
ity, specificity, and AUC.

The AUC represents the model’s ability to make accurate
classification decisions across various thresholds, without
delving into the specific probability values. However, in the
context of this study, our central emphasis is on the clas-
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FIGURE 6. Custom CNN architecture.

FIGURE 7. Confusion matrix: BCNN (VGG − 16)2 model on RRD and
normal cases dataset.

sification outcomes rather than the specific probabilities.
Therefore, we have opted to prioritize the selection of the
highest AUC in this study.

To comprehensively assess performance, we combined the
results of two models by multiplication: the classification
of RRD and the prediction of VA. This approach allowed
us to obtain a more precise measure of the overall system’s
reliability. The collective performance of the various CNN
models is presented in Table 6.

Figures 7 to 16 offer insights into the performance of two
CNN models through the presentation of confusion matrices,
learning curves for key metrics such as Accuracy, Precision,
Recall, and AUC. These figures specifically highlight the per-
formance of two CNN models: BCNN (VGG − 16)2 trained
on a dataset containing RRD and normal cases, and BCNN

FIGURE 8. Training and validation curves for accuracy metric: BCNN
(VGG − 16)2 model on RRD and normal cases dataset.

FIGURE 9. Training and validation curves for precision metric: BCNN
(VGG − 16)2 model on RRD and normal cases dataset

(Inception − V3)2 trained on a dataset comprising data from
Group A, Group B, and Group C.
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FIGURE 10. Training and validation curves for recall metric: BCNN
(VGG − 16)2 model on RRD and normal cases dataset.

FIGURE 11. Training and validation curves for AUC metric: BCNN
(VGG − 16)2 model on RRD and normal cases dataset.

FIGURE 12. Confusion matrix: BCNN (Inception − V3)2 model on Group
A, Group B, and Group.

V. DISCUSSION
In this study, we have developed CNN cascaded model
using DL. The first model was specifically designed for
the identification of RRD, while the second model is ded-
icated to predicting the postoperative VA. The results of
our analysis revealed notable insights. For RRD diagno-

FIGURE 13. Training and validation curves for accuracy metric: BCNN
(Inception − V3)2 model on Group A, Group B, and Group.

FIGURE 14. Training and validation curves for precision metric: BCNN
(Inception − V3)2 model on Group A, Group B, and Group.

FIGURE 15. Training and validation curves for recall metric: BCNN
(Inception − V3)2 model on Group A, Group B, and Group.

sis, BCNN (VGG − 16)2 emerged as the top-performing
model, achieving an accuracy of 99.87% and an outstand-
ing AUC of 99.99%. Inception-V3 also exhibited strong
performance with an accuracy of 96.79% and an AUC
of 99.76%. Other models, including VGG16, Inception-
ResNet-V2, BCNN (Inception − V3)2, and a custom CNN
architecture, demonstrated competitive results, highlighting
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FIGURE 16. Training and validation curves for AUC metric: BCNN
(Inception − V3)2 model on Group A, Group B, and Group.

their potential in RRD diagnosis. Shifting to VA predic-
tion, BCNN (VGG − 16)2 continued to excel, delivering an
accuracy of 98.06% and an impressive AUC of 98.58%.
Inception-V3 displayed robust performance with an accuracy
of 90.76% and an AUC of 98.08%, establishing its effective-
ness in VA prediction. Inception-ResNet-V2 and the custom
CNN model also showed promise in this task. In a com-
prehensive evaluation spanning both RRD diagnosis and VA
prediction, BCNN (VGG − 16)2 remained a standout model,
with an overall accuracy of 97.93% and an AUC of 98.57%.
Inception-V3 maintained strong performance with an overall
accuracy of 87.85% and an AUC of 97.84%. Other models
consistently delivered competitive results, underscoring their
versatility in addressing both tasks. These findings illuminate
the capabilities of CNN models in diagnosing RRD and
predicting VA, with BCNN (VGG − 16)2 standing out as a
high-performing and reliable choice across both domains.

These diverse CNN model results were attained through a
meticulous process involving training, validation, and testing
on both a public dataset and a carefully curated local database.
The local database was carefully prepared and labeled by
physicians based on post-operative patient follow-up over
several months. Specifically, the A, B, and C groups were
established by ophthalmologists according to post-operative
visual acuity levels, with specific thresholds for each group.
Group A includes individuals with visual acuity ranging
from 2 to 1 LogMAR. Group B comprises individuals with
visual acuity ranging from 0.9 to 0.4 LogMAR. Group
C consists of individuals with visual acuity ranging from
0.3 to 0 LogMAR. Furthermore, both the local and public
databases underwent the same preprocessing process. This
consistency in data preprocessing ensures data comparability
and consistent construction of the DL model. Regardless of
potential differences in the populations of the two databases,
the primary goal of this approach is to develop a robust model.
In other words, the emphasis is on creating a model capable
of generalizing and providing accurate predictions regardless
of the original dataset.

The outstanding performance achieved by the various CNN
architectures employed in our methodology results from
the combination of several crucial factors. This approach
encompasses various elements, including the adoption of
cutting-edge CNN models alongside our meticulously tai-
lored custom CNN model, precisely configured to align with
the specific task requirements. Additionally, the preprocess-
ing steps for image enhancement are thoughtfully selected,
ensuring that the input data provided to the models is not only
of optimal quality but also of an appropriate quantity. Lastly,
the utilization of a diverse dataset, encompassing samples
from a variety of sources and exhibiting a broad spectrum
of characteristics, plays a pivotal role in augmenting the
variability within the training data. This diversity strengthens
the model’s ability to effectively handle diverse situations,
thereby solidifying its exceptional performance.

There is a certain degree of redundancy in the evaluation
metrics among the different CNN models deployed for two
distinct tasks: diagnosing RRD and predicting postopera-
tive VA. This redundancy can be attributed to the dataset’s
meticulous structuring and equilibrium, resulting in con-
sistent model performance across a range of metrics. The
balanced nature of the dataset, where class samples are
comparably distributed, often leads to consistent scores in
accuracy, precision, recall, specificity, sensitivity, and AUC
across various models. Moreover, the chosen models, such as
VGG16, Inception-V3, and BCNN, are established architec-
tures recognized for their strong performance in diverse tasks.
Leveraging their inherent design and capabilities contributes
to the uniformity of outcomes across distinct evaluation
metrics, particularly when applied to a well-processed and
balanced dataset.

Several DL-based methods have been proposed in the lit-
erature for diagnosing RD. However, direct comparison with
these models on the same database is challenging due to the
use of different image modalities in these studies. Never-
theless, it is evident that the proposed method has achieved
commendable performance. Table 7 presents a comparison
between the proposed method and selected previous methods
from the literature, showcasing the effectiveness of the pro-
posed approach.

Despite the notable findings and robustness of the present
research, it is essential to address the limitations associ-
ated with dataset size and the potential of combining DL
with Hand-Crafted ML methods. The limited size of the
database is a prevalent challenge in OCT imaging research
due to constraints in image availability and data collec-
tion complexities. Additionally, it is crucial to acknowledge
that DL methodologies may not encompass all pertinent
image features. This emphasizes the continual requirement
for integrating Hand-Crafted ML methods to complement
and augment the performance of deep learning approaches.
Moreover, the application of the proposed method should be
used judiciously, considering the specific clinical context. It’s
important to note that RD is a complex condition consisting
of various subtypes, each with its unique characteristics and
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TABLE 7. Comparison of the proposed method with previous studies.

clinical implications. However, it’s crucial to underscore that
the proposed method is primarily tailored for the accurate
diagnosis of RRD. Consequently, there exists a potential risk
of misclassification when dealing with other forms of RD.
Thus, misidentifying non-RRD abnormal cases as RRD could
result in significant clinical consequences, potentially leading
to misguided treatment decisions.

VI. CONCLUSION
This study makes a significant contribution to the develop-
ment of a CAD system using DL techniques for the automatic
RRD diagnosis and the prediction of postoperative VA using
OCT images. By utilizing various preprocessing steps and
implementing different CNN models, the proposed CAD
system demonstrates high accuracy in diagnosing RRD and
predicting VA. The experimental results validate the effec-
tiveness of the system, achieving a diagnosis accuracy of
99.87% for RRD and a VA prediction accuracy of 98.06%
using the BCNN (VGG − 16)2 model.
The findings of this study underscore the promising

prospects of DL-based approaches in improving patient care
and treatment decisions for RRD, including postoperative
VA prediction. Future research should focus on explor-
ing alternative DL models to enhance performance metrics
and investigating hybrid approaches that integrate DL with
Hand-Crafted ML methods. Moreover, due to the scarcity
of limited labeled data and the absence of publicly shared
datasets, coupled with the paramount importance of gener-
alizability in any medical study, we intend to conduct further
validation of the proposedmodel using data sourced from var-
ious independent medical centers. This approach will enable

us to assess the robustness of our model and affirm its utility
across a range of clinical contexts.
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