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ABSTRACT Image recognition methods classify or categorize objects by extracting significant properties
from digital images of the objects and are used in the field of agriculture for quality determination. With the
development of artificial intelligence technology, deep-learning techniques and tools such as convolutional
neural networks (CNNs) have been used in image recognition. Existing discrimination studies have tended
to extract features from images and classify them using multivariate analysis; however, deep learning
algorithms have the self-learning ability to extract the feature points themselves for each neural layer. In this
study, we developed models for discriminating dead cocoons using various discriminant analysis methods,
including deep learning options, to establish an automation technology for the sericulture industry. A 100W
halogen light source was used for direct irradiation onto the cocoons, and a camera was positioned at the
bottom of the cocoons (of which 43.9% were dead) to obtain RGB images. We conducted discrimination
analyses based on the color space using four discrimination algorithms, namely, k-nearest neighbor, support
vector machine, linear discriminant analysis, and partial least squares-discriminant analysis, within deep
learning models (a proposed lightweight CNN model, VGG16, ResNet50, EfficientNetB0, MobileNet,
ShuffleNet, GhostNet, and ConvNext). The proposed lightweight CNN model, which consisted of six
convolutional layers and two fully connected layers, showed the highest discrimination accuracy (97.66%) in
the Lab color space. It was thus confirmed that it is possible to automate the discrimination of dead cocoons
using digital images and deep learning techniques.

INDEX TERMS Convolutional neural networks, machine learning, discrimination, cocoon.

I. INTRODUCTION
A digital image is a digital representation of an analog image
for digital computer analysis. Digital images have superior
image quality compared to analog ones and various image
processing techniques can be utilized to process digital data,
and because of these advantages, research on image process-
ing using digital images has been continuously developing.
Digital image recognition is a digital image processing tech-
nology that can classify or categorize objects by extracting
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their significant properties [1]. Image recognition is mainly
used in the field of quality discrimination as an alternative
to the operator’s visual selection process. Existing qual-
ity discrimination studies typically focus on techniques for
selecting a region of interest from the acquired image using
various channels, extracting the colors, and classifying the
objects in the images into classes using multivariate analy-
ses [2], [3]. With the development of artificial intelligence
technology, high-performance CPUs and GPUs have been
developed, and vast amounts of learning data is publicly
available. Therefore, the applicability of deep learning is
expanding to fields such as image and voice recognition [4].
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Deep learning is a machine learning method that uses an
artificial neural network consisting of several hidden layers
between the input and output layers [5]. An artificial neu-
ral network is a processor based on neuroanatomical facts.
These networks were developed by cognitive scientists and
researchers interested in new computational models and their
structure is similar to the multiple neural layers found in
the visual cortex of the brain. General image processing
technologies determine the data class by extracting features
from images and learning them based on the feature values.
Image processing technology based on deep learning models
however, does not require human intervention in the feature
extraction process but has the self-learning ability to extract
the feature points for each neural layer itself [6], [7]. Among
the various deep learning models available, convolutional
neural networks (CNNs) aremainly used to classify images of
people, cars, and animals [8], [9], [10]. Ko et al. [11] proposed
a six-step tomato ripeness classification system using RGB
images and CNN algorithms with an accuracy of 91.3%.
The results showed that the discrimination performance was
higher in terms of the dataset size and complex maturity
level compared with those of existing learning models, which
extract features based on the statistical characteristics of the
data. Fan et al. [12] used a four-line sorting machine capable
of sorting five apples per second and developed a model
to detect defective apples using a support vector machine
(SVM) and deep learning technology based on CNNs. The
classification accuracy of the SVM classifier was 87.1%,
and the CNN classifier achieved a discrimination accuracy
of 92% with a processing time of less than 72 ms for six
images of one apple; these results confirm the superiority
of the deep learning algorithm. Given these advantages deep
learning technology is being used in various fields such
as the quality assessment of agricultural products, classi-
fication of crop varieties [13], [14], diagnosis of growth
status [15], [16], insect recognition and classification for
agricultural pest removal [17], [18], and grading of livestock
products [19], [20].
The sericulture industry currently exists in 25 countries

worldwide and is economically significant in most devel-
oping countries [21], [22]. Silk production is the primary
objective of the industry and the production of high-quality
silk cocoons has become more significant with the devel-
opment of high-value-added applications such as healthy
functional foods [23], [24], functional products [25], [26],
and medical materials based on sericulture by-products [27],
[28], [29]. Dead cocoons have no commercial value and
cause the cross-contamination of normal cocoons and there-
fore detection and removal of these dead cocoons is crucial.
It is thus necessary to sort them before distribution, this
sorting process having a determining effect on the price of
the cocoons [30]. In the case of dead cocoons, the external
defects of the cocoons can be identified using standard pho-
tos; sorting dead cocoons with internal defects is a different
challenge [31]. Current methods see workers at the reeling
center shake the cocoons one by one or sort them under

sunlight because dead cocoons usually make no sound when
shaken and appear black when exposed to sunlight [30], [32].
Development of technology that allows for the automatic
identification of dead cocoons is therefore necessary for the
automation of the sericulture industry.

Several studies on the use of image processing technol-
ogy in the sericulture industry have been reported [33],
[34], [35]. Tao et al. [36] used the radial basis function
and neural network and SVM models to classify the sex
and species of 840 silkworm pupae with 100% accuracy.
Zhu et al. [37] measured the near-infrared spectra (899–1721
nm wavelength band) of 1600 silkworm pupae and devel-
oped a soft independent modeling of class analogy model
to discriminate their sex with 98.8% accuracy. With respect
to detecting dead cocoons, Zheng [38] imaged 100 cocoons
and then separated the regions corresponding to the cocoons
and the background using binarization. They could deter-
mine whether the cocoons were defective or not with an
average accuracy of 98%. Prasobhkumar et al. [39] imaged
137 cocoons using a mobile phone camera and used the
images to categorize normal cocoons and four types of dead
cocoons, at a rate of 96 samples per second, using image
processing methods based on binarization and morphology-
related operations. Feng et al. [40] acquired 13514 images of
five types of dead cocoons and developed an AlexNet with
a global average pooling layer to classify the cocoons with
an average accuracy of 98.22%. Sun et al. [41] developed
an algorithm for segmenting eight types of dead cocoons
based on VGG19. They proved that the image segmentation
speed and accuracy were faster and higher, respectively, than
those of the existing threshold-based segmentation algorithm.
Thus, several studies have reported high-accuracy discrimi-
nating systems for identifying dead cocoons. However, these
studies only evaluated dead cocoons with external defects.
In addition, the models were developed using conventional
image processing methods.

To overcome these limitations, we have developed a
cocoon-discrimination model to identify dead cocoons with
no external defects. Cocoons were radiated by a halo-
gen light from above and then imaged from the bottom
using a DSLR camera to capture their internal character-
istics. The discrimination model for the dead cocoons was
developed using several classification algorithms (k-nearest
neighbor (k-NN), SVM, linear discriminant analysis (LDA),
and partial least squares-discriminant analysis (PLS-DA))
and deep learningmodels. The deep learningmodels included
a proposed lightweight CNN model. Furthermore, VGGNet,
ResNet, EfficientNet, MobileNet, ShuffleNet, GhostNet, and
ConvNext which are state-of-the-art deep learning models
andwidely used for image classification, were used. Themost
suitable algorithm for determining dead cocoons was selected
by calculating and comparing the classification accuracy for
each model.

The main contributions of this paper are as follows:
1) We propose an imaging acquisition method which can

capture the internal structure of a cocoon without cutting.
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By radiating the light from above, our imaging system cap-
tures the internal structure of cocoons. This imaging system
can be used to replace labor force.

2) In this paper, we propose a lightweight CNN model to
discriminate dead cocoons. This model was compared with
the state-of-the-art deep learning models. The model exhib-
ited the highest discrimination performance and is suitable
for integration into sorting devices.

3) The results of this study contribute to the development
of automation technology in the sericulture industry.

II. MATERIALS AND METHODS
A. INSTRUMENTATION AND DATA ACQUISITION
A total of 1,066 cocoons were supplied for the study by
the Industrial Insect and Sericulture Division, Department
of Agricultural Biology, Rural Development Administration,
Korea, and a sericulture farm in Yeongdeok-gun,
Gyeongsangbuk-do, Korea. The cocoons were stored in a
controlled-atmosphere room with a temperature and humid-
ity of 24 ◦C and 60%, respectively. As shown in Fig. 1,
a digital imaging system was used to acquire the images
of the cocoons. The pupae within the cocoons have the
property of being located below by gravity. Based on this
fact, a 100 W halogen light (LS-F100HS, Seokwang Optical
Co., Korea) was radiated on the upper part of the cocoon
sample to confirm the shape of the pupae within them. The
images were obtained by placing a DSLR camera (Camera:
E0S 5Ds, Canon, Japan, Lens: 24–70 mm ultrasonic, Canon,
Japan) under the cocoons. The distance between the camera
and the cocoon was consistently maintained at 50 cm. All
experiments were conducted in black room to prevent further
optical interference. After obtaining the images, the cocoons
were cut to determine whether the pupae inside were dead.
It was found that 598 of the cocoons were normal and
468 were dead.

FIGURE 1. Schematic of digital imaging system for cocoon images.

B. IMAGE PREPROCESSING
As shown in Fig. 2, all the acquired images were preprocessed
before being used to develop the dead-cocoon discrimina-
tion model. Fig. 2(a) is the original image and Fig. 2(b) is
the cropped image showing the region of interest. Fig. 2(c)
shows the background-subtracted image, in which the cocoon

FIGURE 2. Digital image preprocessing method: (a) original, (b) cropped,
and (c) background-subtracted images.

has been separated from the background in the image. The
binarization process for this subtraction step was performed
using the algorithm reported by Otsu [42], which converts
the original image into grayscale and selects the appropriate
threshold to maximize the between-class variance as cal-
culated using (1). The algorithm was implemented using
MATLAB (ver. 2022; MathWorks Inc., Natick, MA, USA),
and images that were not properly binarized byOtsu’smethod
were manually processed using Photoshop (Photoshop 7.0,
Adobe Inc., USA).

σ 2
B = w0w1(µ1 − µ0)2 (1)

wherew0 andw1 are the probabilities of the occurrence of the
two classes (background and object) and µ0 and µ1 are the
means of the classes.

The original image data from DSLR cameras consist of
RGB values. To identify the color channels suitable for
silkworm cocoon discrimination the RGB color space was
converted into HSV, Lab, and YCbCr color spaces and the
four types of color spaces were used for analysis. The HSV
color space defines the color of an image in terms of the hue,
saturation, and value components. The hue and saturation
components describe the changes in the chromaticity, while
the Lab color space uses the L component to indicate the
luminance or brightness, the ‘‘a’’ component represents the
amounts of red and green tones, and the ‘‘b’’ component rep-
resents the amounts of yellow and blue tones. In the YCbCr
color space, the Y component represents the luminance, the
Cb component represents the difference between the refer-
ence value and the blue component, and the Cr component
represents the difference between the reference value and the
red component. For each image, the average value for each
channel in the color space for all the pixels was taken as the
representative value. The t-test was used to confirm whether
there was a significant difference in the color channels of the
normal and dead cocoon groups

C. DISCRIMINANT ANALYSES
Statistical discrimination algorithms (widely used in existing
classification models) and deep learning algorithms were
used to detect the dead cocoons.

First, discriminant analyses were performed using the
k-NN, SVM, LDA, and PLS-DAmethods. The k-NNmethod
classifies samples into classes with the closest distance based
on the distance between the samples in the feature space.
SVM separates the classes by finding the boundary that
maximizes the distance between the support vectors for each
group and the hyperplane. The LDA reduces the dimen-
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sion of the feature vectors by maximizing the ratio of the
variance between the classes and that within the classes.
The PLS-DA is based on the partial least square regression
(PLSR)method and performs classification based on a regres-
sion equation using the threshold value. The discrimination
accuracy of the developed model was calculated using (2).
Model training and validation were performed using five-fold
cross-validation. The 1066 cocoon images were divided into
five groups, of which four were used for model training, one
used for model validation. The average of five discrimination
performances was calculated and taken as the final discrimi-
nation accuracy.

Accuracy =
TP+ TN

TP+ FP+ TN + FN
(2)

where TP is true positive, FP is false positive, TN is true
negative, and FN is false negative.

Next, eight different deep learning models (a proposed
lightweight CNNmodel, VGG16, ResNet50, EfficientNetB0,
MobileNet, ShuffleNet, GhostNet, ConvNext) were com-
pared to select an appropriate discrimination model. The
image input size was set to 224 × 224 × 3.

Before training the deep learning models, data augmen-
tation was implemented to increase the data size. Data
augmentation was performed using a Keras module named
ImageDataGenerator. The module was set with a rotation
degree range of 40, width and height shift range of 0.2,
shearing transformation range of 0.2, zoom range of 0.2, and
horizontal flip ratio of 0.5. When the process is performed,
the points that exceed the boundary are filled by the near-
est pixel values. To perform model training and validation,
1066 images were randomly divided into a training group
(60%, 639), validation group (20%, 213), and test group
(20%, 214). The training group image increased by 16 times
because of the data augmentation.

The first discrimination model is the proposed lightweight
CNNmodel. The developedmodel consists of six convolution
layers and two fully connected layers, as shown in Table 1.
Initially, the structure of the lightweight CNN model was
built based on the VGG16 model. The kernel size, stride,
padding, and activation values were referenced from theVGG
16 model. We compared the performance of the model by
changing the number of convolution layers from four to seven
and observed that the highest performance was achieved
using six convolution layers. Max pooling demonstrated a
higher and stable performance than average pooling. There-
fore, Convolution was performed with stride of 1 and max
pooling was performed between each convolution layer. Fur-
thermore, dropout was performed between each convolution
layer to reduce the number of model parameters. A batch size
of 16 and the Adam optimizer were selected for model opti-
mization. When training the model, the epoch was repeated
3000 times. The model training was set to end when the
loss of the validation group did not improve for more than

TABLE 1. Architectures of the proposed lightweight CNN.

50 consecutive iterations. The loss was calculated using (3).

Loss = −
1
N

∑N

i=1
yi log (ŷi) + (1−yi)log(1 − ŷi) (3)

where N is total number of data points, yi is the real value,
and ŷi is the predicted value.

VGG16, ResNet50, EfficientNetB0, MobileNet,
ShuffleNet, GhostNet, ConvNext were the seven discrimina-
tion models that were compared with the proposed model.
The performances of these existing models were demon-
strated by an image classification competition. Therefore,
we used these models for transfer learning and compared
their performance with that of the proposed lightweight
CNN model. These models were pre-trained by ImageNet.
However, our image data differed from the data on ImageNet.
Therefore, we used only the structure of the models and
fine-tuned themodels by training using our image. The hyper-
parameters, such as batch size, optimizer, epoch used for
training the models were equal to that of the lightweight
CNN.

137320 VOLUME 11, 2023



A. Lee et al.: Classification of Dead Cocoons Using CNNs and Machine Learning Methods

Deep learning modeling was conducted using four color
spaces (RGB, Lab, HSV, YCbCr) and the model with the
highest discriminant accuracy was selected as the discrimi-
nation model for this study.

All the discriminant analyses were performed using Python
(V3.8, Python Software Foundation, USA). For the calcula-
tions, a computing system equipped with a CPU (Ryzen 9
3900X,AMD,USA), 64GBRAM, and aGPU (RTX2080 Ti,
Nvidia Corporation, USA) was used.

III. RESULTS AND DISCUSSION
A. FEATURES OF COCOON IMAGES
As previously mentioned, a total of 1066 cocoon images were
acquired. Fig. 3 shows some of the obtained images of normal
and dead cocoons. In the case of the normal cocoons the
pupae in the cocoon are mostly brown and oval. In addition,
a peeled silkworm shell is created as the silkworm transforms
into a pupa. Therefore, in some of the images, the shells and
pupae appear together.

FIGURE 3. Representative cocoon images used in modeling: (a) normal
cocoon and (b) dead cocoon with no external defects.

The dead cocoons were generally darker in color compared
to the normal cocoons, and some were even close to black in
color. Here, the term ‘‘dead cocoon’’ refers to all the cases
in which the silkworm did not pupate within the cocoon. For
example, there were cases that included specimen death in the
form of silkworm larva, death during pupal metamorphosis,
or the pupa bursting and contaminating the inside of the
cocoon. Therefore, various internal shapes were observed in
the images of the dead cocoons, in contrast to that of the
normal cocoons. It was therefore assumed that it would be
possible to discriminate the dead cocoons by appropriately
extracting their features from the acquired images.

Fig. 4 shows box plots of the normal and dead cocoon
groups for each channel in the four color spaces. For the
RGB color space, the average values of the normal and dead
cocoons in the R channel were 172.67 and 167.68, respec-
tively, and the standard deviations were 28.30 and 46.20,
respectively. The average values for the normal and dead
cocoons in the G channel were 136.14 and 144.67, respec-
tively, and the standard deviations were 29.25 and 46.70,
respectively. In the case of the B channel, the average values
were 95.03 and 114.46, respectively, and the standard devia-
tions were 25.64 and 44.65, respectively. Thus, the deviation
for the dead cocoon groupwas greater than that for the normal
cocoon group.

FIGURE 4. Boxplots of mean color values of cocoon groups per color
space channel: (a) RGB, (b) HSV, (c) Lab, and (d) YCbCr (p values are
significant as per Welch’s two sample t-test. ∗p < 0.001.).

The t-test was performed on the normal and dead cocoon
groups for each channel. Except for the R channel of the RGB
color space, the V channel of the HSV color space, and the
L channel of the Lab color space, significant differences were
observed, i.e., the p values were 0.001 or lower. Accordingly,
it was confirmed that the normal and dead cocoons can be
classified based on the color values of the images. However,
there was significant overlap between the normal and dead
cocoon groups as well as considerable in-group variations.
Therefore, it was assumed that the discrimination accuracy
based only on the color values of the images would not be
high.

B. DISCRIMINATION RESULTS
The k-NN, SVM, LDA, and PLS-DA methods were used on
the images composed of the four color spaces, and the results
are listed in Table 2. The model was verified by five-fold
cross-verification, and the average of five discriminant accu-
racies was calculated and considered the final discriminant
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TABLE 2. Discriminant analyses results for each color space.

performance. All the values were rounded to the third decimal
place and the discriminant performance was determined to be
the best when the accuracy for the validation group was high.

With respect to the discrimination performances for the
different color spaces, the RGB color space showed the
highest discrimination accuracy of 90.32% when the LDA
method was used. In the case of the HSV and YCbCr color
spaces the average accuracies were 92.82% and 88.19%,
respectively. For the Lab color space, the k-NN analysis
showed a discrimination accuracy of 90.11%. With respect
to the discrimination performances for the different types of
analysis methods, the k-NN and SVM methods resulted in
the highest discrimination accuracies, which were 91.50%
and 92.82%, respectively, when the HSV images were used.
In the case of the LDA method the discrimination accuracy
was 90.32% when the RGB images were used, while in the
case of the PLS-DAmethod, the discrimination accuracy was
78.01% when the Lab images were used. Finally, when the
SVMmethod was used with the HSV color space images, the
normal and dead cocoons could be classified with the highest

accuracy (92.82%). In the case of PLS-DA, the discrimination
accuracy was 80% or less for all the color spaces, in contrast
to the other methods. Since PLS-DA is an algorithm suitable
for reducing the variable dimension for data such as spectral
data, the cocoon classification performance with three input
variables was low. For the same reason, since LDA is an
algorithm that is used for classification and dimensionality
reduction at the same time, LDA showed a lower accuracy
than those of k-NN and SVM, which are models that focus
on classification.

Before selecting the structure of the lightweight CNN
model as shown in Table 1, we conducted an investigation by
altering the parameters, as indicated in Table 3. We modified
three parameters: the stride size of the convolution layer,
pooling type, and the presence of dropout. A total of eight
model were compared based on RGB color spaces. Among
these, the CNN model, comprising a convolution layer with
a stride of 1, max pooling and dropout exhibited the highest
performance. Consequently, this model was chosen for the
proposed model. It was confirmed that certain parameters did
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TABLE 3. Discriminant analyses results of lightweight CNN.

not consistently yield better performance, underscoring the
importance of finding parameter suitable for the data.

Discrimination models based on deep learning algorithms
were then developed to determine whether the performance
could be improved compared with that of the existing models.
The results are shown in Table 4. The data were randomly
divided into training (60%), validation (20%), and test (20%)
groups. The training group increased by 16 times using data
augmentation. The model training was set to end when the
loss of the validation group did not improve for more than
50 consecutive iterations, and themodel with the smallest loss
in the validation group was considered the final model.

The discrimination accuracy of the proposed lightweight
CNN model using the Lab images was 94.21% during train-
ing, 96.24% during validation, and 97.66% during the actual
test. The discrimination accuracy of the VGG16 model was
97.03% in the case of the training group, 96.71% for the
validation group, and 95.79% for the test group, when
the Lab images were used. The discrimination accuracy of
the ResNet50 model with the Lab images was 97.03% during
training, 94.84% during validation, and 96.26% during the
actual test. The EfficientNetB0 model yielded a discrimina-
tion accuracy of 97.97% in the case of the training group,
97.18% for the validation group, and 97.2% for the test
group when the Lab images were used. The discrimination
accuracy of the MobileNet model was 96.4% for the training
group, 97.65% for the validation group, and 97.2% for the
test group when the Lab images were used. The accuracy of
the Shuffle Net model was 99.84% for the training group,
89.67% for the validation group and 89.72% for the test
group when YCbcr images were used. The GhostNet model
yielded a discrimination accuracy of 85.29% in the case of
the training group, 84.98% for the validation group, and
94.86% for the test group when the YCbcr images were used.
The discrimination accuracy of the ConvNext model using
the Lab images was 57.12% during training, 59.15% during
validation, and 59.35% during the actual test. Unlike other

models, the ConvNext model showed low performances
because model learning was not progressed properly. As a
result, Lightweight CNNwith Lab color spaces demonstrated
the highest discrimination accuracy.

SVM exhibited the highest performance when the HSV
color space was used, while most CNN models showed high
performances in the case of the Lab color space. Particularly,
ResNet50 showed little deviation for each color space. It was
determined that the ResNet50 model structure included the
color space features. Compared to seven transfer learning
models, it was confirmed that the proposed model showed
high discrimination accuracy in line with previous results.

The lightweight CNN model with the Lab color space
was higher than that of the three deep learning models. The
lightweight CNN model had a simpler layer structure than
other models but yielded the highest performance results.
This is because the cocoon image is simple, and it only needs
to classify two classes. Hence, a simple structure is sufficient
for classification.

The accuracy of the lightweight CNN model was also
higher than that of the existing discrimination algorithms
(k-NN, SVM, LDA, and PLS-DA). The existing algorithms
used three representative values, which were the averages of
the color values of all the pixels in a given image, as the
variables, whereas the deep learning model used all the pixel
values as the variables. It can therefore be concluded that
the classification accuracy of the deep learning model was
higher because it included the color information based on the
positions of the pixels.

Fig. 5 shows the losses for the training and valida-
tion groups over epochs for the lightweight CNN model
and EfficientNetB0, while Fig. 6 shows the confusion
matrix corresponding to these two models. As shown in
Fig. 5(a), the lightweight CNNmodel’s epoch was performed
128 times. The loss of the 78-epoch model was 0.1863 dur-
ing training, 0.1749 during validation, and 0.1348 during
the actual test. For the EfficientNetB0 model, the epoch
was performed 150 times, and the loss of the 100-epoch
model was 0.1319 during training, 0.1368 during validation,
and 0.134 during the actual test, as shown in Fig. 5(b).
The lightweight CNN model’s validation loss steadily
decreased, while EfficientNetB0’s validation loss varied

FIGURE 5. Training and validation set losses: (a) Lightweight CNN model
with Lab color space images and (b) EfficientNetB0 with Lab color space
images.
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TABLE 4. Results of discriminant analyses performed using deep learning algorithms based on color spaces.

significantly between epochs. Therefore, we concluded that
the lightweight CNN model is more stable than Efficient-
NetB0.

Table 5 lists the number of parameters and total train-
ing time for the deep learning model based on Lab color
spaces. Among these, the lightweight CNN model was
trained with the fewest parameters, that is, 1,818,498, fol-
lowed by MobileNet (3,209,026), GhostNet (3,905,856)
and ShuffleNet (3,992,670) models. The VGG16 model
used approximately 76 times more parameters than the
lightweight CNN model. In terms of the total training time,
the lightweight CNN model consumed less time at 492 s.
MobileNet and GhostNet exhibited a feature of long training
time compared with a relatively small number of parameters.
ConvNext model consumed the most time, but discriminant
accuracy was lowest. Despite the small number of trainable

parameters and the short training time, the lightweight CNN
model exhibited the highest discrimination accuracy. There-
fore, we judged that the proposed Lightweight CNN will be
suitable for potential integration into sorting devices.

As shown in the confusion matrix in Fig. 6, both models
performed better for classifying the normal cocoons as nor-
mal (true positive) than that for classifying the dead cocoons
as dead (true negative). The internal shapes of the normal
cocoons as observed in the images were usually similar to
an oval, whereas the dead cocoons exhibited different shapes.
This may be the reason that it was more difficult to classify
them compared with the normal cocoons. In the case of the
lightweight CNN model, 135 of the 138 normal cocoons
and 74 of the 76 dead cocoons were correctly classified
in the test dataset, as shown in Fig. 6(a). EfficientNetB0
correctly classified 135 of the 138 normal cocoons and 73 of
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TABLE 5. Training time and number of parameters of the models.

FIGURE 6. Test set confusion matrices: (a) Lightweight CNN model with
Lab color space images and (b) EfficientNetB0 with Lab color space
images.

the 76 dead cocoons. Hence, the discrimination accuracy
between the two models is approximately equal. However,
with respect to the number of parameters or model stability,
the lightweight CNN is adequate for model training.

To evaluate the robustness of the proposed lightweight
CNN model, we conducted 4-fold cross validation. Random
partitioning into four groups was performed for all data
except the test dataset. Among these groups, three were
employed as the training data and one as the validation data,
with this process repeated four times by alternating the vali-
dation group. The average and standard deviation of accuracy
and loss values were computed. The results are presented
in Table 6. In the case of accuracy, the standard deviation
of 2.51 was observed for the validation dataset, and a small
deviation of 0.27 was observed for the test dataset. Similarly,
the standard deviation of the loss value was less than 0.06 for
all groups. Therefore, we judged that the lightweight CNN
model has robustness with respect to data.

Fig. 7 shows the examples of the classification results
obtained using CNN models on the test dataset. Fig. 7 (a)
depicts the images that were correctly identified as normal
cocoons, and Fig. 7 (b) depicts the images of normal cocoons
that were erroneously identified as dead cocoons. Fig. 7 (c)
comprises the images that were correctly identified as dead
cocoons, and Fig. 7 (d) depicts the images of dead cocoons
incorrectly identified as normal cocoons. In the case of the
cocoons shown in Fig. 7 (b), either their color was not brown,
or the cocoons did not maintain their oval shape. The color

TABLE 6. 4-fold cross-validation results of the proposed lightweight CNN.

FIGURE 7. Classification results using deep learning algorithms: (a) TP
(True Positive), (b) FN (False Negative), (c) TN (True Negative), and (d) FP
(False Positive).

of the cocoons shown in Fig. 7(d) was brown and similar
to that of normal cocoons. In addition, the pupae within
the cocoon maintained an oval shape suggesting that they
were mistakenly identified as normal cocoons. In the case of
most of the misclassified cases, it was difficult to determine
whether the cocoon was normal or dead even with the naked
eye. Given this fact, it would be incorrect to ascribe the errors
only to the models used. Thus, the deep learning models, par-
ticularly the proposed lightweight CNN model, are suitable
for discriminating between normal and dead cocoons.

IV. CONCLUSION
In this study, we developed a discrimination model to classify
normal and dead cocoons using digital images and various
discriminant analysis techniques, including deep learning.
A 100 W halogen light was radiated from the above the
cocoons in a darkroom and a camera was placed under
the cocoons to image them so that the shape of the pupae
within the cocoons could be captured. Next, we checked
whether the differences between the normal and dead cocoons
appeared for each color channel in the RGB, HSV, Lab, and
YCbCr color spaces. All the color channel showed significant
differences except for the R channel of the RGB space,
V channel of the HSV space, and L channel of the Lab space.
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Various discriminant algorithms (k-NN, SVM, LDA, and
PLS-DA) commonly used for classification were employed
to perform discriminant analyses on the normal and dead
cocoons based on the color space. When used with the HSV
color space images, SVM showed the highest discrimination
accuracy of 92.82%. A discrimination model was selected
after comparing among the proposed lightweight CNNmodel
and seven state-of-the-art deep learning models. The selected
model was the lightweight CNN model, which consisted
of six convolutional layers and two fully connected layers.
It showed excellent discriminant accuracy, i.e., 94.21% for
the training group, 96.24% for the validation group, and
97.66% for the test group.

With respect to the misclassified images most of these
images were not easy to discriminate even with the naked
eye. Thus, the accuracy of the model in this case was similar
to that from manual discrimination. It can be concluded that
it is possible to nondestructively classify dead cocoons using
images and deep learning techniques.

Our model for classifying dead cocoons showed similar
high-discrimination performance to that of several previous
state-of-the-art studies However, previous studies were lim-
ited to the evaluation of dead cocoons with external defects,
whereas our model can identify dead cocoons without exter-
nal defects. Therefore, the results of our study have superior
discrimination performance.

A limitation of this study is that the cocoon images were
acquired after removing all the thin threads outside the
cocoon. If the model is trained with the cocoon images where
these threads are not removed, the discrimination accuracy
may decrease. Additionally, the classification model was
developed using images of single cocoons. For cocoons pro-
duced in a rotating shaft, it would bemore effective to develop
a model that can detect multiple dead cocoons from a single
image. For future work, we plan to develop a model that
can detect and discriminate multiple cocoons using a single
image. The results of this study provide a foundation for
the development of automation technology in the sericulture
industry.
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