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ABSTRACT Autonomous vehicles face challenges in ensuring cyber-physical security due to their reliance
on image data from cameras processed by machine learning. These algorithms, however, are vulnerable
to anomalies in the imagery, leading to decreased recognition accuracy and presenting security concerns.
Current machine learning models struggle to predict unexpected vehicular situations, particularly with
unpredictable objects and unexpected anomalies. To combat this, scholars are focusing on active inference,
a method that can adapt models based on human cognition. This paper aims to incorporate active inference
into autonomous vehicle systems. Multiple studies have delved into this approach, showing its potential
to address security gaps in this field. Specifically, these frameworks have proven effective in handling
unforeseen vehicular anomalies.

INDEX TERMS Autonomous vehicles, cyber-physical security, active inference, context awareness,
abnormal scenarios.

I. INTRODUCTION
Conventional manual driving involves steering and employ-
ing the pedals in the vehicle, which can lead to hazardous
actions in complicated traffic conditions and cause many
different types of driving accidents. These human failings
include a lack of expertise, distractibility, and reaction time.
Annually, more than 1.3 million people die in road accidents
around the world, and more than 90 percent of these fatalities
are caused by the behavior of humans. Moreover, many
drivers have poor driving habits, which in turn contributes to
the erratic driving behaviors responsible for the congestion
on the roads and the decreased effectiveness of the system
as a whole. On the other hand, it is anticipated that
autonomous vehicles (AVs) could either entirely minimize
accidents caused by human behaviors/actions or improve
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the effectiveness of roads. Concurrently, the concept of the
‘‘internet of vehicles’’ has increasingly received endorsement
for enhancing the integration of AVs. The internet of vehicles
enables automobiles to communicate a variety of datasets,
including data on sensory inputs, locations, and the vehicles’
perceptions of the surrounding environment [1], [2], [3], [4],
[5], [6].
Making the roadways secure has always been a top priority.

One of the most actively studied areas in the adaptability
of both human-driven vehicles and AVs is finding the best
way to reduce vehicle-related traffic accidents in our modern
world. AVs are required to formulate decisions in scenarios
where various determinants (e.g., weather conditions) are
in a continuous state of transformation [7]. A vehicle
must be able to reliably anticipate the behavior of other
vehicles or objects in order to reduce the risk of collisions.
In the conventional traffic scenario, all vehicles are operated
by humans, who (due to their training and experience)
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can make accurate predictions about the next actions of
the other vehicles/objects around them. All drivers make
instantaneous adjustments to their behavior based on this
assessment, improving traffic flow and safety. In a mixed-
traffic scenario, however, AVs must predict the behavior
of human drivers based on their observations of the road.
Using vehicle-to-vehicle (V2V) and vehicle-to-infrastructure
(V2I) communications, a vehicle can learn about the current
driving conditions of other objects on the road. Also, vehicle-
to-everything (V2X) communication plays a crucial role
in improving the decision-making processes of AVs by
allowing them to exchange information with surrounding
entities, leading to safer and more efficient driving [8].
The importance of V2X communication, specifically V2V
communication, in enhancing the decision-making processes
of AVs highlighted in [9]. The authors proposed a machine
learning (ML)-based steering control approach that leverages
V2X communication to improve autonomous driving in
urban environments. Using V2X data, the proposed model
can anticipate potential hazards and adjust the vehicle’s
trajectory accordingly, ensuring safer navigation through
complex urban scenarios. Substantial investigations have
gone into the communication methods used in vehicular net-
works that allow for secure connections between autonomous
and human-operated vehicles. By communicating with other
vehicles and gathering information about their current driving
situations, an AV may anticipate the behavior of other nearby
objects [10], [11], [12], [13].
The evolution of AVs promises a transformative impact

on transportation. It also presents multifaceted challenges,
particularly in the domain of cyber-physical security. Central
to the operation of these vehicles is their ability to accurately
recognize traffic signs (TSs) and classify objects in their
environment’a function primarily achieved through advanced
ML algorithms. However, the integrity of these algorithms is
paramount. Misinterpretations or malicious interventions can
lead to severe traffic mishaps. While traffic sign recognition
(TSR) is crucial for ensuring that the vehicle adheres to
traffic rules, object classification (OC) plays a vital role in
distinguishing between a pedestrian, another vehicle, or any
other potential obstacle. However, as with any sophisticated
technology, vulnerabilities exist. Threat actors can exploit
these vulnerabilities to deceive autonomous driving sys-
tems, possibly leading to catastrophic consequences. Hence,
a comprehensive understanding of cyber-physical security,
especially focused on TSR and OC algorithms, is essential
to foster the safe integration of AVs into our transportation
matrix [14], [15], [16], [17], [18].

In light of these vulnerabilities, the field of autonomous
driving research has heavily emphasized refining these
algorithms. Deceptive adversarial attacks, where small per-
turbations can mislead deep learning models, are of particular
concern in the context of TSR and OC [19]. For instance,
an attacker might subtly modify a TS’s appearance, causing
a TSR system to misinterpret it. Similarly, alterations to the
surrounding environment might result in the OC algorithm

misidentifying an object. Such misleading classifications
underscore the importance of constantly improving the
robustness of these systems. In addition to the algorithmic
challenges, these issues clearly showed the need for col-
lecting diverse and comprehensive datasets. These datasets
should encapsulate various real-world scenarios that an AV
might encounter, ensuring the training process accounts
for a broad spectrum of challenges, from adverse weather
conditions to vandalized TSs [20], [21]. Given the dynamic
and unpredictable nature of road scenarios, the integrity and
expansiveness of training data become paramount in shaping
the robustness of these algorithms, which can be explained
in the following. Feature-extraction-based ML techniques
(particularly supervised learning) depend substantially on
training data. It is highly improbable that all feasible
scenarios will be present in the training data. Therefore, there
must be mechanisms in place in an AV’s control system based
on an algorithm to mitigate object misclassification and block
out noise (e.g., bright and direct sunlight to vision sensors).
Any misrecognition of objects by the ML algorithm used for
image recognition in AVs is a potential safety risk. A failure
in recognition or classification has occurred if, say, the STOP
sign is misinterpreted or a pedestrian is mistaken for a tiny
animal. Weather conditions, as well as direct sunlight on the
camera sensor or obstructing a portion of the object, can all
lead to these issues [22]. Understanding TSs located on the
roadway, as well as all other traffic indicators that provide
navigation instructions (e.g., traffic lights, lane markings,
ormarkers) is known as TSR. This entails detecting numerous
signs from camera sensors depending on their geometry,
texts, logos, and colors. A front camera can take TSs, and TSR
enables AVs to fully comprehend road rules and laws for the
security of either vehicles or pedestrians. TSR simply needs
ML technology and a camera, whereas the Advanced Driving
Assistant System (ADAS) contains an additional sensor
(e.g., ultrasonic or radar device). For acceptable performance
and real-time modeling of this recognition system, it is
indispensable to install advanced hardware in the vehicle
system [23]. Moreover, Unsupervised learning algorithms
for TSR can have some challenges including data labeling,
a lack of ground truth, interpretability, and scalability. These
algorithms require large amounts of unlabeled data. They
do not have access to explicit ground truth labels, making
it challenging to evaluate their accuracy and reliability,
and require significant computational resources and time
for training, posing challenges in real-time applications.
AVs are designed to perceive their surroundings analo-
gous to the human visual system’s processing capabilities,
thus facilitating cognitive architectures capable of learning,
recalling, and executing actions. This will enable object
detection, cognition, and scene recognition. AVs must be
able to recognize their surroundings, analyze 3D world
representations, and distinguish themotion of objects, people,
and other vehicles. Furthermore, they need to cope with
human emotional responses in order to be similar to human
driving. These vehicles attempt to process data/information
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captured by cameras and apply deep learning algorithms for
route planning, collision detection, sophisticated decision-
making, and problem-solving.

The concept of an individual’s driving proficiency remains
multifaceted and hinges upon the formulation of indicators
representing driving behavior and their subsequent analyt-
ical methodologies. Such proficiency is shaped by factors
including, but not limited to, the driver’s style, skill set,
and a combination of their physical and cognitive attributes.
Due to the inherently stochastic and varied nature of a
driver’s attributes, coupled with the intricate dynamics of
traffic scenarios, the characterization of driving competence
takes on a random and fluid dimension. As a consequence,
arriving at a holistic assessment of driving capability through
a single metric presents significant challenges [24], [25],
[26]. Although these methods have demonstrated a large
amount of potential for modeling human activities, they have
several significant drawbacks when it comes to representing
cognitive functions and applying them in situations where
there are many possibilities. These limitations can be applied
particularly to AVs because drivers’ responses to failures are
significantly affected by their own internal states. The most
popular method for applying models of human perceptions
and behaviors to the domain of autonomous driving is
active inference (ActInf) from the disciplines of cognitive
science and neuroscience, which has been used by scholars
to address these gaps. Considering generative models of the
environment, ActInf can be highlighted as self-evidencing,
in which case both perception and action are interpreted
as maximization of evidence for a Bayesian model. More
information related to this concept will be provided in
the upcoming section based on the principle, comparison
with other algorithms, and related works [27], [28], [29],
[30]. Because of the vulnerability of these algorithms, this
paper proposes a statistical method called the ActInf model
based on partial observation, in which human behaviors
and different conditions in the vehicle’s environment can
be considered. This method is based on brain neurons
and considers partial observations in comparison to full
observations in the environment. The following sections
present the TSR and OC algorithms, their challenges and
applicability in different conditions, the applicability of
the ActInf model in autonomous driving, and proposed
driving scenarios withML algorithms’ weaknesses. Themain
contributions of this review paper can be summarized as
follows:

• The literature critically examines current security con-
cerns within AVs, specifically addressing the incomplete
environmental observations and diverse behavioral pat-
terns of road objects.

• A pivotal analysis of TSR and OC algorithms is offered,
elucidating their efficacy and precision within entirely
observable frameworks.

• An in-depth assessment of ActInf models, anchored
in a partially observable Markov decision process

(POMDP), is delineated. This examination contrasts
various environmental observation methods and Context
Awareness (CAW) within AV-centric applications, fur-
ther emphasizing the superior attributes of this model
relative to conventional ML algorithms.

• Some abnormal scenarios proposed in the area of
autonomous navigation where prevailingML algorithms
falter, yielding predictions with diminished accuracy
regarding road-bound entities.

The rest of this paper is organized as follows: Section II
provides information regarding the ActInf background and
architecture of AVs considering the CAW. Section III outlines
POMDP principles and applicability andmakes a comparison
with other decision-making processes. Furthermore, it dis-
cusses collision avoidance in autonomous driving based on
the ActInf model. Section IV represents the applicability
of the ActInf model with a connection between the ML
algorithms and this model to provide a clear understanding.
Reviews of the literature on AV applications of the ActInf
model are presented in this section. Abnormal driving
scenarios with ML algorithms’ disabilities are proposed and
discussed in Section V. A discussion on different parts of
the scenario considering the risk assessment analysis and the
authors’ perspectives is mentioned in Section VI. Finally, this
paper is concluded in Section VII.

II. ACTIVE INFERENCE BACKGROUND
The ActInf model presents a unique mathematical model
for representing cognition in all its perceptual, cognitive,
and inferential (i.e., decision-making) forms. The framework
views these psychological/cognitive procedures and their
interconnections as complementary modes of inference [31],
[32], [33], [34]. Within this framework, agents are posited
to possess a generative model of their environment, and
perception and learning occur through variational inference
processes applied to this model. These processes aim to
minimize variational free energy (VFE), an information-
theoretic measure. Furthermore, the ActInf method suggests
that action selection can be conceptualized as an inference
process, facilitated by the same mechanisms involved in
perceptual inference and learning. The implementation of this
framework demonstrates a degree of biological plausibility
and finds support in substantial empirical evidence. Decisions
are based on ‘‘active’’ inferences, where the agent predicts
which behaviors will result in the most desirable sensory
information. Agents are able to infer the actions to take that
will most effectively minimize ambiguities or uncertainties
and promote knowledge acquisition. Because of this, it is
preferable to choose actions that achieve a balance between
maximizing reward and maximizing information acquisition
(i.e., increasing situational awareness). ActInf operates under
the assumption that the generativemodel inherently possesses
a built-in bias towards states or observations that hold
intrinsic value [28], [35]. In recent years, the fields of
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psychology, neurophysiology, ML, and even transportation
science have all benefited from this concept.

Recent research has showcased the applicability of ActInf
in complex tasks and environments with high dimensionality.
On the other hand, reinforcement learning (RL), which
focuses on adaptive action selection, traditionally seeks to
maximize the expected cumulative rewards. However, the
framework of control as inference has recently reconcep-
tualized RL within the framework of variational inference.
This reformulation generalizes and contextualizes prior work
on stochastic optimal control, highlighting the inherent
relationship between control and inference. Instead of
maximizing rewards, agents are now required to infer actions
that lead to optimal trajectories. This paradigm shift enables
the utilization of powerful inference algorithms in RL while
naturally promoting exploratory behavior [36], [37], [38].

AVs rely on their situational awareness, or CAW, to have
good performance in their internal algorithms. The terms
‘‘active’’ and ‘‘inference’’ serve as the basis for the ActInf
concept. The former part of this concept expresses the
idea that organisms actively interact with their surroundings
to learn about them, find ‘‘preferred’’ observations, and
prevent ‘‘non-preferred’’ perceptions. The latter term refers
to Bayesian inference, a statistical method that explains how
best to adjust one’s prior beliefs in light of newly acquired
evidence (i.e., sensory perception).

As mentioned, an increase in the usage of the ActInf
concept as a viable method for representing neurocognitive
processes has been observed in recent years, especially in the
context of its latest developments as a POMDP model. The
adaptability of this approach makes it ideal for modeling a
wide variety of cognitive tasks, and it can also be used to
imitate the neuronal responses to those tasks in light of the
theory underlying those responses. Due to the assumption
that states can be determined from partial observations
only probabilistically, POMDP features are a state-based
extension of MDP frameworks for uncertain environments.
In this method, states are used to indicate patterns or clusters
of occurrences, and system behaviors are represented as
mappings (e.g., policies) from possible beliefs to accessible
actions. These frameworks are generally constructed for
specific tasks within a particular context, and the policies
that arise are maximized with consideration of the expected
outcome. In the real world, though, the agent will certainly
be confronted with a variety of tasks in environments with
remarkably similar but never identical characteristics [39].

An ActInf approach has other internal processing param-
eters in addition to the POMDP method that should be
considered in the model. These concepts can be understood
based on perception, learning, action selection, planning, and
decision-making (VFE is one of the parameters). Its goal is to
change the intractable summation needed for model inversion
into a mathematically tractable optimization model that can
be considered a posterior distribution. Another parameter
is the ‘‘expected free energy’’ (EFE) which determines the
difference between the probability of desired states and the

probability of predicted states [40]. In the ActInf framework,
VFE serves as a core quantity. It represents a bound on the
surprise or improbability of sensory data, given a particular
model or belief about the world, and EFE is central to
ActInf as well, guiding decision-making by considering
future outcomes and the uncertainty that goes along with
them. Nevertheless, POMDPs do not inherently employ VFE
or EFE but instead utilize belief states and reward structures
to guide decisions [41].

It is preferable to use accurate inferences when calculating
posterior distributions for hidden states (variables). Although
effective for a discrete model, accurate inference procedures
are intractable for everything except straightforward models.
It is necessary to use methods of inference that are
approximate in the majority of practical scenarios. One
such approximate inference technique is called ‘‘variational
message passing’’. With the aid of this method, the calculus
of variations can be put to use. Many problems can be seen
as optimization problems that can be solved by trying out
different input functions until one is found that maximizes
or minimizes the goal. Approximate solutions can be found
using variational techniques, despite the fact that these
methods are not inherently approximate.

To recapitulate, the goal of perception and learning is to
minimize VFE by determining appropriate posterior beliefs
in response to each new observation. Obtaining the best
estimate on each attempt/trial is not the only way to minimize
VFE. There is noise in the sensory information as an
input, so identifying the best posterior for each trial can
be achieved with overfitting. At the same time, this issue
will not happen in the VFE minimization procedure. The
purposes of theVFEminimization process can be divided into
two categories, namely ‘‘complexity’’ and ‘‘accuracy.’’ The
term ‘‘complexity’’ describes the degree to which a model’s
beliefs must vary in response to new sensory data while
retaining a high degree of precision. The term ‘‘accuracy’’
reflects how effectively those beliefs can predict that sensory
information [40]. Choosing actions that will lead to future
observations that minimize VFE is the goal of planning and
action selection. The issue is, however, that it is hard to
identify what will happen because the future is unknown.
As a result, decisions need to be made to get the lowest
possible EFE. Importantly, EFE assigns a score based on
the expected cost (a lower score denotes a higher reward)
minus the expected acquisition of new information from a
certain action. Thus, decisions attempt to remove uncertainty
and maximize rewards for EFE minimization. When beliefs
regarding states are ambiguous or uncertain, actions are
more probable to be taken toward finding information. When
confidence in beliefs about states is strong, on the other hand,
determined actions seek the reward. This means that the agent
knows exactly what to do to achieve the goals and is free from
any remaining ambiguity/uncertainty [40].

As aforementioned, there are uncertainties and unknown
situations on the roads that need to be managed by AVs.
A POMDP can provide a better representation of the
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uncertainties than other methods, considering the possible
observations. The upcoming sections present a mathematical
framework for a POMDP to model partial observations based
on uncertainties in the surrounding environment and the
advantages of this approach, along with an ActInf-based
POMDP model for collision avoidance in AVs. Hence, it is
necessary to mention the AV system architecture, including
motion planning, decision-making, and other components,
in the following section to get familiar with different
AVs’ concepts regarding their environment. However, the
most important part of the ActInf model is CAW which
distinguishes it from other concepts, which can be described
in the following section.

A. SYSTEM ARCHITECTURE OF AUTONOMOUS VEHICLES
System architectures of AVs can vary based on a wide range
of circumstances, such as the presence of other vehicles on the
road and the number of pedestrians. Thus, a generic system
architecture of AVs can be depicted in Fig. 1 to help with
comprehension of the framework within a fully autonomous
system. It mainly consists of route planning, perception,

FIGURE 1. A system architecture of AVs.

localization, CAW, and trajectory control. As mentioned,
because of the importance of CAW, this section explains this
term. Other parts of the architecture are summarized in the
figure and can be found in previous research [42], [43].

1) CONTEXT AWARENESS
Real-world road traffic presents a wide range of scenarios,
necessitating robust situational awareness and analytic meth-
ods. The overall context, from the road conditions to the
driving situations inside or outside the vehicle, is part of

this situational awareness [44], [45]. In order to enhance
the situational awareness of ADAS, the acquired context
information is transmitted back to the vehicle. An AV’s
context is the physical location in which it is used to
perform its specified tasks. There are many different factors
that contribute to context. These items are referred to as
elements of context (EOC). In its operational context, an AV
operates as an active agent. Based on observations, it can
be referred to as the primary EOC, while the others are
classified as the secondary EOC. An EOC can be further
classified as active, moderately active, or inactive according
to its level of interaction with the surrounding environment.
Each EOC gives what is called contextual information (CXI),
which describes information in the context of its current
operation. These data represent a wide range of prospective
insights about the characteristics, states, and attitudes of
EOCs [5], [45], [46], [47], [48]. Therefore, instead of
assuming the worst scenario, as was the case with previous
safety measures, CAW-assisted safety measures consider
the alternative possible significant cases of the context to
guarantee the system’s secure behavior. This avoids the
need for AVs to undertake excessively cautious maneuvers
in situations where only moderate actions are essential, elim-
inating unnecessary constraints on the AV’s capabilities and
boosting its performance and efficiency. The context can be
logically categorized into relevant and irrelevant classes. This
removes the part of the context that does not affect the AV’s
functionality. There is still a vast context space with many
possible EOCs that are significant. Various characteristics,
including environment, traffic actors (other vehicles and
people), climate, and time of day, are used to classify EOCs
in this domain in order to minimize the complexity that
goes along with them. A conceptual classification of context
focused on safety-relevant components is shown in Fig. 2.
The CXI without consideration of safety is ignored since
not all information concerning EOCs is crucial to the AV’s
security [46], [49], [50].

FIGURE 2. Classification of context considering the safety-relevant
components.

III. PARTIALLY OBSERVABLE MARKOV DECISION
PROCESS
According to the Markov assumption, which asserts that the
future state of the system based on its current condition is
independent of any past occurrences, Markov models (MM)
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present the development of randomly variable architectures.
MMs can be divided into two classes, namely, autonomous
systems (Markov chains and hidden Markov models,
[HMMs]) and controlled systems (MDPs and POMDPs). The
states of a system modeled by a Markov chain are a series
of random variables in which each state is independent of
the others. Both observable and hidden states exist in an
HMM. However, neither the hidden nor the observed states
map onto the observable symbols in a one-to-one manner.
As a result, the generated observation symbol can no longer
be used as a reliable indicator of the model’s hidden state.
The MDP is a dynamic system that can move between any
two states. At each step, the decision-maker must choose
between specific options. This decision results in a gain
immediately and another gain subsequently since it affects
the next move’s transition probabilities. The challenge for
the decision-maker is to find a sequence of actions that will
result in the greatest possible gain. Ultimately, a POMDP
is an MDP in which the agent has no direct access to the
hidden state variables. Since the agent cannot observe through
the underlying states, the concept of a ‘‘belief state’’ is
applicable. The belief state presents an option for dealingwith
the model’s intrinsic uncertainty. To recap, Markov chains
primarily emphasize the transitions between states. On the
other hand, MDPs incorporate elements of actions and their
corresponding rewards. POMDPs introduce an additional
dimension of complexity by accounting for uncertainties
in observations. Meanwhile, HMMs are centered around
extracting concealed states from data that can be observed.
Table 1 summarizes the various models’ distinctions with
further information regarding different models [51].

In autonomous driving, the ability to make consistent and
robust decisions is vital despite the presence of uncertainties.
To be more specific, an AV has to determine how to behave
tactically in order to complete its tasks, even though it can
be affected by a variety of failures and perturbations that
have an effect on its sensors and perception system as well
as by the fact that it does not have enough information or
perception regarding itself or its surroundings. The errors
and the insufficient information lead to the effects of taking
actions to be non-deterministic from the viewpoint of the AV.
Additionally, the errors and the lack of information allow the
AV’s state to be only partially observable, which shows that
the AV never knows its correct state [52], [53].
Numerous societal and biological challenges can be

viewed as decisions to be made in sequence while facing
some levels of uncertainty. Because the observable action
outcomes reveal only a portion of the environment’s state,
they can be viewed as extensions of the MDP that refer to
the POMDP framework. This mathematical approach can be
used to express an extensive variety of sequential decision-
making issues. For example, agents take actions in an MDP
that change the state of the system in order to maximize the
rewards it receives by going through various states. This is
considerably more challenging in a POMDP since the agent
can gain information about the state from noisy observations.

A tuple (S,A,T , r,O,Z , γ ) can be specified as a POMDP,
where S and A represent all possible states and actions,
respectively. A probability of moving to state s′ can be
recorded after an action a is performed in state s with the
help of the transition model T (s′|s, a). Whenever an action
a is taken, the reward for transferring from state s to state
s′ is defined by the reward function r(s, a, s′). Z (o|s) is the
probability density of getting observation o in state s, where
O and Z are the observation space and themodel, respectively.
Furthermore, the rate (at which future rewards are discounted)
is controlled by γ ∈ [0, 1].

A. MATHEMATICAL MODELING OF MDP AND POMDP
The following tuple provides the definition of an MDP [54]:

(S,A,T , r, γ ),

where

• S: Finite sets of states
• A: Finite sets of actions
• T : Probability function for state transitions with a state
s ∈ S and action a ∈ A in which T (s, a, s′) = Pr(s′|s, a)

• r : Reward function, r(s, a), for taking an action a while
in state s

• γ : Discount factor, [0, 1]

The state transition probability function determines the
agent’s future state (s′) after taking action in the initial state
(s). The agent also gets a reward in accordance with the state
and the action taken in that state. TheMarkov property can be
followed by the environment in order to employ this decision-
making method. This model can be written as follows:

Pr(st+1|st , at , st−1, at−1, . . .) = Pr(st+1|st , at ) (1)

According to this approach, future states are determined
solely by the current state. A policy (π) provides the mapping
between states and actions. It is responsible for the actual
generation of actions. This mapping can be specified by a
stochastic or deterministic function, in which the stochastic
policy makes multiple actions with a certain probability
distribution for the agent to choose from, and the latter makes
a single action for a given state. An MDP aims to find a
strategy that yields the greatest predicted return over time.
A distinction is considered between problems with a finite
horizon, in which the agent will stop after time steps of
K . Also, rK (sK ) depicts the final reward at K . In problems
with an infinite horizon, the agent continues taking action
and getting rewarded endlessly. For finite and infinite time
horizons, Eqs. (2) and (3), respectively, can be written for the
expected discounted summation of rewards:

Rπ,finite = Eπ ·

(
K−1∑
t=0

γ trt (st , at ) + rK (sK )

)
(2)

Rπ,infinite = Eπ ·

(
∞∑
t=0

γ tr(st , at )

)
(3)
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TABLE 1. A comparison of different Markov models based on their features.

The optimal policy (π∗) can be expressed as Eq. (4),
showing the greatest possible discounted reward over time.
A value function at state V (s), as defined by the policy,
is depicted in Eq. (5). By computing the expected cumulative
reward, this function illustrates how favorable the given state
is while the policy is being followed. The optimal policy can
be attained by considering the optimal value function. The
first step in policy analysis is determining the policy’s value
function. The next step is to apply Eq. (6) to all possible
states and to the generated value function to enhance the
policy further. These two processes are repeated frequently
through policy iterations unless no further improvements can
be achieved.

π∗
= argmax

π
Rπ (4)

V π (s) = r(s, a) + γ
∑
s′∈S

T (s, a, s′)V π (s′) (5)

πk+1(s) = argmax
a

(
r(s, a) + γ

∑
s′∈S

T (s, a, s′)V π (s′)

)
(6)

However, the environment may have too many chaotic
noisy characteristics (e.g., GPS signal) to detect an agent’s
location. Hence, the agent may never be confident of the
accurate state of the environment at time t , (st ). Uncertainties
can be modeled by observations, observation probabilities,
and beliefs, and a POMDP can be used to address these
parameters. An extensive tuple as, (S,A,T , r,O,Z , γ ), can
be determined for a POMDP. The collection of all possible
observations that an agent can take in is denoted by the O as
an observation space. The probability of a given observation
Z determines the occurrence of the uncertainty of observing
a specific observation o when taking action. In addition to
all information above regarding the MDP, the agent receives
an observation simultaneously in which o ∈ O. Actions
a and observations o at time t can be considered as a

sequence of events represented by a set of action-observation
combinations as follows [54]:

ht = set of (action, observation)

= {(a0, o1), . . . , (at−3, ot−2), (at−2, ot−1), (at−1, ot )}

The agent must keep track of a probability distribution
over all possible states at any given time because it has no
idea what state it is currently in. The belief state (b) denotes
this particular probability distribution in which if the agent
is in the state, the probability is b(s). Furthermore, at time
step t = 0, the initial belief is represented by b0. The belief
space B is the space represented by all possible belief states.
One can depend on either historical information or beliefs
while making a decision in light of uncertainties. Different
strategies for belief updating are applicable for either discrete
or continuous state spaces. Here, an example of a discrete
state filter can be stated using Bayes’ rule as Eq. (7):

bt+1(s′) = bt+1(s′|b, a, o) = Pr(s′|b, a, o)

=
Pr(o|s′, a, b) · Pr(s′|b, a)

Pr(o|b, a)

=
O(s′, a, o)

∑
s∈S T (s, a, s

′)bt (s)
Pr(o|b, a)

(7)

The optimal value function of a POMDP for a given belief
state b can be written as Eq. (8):

V ∗(b) = max
a∈A

(∑
s∈S

r(s, a)b(s)

+ γ
∑
o∈O

Pr(o|b, a)V ∗(bt+1(s′|b, a, o))

)
(8)

The optimum policy, denoted by π∗, is obtained by solving
the POMDP so that it takes the best possible actions
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considering the current belief. For POMDPs, solutions can be
classified into two groups, namely, accurate and approximate
solutions. In this section, the value iteration method as an
accurate solution will be discussed. This approach aims to
find an optimal policy in a POMDP based on a belief state
so that the value function maximizes the value for all belief
states. The optimal policy can be calculated by maximizing
Eq. (9) for all belief states.

π∗(b) = argmax
a

(∑
s∈S

r(s, a)b(s)

+ γ
∑
o∈O

Pr(o|b, a)V ∗(bt+1(s′|b, a, o))

)
(9)

Once the largest error is under a user-defined threshold (ψ)
based on Eq. (8), the iterative process of calculating the value
function for time step t + 1 stops (i.e., |V ∗

t (b) − V ∗

t+1(b)| <
ψ) [54].

B. WHEN ARE POMDP MODELS APPLICABLE?
Whenever a decision maker lacks all relevant information
about the current status of the system, POMDPs provide an
influential framework for addressing optimization problems
based on sequential decision-making processes. Recognizing
the circumstances that require POMDPs is a complicated
step. Some criteria for what makes a problem favorable for
modeling as a POMDP can be regarded by considering the
following aspects [51]:

• Decision makers have limited awareness (observation)
of the system’s real conditions. In contrast to the
perfectly observable scenario, making the optimal
planning decision is more challenging when only partial
information about the system state is available. AnMDP
becomes a POMDP when the state is ambiguous and
there are uncertainties.

• Irregularity is introduced into the dynamics of the
system by means of inherent variability and/or control
unpredictability. It is assumed that the transition proba-
bility to a state at time t + 1 is independent of anything
other than the current status of the system (state) and
the action taken at time t . The success of the results
of management operations is expected to be uncertain
because of the probabilistic nature of the population
structures. The mechanism of the transition between
states conforms to the Markov property, provided
that a suitable time step is used and the relevant
information is included within the description of each
state.

• It is possible to classify the system into different states,
and no single decision or action is appropriate for
every possible state. For endangered species, a nat-
ural description of system states might be provided
by the expected upper and lower population density
estimations under various environmental situations and
hazards.

C. ACTINF-BASED POMDP MODEL FOR COLLISION
AVOIDANCE IN AVS
A decision-making process in partially observable scenarios
can be defined using an ActInf-based POMDP model.
Given that the brain must interpret the actual state of the
world from noisy or chaotic sensory information, incomplete
observability is to be expected. The key concepts of theActInf
model, including states, actions, preferences, free energy
concepts, variational inference, and a POMDP procedure, can
be presented as a representation of human decision-making.
The POMDP model (S,A,T , r,O,Z , γ ) can be described in
terms of the model for collision avoidance as follows [54]:

• State (S): A tuple including the position, velocity, and
angle of the vehicle can be represented by (xv, yv), Vv,
and θv, respectively. Based on the research, there are
different types of objects that need to be considered.
Hence, ‘‘o’’ can denote different objects (e.g., pedes-
trians, vehicles, animals, traffic obstacles). In this case,
(xo, yo), Vo, and go can show the position, velocity,
and current goal of objects, respectively. Furthermore,
updating of beliefs for every time step can be denoted by
t . A specific location of an object within the environment
is known as a goal. Because the purpose of the objects
is to achieve the goals, the agent in the POMDP model
needs to be able to anticipate the objects’ movements.
On the other hand, the goal is partially observable.
Hence, it is part of the belief (there is no goal for
stationary objects, e.g., traffic barriers and signs). In this
way, a state space can be mapped onto a set as follows:

S = {s|(xv, yv,Vv, θv, xo, yo,Vo, go, t)}

S = {s|(vehicle position, vehicle velocity, vehicle

angle/orientation, object position, object velocity,

object goal, time step)}

• Action, (A): The action will affect the vehicle’s velocity
by a fixed value. This value will serve as an acceleration
that can be negative, zero, or positive. Thus, three actions
in the action space can be expressed as the following set:

A = {accelerate (positive value), stop (zero),

decelerate (negative value)}

• Transition probability function, (T ): Based on their
predetermined application, transitions of states can be
represented by simple and complex motion models
where Tijk = P(sk |si, aj) represents the probability of
transitioning from state si to state sk after taking the
action aj. Eqs. (10) and (11) determine the next position
(x ′) and updated velocity (v′), respectively, based on
a simple model, where 1t is the sample time for this
transition and acc represents the acceleration of the
vehicle.

x ′
= x − v1t −

(acc)1t2

2
(10)

v′ = v+ (acc)1t (11)
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• Reward function, r(s, a): The current environmental
circumstances will determine whether the reward model
returns a positive or negative reward. Generally, the
following rewards can be mentioned in autonomous
driving:
- If objects (e.g., pedestrians, vehicles, or animals) get
near the target vehicle, it will receive a negative reward.
In this case, a distance based on the radius of a circle
with the target vehicle in the center can be considered.
- Accelerating and decelerating too quickly can lead to
a negative reward that prohibits erratic driving.
- Based on the current velocity and maximum velocity,
a negative reward of cp = (vcurrent −vmax)/vmax is given
to the vehicle as a penalty to encourage smooth/cautious
driving.
- Finally, when the vehicle gets closer to its goal, it will
be positively rewarded. If the vehicle comes within a
specific range of the goal, the reward will be provided.

• Observation, (O): Contains the position, orientation,
and velocity of the target/ego vehicle as well as the
positions of objects as O = {o|(xv, yv,Vv, θv, xo, yo)}.

• Observation probability function, Z (s′, a, o): After an
action is taken, this function will return the possibility to
observe once, resulting in the next state (s′). It will assess
noisy sensor information and the uncertain motions of
objects.

• Discount factor, (γ ): A low γ indicates that the agent
prioritizes immediate rewards over those that will be
received in the future. If there is a large γ , it will be
favored for the future reward.

• Variational Inference: It is a method used to approx-
imate complex probability distributions with more
tractable ones. In the context of autonomous driving,
it can help in approximating the true state of the
environment (e.g., the positions and intentions of other
vehicles) based on sensor observations. The encoder
in a variational autoencoder uses this method to
make inferences from the input data and generates an
approximate posterior. This can be particularly useful
in predicting the possible actions of nearby vehicles or
pedestrians, aiding in decision-making.

• Preferences: They can be formally introduced as a
part of the generative model in active inference. If s
represents states and o represents observations, then
preferences can be encoded in the likelihood P(o|s).
For collision avoidance, the likelihood of observing a
collision given a state that leads to a collision would
be low, indicating a non-preferred state. Conversely,
states that lead to safe trajectories would be associated
with high likelihoods, reflecting preferred outcomes.
They are not static and can dynamically evolve based
on the vehicle’s experiences, changing environmental
conditions, or updated objectives. For instance, in con-
gested traffic scenarios, the preference might shift
from reaching the destination quickly to ensuring safe
maneuvering among closely packed vehicles [30], [55].

• Free Energy Principle: The principle posits that
any adaptive system (similar to an AV) minimizes a
certain quantity known as VFE to maintain stability
and adapt to its environment. The vehicle can reduce
the discrepancy between its predictions (based on the
approximated posterior) and the real-world observations
by continually minimizing the free energy. This allows
for better decision-making and, safer driving practices.
[56].

• Free Energy Minimization, (F): To minimize EFE,
Eq. (12) can be written:

F =

∑
s

P(s|o)log
P(s|o)
Q(s)

(12)

where P(s|o) is the true posterior and Q(s) is the
approximated posterior distribution over states given
observations, which can be obtained through variational
inference. The goal is to achieve better and safer
predictions, especially in scenarios such as collision
avoidance.

• Policy, (π ): The optimal policy, π∗, is derived by
minimizing the EFE over a series of actions. This can
be represented as Eq. (13):

π∗
= argminπF (13)

Incorporating the principles of ActInf into the POMDP
framework can enhance decision-making in complex envi-
ronments. This integration uses a generative model to
infer hidden environmental states based on observations.
Preferences, representing desired outcomes, are embedded
within the POMDP’s reward function. Variational inference
is applied to approximate posterior beliefs about hidden
states, especially when direct inference is computationally
challenging. Actions are selected to minimize EFE, which
represents a balance between maximizing expected rewards
(preferences) and reducing uncertainty about the environ-
ment. This enriched approach to decision-making encourages
agents to act adaptively and robustly in uncertain scenarios,
which is vital for autonomous driving applications.

IV. ACTIVE INFERENCE, CONTEXT AWARENESS AND
OTHER FULL OBSERVABLE MODELS IN AUTONOMOUS
VEHICLES
This section delineates the transition from prior sections,
underscoring the relevance of the ActInf model in scenarios
where ML techniques (e.g., TSR and OC) falter in their
precision in predicting TSs or objects in the AV’s area. Fig. 3
offers an expository blueprint of the proffered TSR and OC
algorithmic structure, particularly when they struggle with
accurate predictions. The ActInf model augments prediction
precision by leveraging context-awareness of anomalous
situations. Contemplating the myriad TSs and roadway
objects susceptible to deliberate or accidental disruptions
(e.g., digital intrusions, signage defacement, extreme weather
conditions, lighting variations), these ML models, although
aspiring for optimal prediction, often yield erroneous or

136714 VOLUME 11, 2023



A. Zaboli et al.: Survey on Cyber-Physical Security of AVs Using a Context Awareness Method

imprecise outputs. As elucidated in Task 1, enhancing
prediction accuracy is feasible by training diverse TS and
object classifications, factoring in image reconfiguration and
segmentation techniques. Nonetheless, when these methods
confront challenges such as cyberattacks or total object
obstructions, their efficacy diminishes. Consequently, the
ActInf model, drawing from contextual data and auxiliary
inputs (e.g., V2X metrics such as proximate vehicle speed,
geolocation, and navigational insights), as delineated in Task
2, bolsters prediction precision. Our model incorporates these
inputs and refines predictions by iteratively updating beliefs
through the ActInf’s internal computational mechanism.

In the area of autonomous driving applications, ideal vehic-
ular routing strategies can be formulated through standard
optimization methodologies, especially when uncertainties
within the transportation system are addressed. However, the
potential shortcomings of these methodologies, particularly
in efficiently navigating system dynamics for instantaneous
decision-making, may limit their practical utility. Given the
extended duration these strategies require to derive solutions,
their adaptability to swift alterations in system dynamics is
compromised. Consequently, the challenges of instantaneous
computational requirements and the navigation of environ-
mental ambiguities emerge as significant impediments to
decision-making and routing optimization. Moreover, while
a majority of ML techniques offer complete observability,
AVs might only partially observe future scenarios due to
unpredictable environmental variables [57], [58], [59]. This
section also references various scholarly studies, highlighting
existing lacunae related to ML strategies and the advantages
conferred by ActInf models.

In terms of the enhancement of the prediction accuracy by
the ActInf method, consider TSR process using conventional
ML models. If there is an abnormality (e.g., putting sticker,
painting, occluded by snow in winter) on a TS, the ML
model cannot recognize this sign or recognize it with a
low prediction accuracy. Therefore, the Av can make a
decision related to the recognized TS with a low probability
which is a wrong action. However, the ActInf can enrich
the prediction accuracy in TSR process, specifically in
abnormal scenarios to make a correct prediction with an
accurate action. This can happen by gaining additional
information (e.g., GPS/navigation data, speed of nearby
vehicles) from environment which can be considered as
partial observations. Liu et al. [60] developed a novel RL
approach to managing the route of vehicles driving in
emergency scenarios in light of significant challenges to
the timely dispatch of vehicle repositioning. Tang et al. [61]
proposed an RL method for resolving the online routing
challenges facing fully-automated electric taxi fleets. A new
RL technique was devised by Koh et al. [62] to address the
issue of real-time vehicle navigation. When faced with the
challenge of improving an existing taxi dispatching service,
Mao et al. [63] developed a novel RL approach. The RL
framework is one example; it is involved with finding the best
policy in situations where the MDP method is insufficient.

Therefore, the RL agent will adjust the control strategy
for the transport network through direct communication
with the system itself, rather than relying on any prior
knowledge of the model. Al-Abbasi et al. introduced the
distributed model-free pool (DeepPool) [64], which used the
Q-learning method to learn optimal allocation approaches
through observation of the environment. Due to the complex
metropolitan context and unpredictable social occurrences
(e.g., taxi drivers), Guo et al. [65] focused on building a
real-time routing system to optimize the applicability of
automobile service providers. They introduced an RL model
that integrates a dynamic attention mechanism and a deep
neural network (DNN) to address the problem of uncertainty
in sensor data and the sophistication of interactions between
vehicles and other road users. To the best of our knowledge,
academic research on the utilization of the RL approach
to deal with the dynamics and uncertainty concerns in
AVs is quite rare. Methods used in RL typically rely on
having a full observation, while future states necessitate some
partial events. In order to formulate the partially observable
ambiguity and dynamics, a POMDP model can be integrated
into an ActInf model to cover the partial observations. The
remaining parts show the previous research on ActInf models
in AVs and their potential challenges.

Wei et al. [27] suggested an ActInf model (based on
a POMDP model) integrated by visual looming as a new
model of driving behavior. They considered the braking
reaction scenarios in AVs to predict the AV’s behavior.
When compared with other models, this one is preferable
since it evaluates cognitive patterns explicitly and can be
easily scaled to represent some limited driving scenarios
(e.g., vehicle following), while other driving scenarios for
accelerating/decelerating are ignored. Their limited scenarios
cannot provide a large driving dataset. For instance, in one
of the abnormal scenarios related to TSs, it can be assumed
that there is a STOP sign back (SSB) across the street.
Hence, different maneuver scenarios are necessary to have
a good prediction for an action. To tackle the necessity of
large amounts of training data in addition to the inherent
uncertainties in driving habits, Nozari et al. presented a
combination structure of imitation learning and the ActInf
model. By using a Bayesian network to take into account
normal and abnormal scenarios, they were able to optimize
the learning policy through a trade-off between return and
abnormal values. Another novel aspect of their technique
that demonstrated its superiority over RL methods was the
ability to optimize action planning [30], [66]. Sensory data
from two AVs were used as inputs to verify their model. This
research did not consider the abnormal scenarios regarding
TSs and different types of objects. Their validation was based
on two AVs to show their implementation; however, different
objects (e.g., pedestrians, TSs) have multiple states, and
lexical concepts in TSs could be examples in this case [67].

A CAW navigation protocol was developed by Mugaba-
rigira et al. [44] to improve the security of urban roadways
for vehicles. The protocol’s collision avoidance functionality
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FIGURE 3. A proposed framework considering the ActInf model in abnormal scenarios to enhance the prediction
accuracy.
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enables AVs to navigate around barriers and roadside
accidents in a safe mode. In this paper, the authors merely
focused on different driving scenarios for collision avoidance,
and even though they considered CAW in terms of states,
actions, and driving behavior patterns, they did not bring up
partial observation as an important aspect in decision-making
procedures to enhance the prediction accuracy using partial
observations. In [22], it was demonstrated that the multi-layer
perceptron (MLP) algorithm failed to capture information
from the obstructed TS images, and it was resolved by
a hybrid MLP-POMDP classification model. The model
provided a significantly more accurate classification of the
TS images filtered with arbitrary fog masks for weather
conditions. Based on their research, it appears that a POMDP
model can be trained to interpret TSs correctly by giving
it a dataset of previously observed and labeled images.
The proposed algorithm considerably reduced the training
time and achieved a precision of 93% for TS images. The
challenges in this model include the following: they trained
only seven TSs, which based on their accuracy values is
not very applicable to a huge number of TSs and classes.
Furthermore, some abnormal scenarios in TSs based on
environmental behavior (i.e., perceptions from other objects)
are not considered (e.g., fallen TSs and a sign back across
the street). In addition, only a particular weather pattern was
taken into account, which was replicated using images of fog.

For complex system planning processes, an extendable
POMDP was employed by Pouya and Madni [68] in flexible
and partially observable situations. The key benefit of this
strategy was that it provided a basic framework (i.e., prob-
abilistic state representation) in contrast to other data-driven
approaches that rely on large datasets. This technique also
initiated an action when belief in a state was very strong,
resulting in moderate behavior. However, this model does
not account for the variety of abnormal driving situations.
In order to perform the POMDP solver algorithm in a matter
of seconds while maintaining accuracy, the search time
for locating the optimal policy was considerably decreased.
An MDP model considering the velocity and position of the
vehicle is considered in [1] for designing a behavior decision
strategy based on the RL-based method. However, they did
not consider the different patterns of other objects and TSs as
a comprehensive model. Furthermore, the decision-making
process in an ActInf model tries to minimize EFE and
maximize the information gained from the environment
(e.g., vehicles, TSs, and other objects) simultaneously. In an
RL-based algorithm, it is time-consuming to maximize the
rewards, while selective actions will help the model get the
maximum probability of observations in the ActInf model.

V. PROPOSED ABNORMAL SCENARIOS WITH MACHINE
LEARNING METHODS’ DISABILITY IN AUTONOMOUS
VEHICLES
This section highlights the abnormal occurrences, scenarios,
and challenges related to each drivability aspect, including
obvious and incidental factors and their difficulties. In con-

trast, for optimal or controlled driving situations typically
considered in investigations of AVs, abnormal scenarios are
those that reduce drivability and are thus more challenging to
deal with. In these cases, ML methods are not able to handle
these scenarios or can control with only low probability and
less accuracy. All of these scenarios are based on the partial
observation that ML approaches cannot show good accuracy
in their predictions of results. Hence, a POMDP model based
on an ActInf model can control and improve the accuracy
of prediction for TSR and OC processes. To recapitulate,
full observation models cannot consider some hazardous
scenarios in autonomous driving, but a POMDP model can
control these scenarios by considering the environmental
behavior and CAW [69].
The research challenges associated with dealing with

each factor are distinct, and current methods have not yet
fulfilled their promise of providing comprehensive solutions.
In order to keep track of the wide range of potential
research topics, two types of factors can be mentioned,
namely, obvious and incidental factors. Both factors can
lead to unexpected and abnormal scenarios featuring high
complexity, controllability, and uncertainty in autonomous
driving. A summary of these factors can be outlined as
follows:

• Obvious Factors
- Illumination: Perception is substantially affected by
changes in lighting conditions brought on by the time
of day (night, dawn, dusk), the landscape (shades), and
the individual light sources.
- Weather Conditions: Many vision-based tasks, includ-
ing road recognition and object tracking, can be
challenging in extreme weather conditions, including
fog and snow.Howdifferent climates impact themodels’
robustness in tackling perceptual tasks apart from road
detection is, however, not very well elaborated [70].
- Road Conditions: Road damage, irregular and rough
surfaces, and construction are all examples of poten-
tially unsafe road conditions. Due to the scarcity of
documentation on potentially hazardous road situations,
a shortage of labeled data, therefore, presents a signifi-
cant challenge to recognizing them.
- Road Geometry: Driving through intersections and
roundabouts is more challenging than driving on a
straight roadway. Time restrictions on yielding and
merging movements make roundabouts much more
problematic than intersections.
- Traffic Conditions: Situations with heavy traffic,
a high-speed limit, and the possibility of an accident
require more attention. Furthermore, it is not apparent
whether or how AVs’ performance is affected by traffic
circumstances or when an accident is most probable to
occur because there are not enough datasets to make
such assessments.
- Static & Dynamic Objects: Existing approaches still
show significant inaccuracy when confronted with
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TABLE 2. A summary of ActInf and CAW research in AVs and their challenges.

unknown or difficult-to-detect objects, especially those
of small size and severe occlusion. More research into
various objects (e.g., animals, sudden obstructions) is
required. Many of these obstructions (e.g., fallen trees
or TSs) can also cause abrupt and sudden changes
to the map necessary for vehicle positioning. These
variations may reduce localization precision, which
could complicate AV planning and decision-making
procedures.
- Lane Markings: Despite the importance of lane mark-
ings as visual information for lane or road detection,
a number of roads in urban and rural regions are
unorganized, with damaged or missing lane markings or
unusual lane shapes, making road detection challenging
due to its dependence on lane marking identifica-
tion [71].

• Incidental Factors
- Object Behaviors (e.g., vehicle, pedestrian, animal,
driver, bicyclist/motorcyclist): The behavior and actions
of different objects in their interactions with AVs are
examples of incidental factors. Every object can have
a specific action, or interactions can happen for some
static objects in abnormal cases (e.g., fallen TSs, unusual
shapes of traffic barriers). Some of these unusual
behaviors can include overtaking and failure to obey the
traffic laws for vehicles, failure to comply with the laws
for pedestrians, and so on.

As mentioned, some abnormal scenarios can be considered
that cannot be predicted with ML approaches or can be
predicted only with low accuracy and probability [72], [73].

The main reason is that partial observations in terms of
objects’ behavior and optimization of the number of actions
are neglected. Hence, an ActInf model based on a POMDP
model can enhance the accuracy of prediction and consider
the posterior beliefs about the road’s occurrences. These
abnormal scenarios are outlined as follows:

A. SCENARIO I: FALLEN TRAFFIC SIGNS
One of the problematic scenarios for TSR through ML
algorithms is a fallen TS, particularly the STOP sign.
As shown in Fig. 4, for an AV (i.e., ego vehicle), particularly
one depicted in green, forecasting potential scenarios on
the road remains a challenging endeavor. When relying
on comprehensive current observations, the TSR system
struggles to anticipate instances such as a toppled TS.
Consequently, its ability to discern or forecast the intended
TS is compromised in terms of precision. Additionally,
representations of the ego vehicle’s vision, radar, and LiDAR
capabilities are depicted in Fig. 5.

Conventional models might fail to recognize the missing
sign if the sign has not encountered such a scenario during
training. As a practical solution, the ActInf model, however,
can incorporate behaviors of other road users, e.g., sudden
stops or cautious driving near the intersection, as partial
observations, allowing it to infer the potential presence
of a STOP sign even if it is not physically visible. This
method not only reacts to the current environment but also
predicts potential future actions. For example, if it detects
cars slowing down at the intersection and pedestrians looking
both ways more frequently, it can infer the need to halt
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even without a visible STOP sign. That means the ActInf-
equipped vehicle, noticing unusual behavior from pedestrians
and other vehicles, would infer the need to stop and proceed
with caution, ensuring safety. Therefore, it does not require
extensive retraining for new scenarios, and it adjusts to
real-time changes efficiently.

FIGURE 4. A fallen TS regarding other objects’ behaviors on the road
(Scenario I).

FIGURE 5. A sample coverage of camera, radar, and LiDAR sensors for an
AV in an intersection with a fallen TS (Scenario I).

B. SCENARIO II: ROAD WORKERS’ ALERTS BY TRAFFIC
SIGNS
This scenario shows an emergency alert from road workers
to obey their instructions. As can be seen in Fig. 6, a 65
mph Speed Limit TS is on the roadside to continue forward
on the route. Because a barrier exists on the road ahead,
however, a road worker holds a different TS in his/her hand
to show new instructions. It is a priority for all drivers to
obey the workers in an emergency situation; however, an AV
cannot follow this type of change. There is no difference
between the presence/absence of barriers on the road, and

it is the responsibility of drivers just to follow the new
conditions. This scenario can be confusing forML algorithms
handling this issue, and a TSR model cannot make a highly
accurate prediction of the appropriate TS. Even though the
ego vehicle has full sensor coverage, it cannot recognize the
correct route. In the context of roadwork scenarios where
workers use various TSs to direct traffic, an AV can employ
the ActInf framework to handle this scenario. The vehicle
maintains a generative model of the world, which includes
the probability of encountering roadwork and the associated
signs. When it detects a road worker holding a sign, this
observation updates the belief state. Based on the updated
beliefs, the vehicle predicts the most probable TS the road
worker might display next, considering the current context
(e.g., ongoing construction, lane closures). The vehicle then
selects an action (e.g., slowing down or changing lanes)
that minimizes the discrepancy between its predictions and
subsequent observations. This approach’s superiority over
traditional MLmodels lies in its ability to continuously refine
its predictions based on feedback, allowing for more adaptive
and context-aware decision-making.

FIGURE 6. A misleading scenario for TSR regarding a new TS held by a
road worker (Scenario II).

C. SCENARIO III: TRAFFIC SIGN BACK/ROTATED ACROSS
THE ROAD
This scenario explains a TS back or a rotated TS on another
side of an intersection (Fig. 7). This could be similar to
‘‘fallen TS,’’ with the same analysis. The ego vehicle needs
to gain information from the environment to perform a good
action. Nevertheless, ML methods cannot predict the TSs
because there is no lexical or CXI gained from the signs.
Using ActInf model, the vehicle predicts that it could be a
STOP or YIELD sign based on the intersection context. Thus,
it slows down, preparing for both scenarios. As it gets closer,
it identifies the sign as STOP and halts. In certain scenarios,
the TSR model can accurately predict based on distinct
TS shapes, such as the STOP sign. However, its efficacy
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diminishes in the majority of cases due to variances in shapes
and resemblances among certain numerals, among other
factors. Moreover, the existing dataset for driving situations
fails to encompass these atypical cases, which can potentially
lead to mishaps when deploying standard ML models.

FIGURE 7. A scenario of STOP sign back or rotated sign on another side of
an intersection (Scenario III).

D. SCENARIO IV: SPIRAL MOVEMENTS OF VEHICLES
AHEAD IN ANOTHER LANE
The spiral movements of the vehicles ahead in another
lane can make it impossible for the ego vehicle to make
a good decision. Because it is an emergency situation,
ML algorithms cannot make a correct decision, and the AV
keeps going with the specified TS (i.e., 65 mph Speed Limit).
By driving on a straight route, the AV can have an accident
with the hazardous vehicle ahead, which makes it difficult for
intelligent algorithms to make a correct decision. An up-view
portion of this scenario associated with the route illustration
for both vehicles is shown in Fig. 8. Consider another vehicle
in a different lane that starts spiraling due to a tire burst.
Traditional ML models might recognize the vehicle but not
predict its erratic trajectory. An ActInf model, noticing the
unexpected spiral movement, would increase the prediction
error associated with that vehicle. By simulating possible
future positions of the spiraling vehicle, the AV decides to
slow down, allowing the spiraling vehicle to pass safely, and
then continues its path, ensuring the safety of all road users.

E. SCENARIO V: AMBIGUOUS LANE MARKINGS
Low lane marking visibility or nomarking is another scenario
that can be regarded in considering ML algorithms’ disability
in AVs, as can be shown in Fig. 9. Visibility can be reduced
by severe weather conditions (e.g., fog, snow, heavy rain)
and can cause AVs to acquire misleading information [71].
Because of these crucial algorithms (e.g., TSR and OC) in
AVs, any complexity or ambiguity in the lane marking can
reduce the prediction accuracy of the AV’s decision-making,
and the AV needs to gain other behavioral/environmental
information to predict the objects or TSs more accurately.
As a potential solution, ActInf models emphasize prediction
and adaptability, which can be crucial when lane markings
are faded or non-existent. It integrates high-definition maps

FIGURE 8. An emergency situation caused by spiral driving of a vehicle
ahead (Scenario IV).

and real-time observations. If lane markings are missing, the
model can rely more heavily on the map data to navigate
safely. Also, if a road segment previously had clear lane
markings, the model can use this historical data to predict
where the lanes should be, even if current observations are
unclear.

FIGURE 9. An impact of unclear lane markings on an AV’s decision
making and consideration of other objects’ behaviors (Scenario V).

F. SCENARIO VI: CYBERATTACK ON STOP SIGN AT A
4-WAY STOP INTERSECTION
In this scenario, a 4-way stop intersection involving the
AV (ego vehicle) is shown in Fig. 10 in which an attacker
tries to change the STOP sign recognized by the ego
vehicle. By intruding into the STOP sign, an attacker
can change this sign, and the ego vehicle is not able to
recognize the correct sign. The attacker can make a wide
range of misleading TSs, leading the AV to approach other
vehicles on the road and cause an accident. In the context
of vehicular intersections, there exists a potential risk for
collisions involving all vehicles present. The TSR algorithm’s
limitations are evident, as it fails to accurately predict signs
due to its lack of integration with the environmental dynamics
of surrounding entities. However, utilizing an ActInf model,
which incorporates partial observational data, offers a more
robust countermeasure against cyber threats. This enhanced
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prediction capability stems from its ability to assimilate
information from adjacent vehicles, their respective motion
patterns within the same traffic lane, and the context of a
4-way intersection. The vehicle’s sensors detect a sign that
looks similar to a Turn Left Only sign, but other sensory
data (e.g., road layout and intersection structure) suggest a 4-
way stop. So, the vehicle anticipates the presence of a STOP
sign based on its generative model, even though the visual
data is inconsistent with this prediction. Instead of relying
solely on the altered visual cue, the vehicle cross-references
its prediction with other sensor data and decides stop, thus
avoiding a potential accident. Then, the vehicle updates
its internal model to account for the possibility of sign
tampering, making it more resilient to similar attacks in the
future.

FIGURE 10. A misleading representation of STOP sign by a cyberattack on
the sign (Scenario VI).

G. SCENARIO VII: CYBERATTACK ON DIGITAL HIGHWAY
SIGNS
This scenario demonstrates an abnormal case caused by an
attacker. As it can be observed in Fig. 11, the ego vehicle
is moving forward in a lane and can recognize the ‘‘SPEED
LIMIT 85’’ in a good way. After crossing this TS, it confronts
an unexpected event (i.e., an accident ahead) on the road
in which the digital highway sign shows more information
and instructions for all vehicles. This digital sign should
illustrate the ‘‘ACCIDENT AHEAD, REDUCE SPEED’’ in
normal conditions; however, a cyber attacker intrudes and
changes the instructions to a new announcement, as ‘‘WEAR
A MASK. SAVE LIVES.’’ which can be considered a
cyberattack. Generally, drivers can observe the accident
ahead, figure out that this digital sign shows misleading
information, and make the correct decision. Nevertheless,
the TSR algorithm cannot recognize the accident ahead
and just receives normal instruction, which is not necessary
to take any action. Therefore, the ML algorithm cannot
handle this attack, and the AV approaches the accident
location and can cause another catastrophic event. Instead
of relying solely on historical data, the ActInf method
utilizes the current environment and ongoing observations
to generate a predictive model of the highway system and
follows these procedures to have a good prediction and action
simultaneously:

• The system continuously observes traffic patterns, sign
behaviors, and driver reactions in real-time.

• The model updates its predictions based on new obser-
vations, factoring in the motion of vehicles, behavior of
nearby signs, and any feedback from drivers or other
infrastructure.

• If a digital sign displays unexpected information not
aligning with the model’s predictions, ActInf recognizes
this anomaly more efficiently than traditional ML
methods.

• The system can then alert authorities or even initiate
corrective measures such as broadcasting alerts to
nearby vehicles or resetting the affected sign.

FIGURE 11. A cyberattacks on digital highway sign (Scenario VII).

FIGURE 12. Blocked TSs with blue circles (left: SPEED LIMIT 30, right:
SPEED LIMIT 60).

VI. DISCUSSION
The ActInf model, leveraging partial observation, emerges as
a potential solution to address TSR in autonomous driving.
Nonetheless, its implementation is not without challenges.
A detailed risk assessment reveals several areas of concern
as follows:

• Abnormal Scenarios: While the ActInf model may
exhibit improved prediction accuracy in abnormal
situations, the true extent of this improvement needs
validation. Autonomous driving operates in dynamic
environments where unexpected events are frequent.
Ensuring the model’s robustness in these situations is
paramount.

• Dataset Limitations: A significant risk lies in the
available datasets. Comprehensive naturalistic TS and
object datasets are essential for training, but many
datasets might not capture the full spectrum of abnormal
or rare scenarios. This lack of representation can affect
the model’s efficiency in real-world applications.
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FIGURE 13. A sample learning process of mapping matrix between hidden states and observations in an ActInf model.

• Object Variability: The autonomous driving land-
scape involves a myriad of objects, both static and
dynamic. Distinguishing between them and predicting
their behaviors, especially in crowded or cluttered
environments, can complicate the model. Incorporating
3D object detection methods might assist in better
environmental understanding.

• Acceptance Rate Analysis: Beyond its technical capa-
bilities, the societal and practical acceptance of the
model is crucial. It is necessary to assess how frequently
the model’s predictions align with real-world outcomes
and user expectations. A high acceptance rate would
signify not only technical proficiency but also user trust.

A. AUTHORS’ PERSPECTIVES
The authors believed that the ActInf model can efficiently
improve the TSR and OC algorithms’ accuracy using the
CAW and situational awareness considering the proposed
abnormal scenario. For more clarification, a sample example
with a part of internal processing is demonstrated to show
the better performance of this suggested model. Consider
blocks on SPEED LIMIT 30 and SPEED LIMIT 60 signs by
blue circles that an AV has been faced with, as illustrated in
Fig. 12.

In this case, the TSR algorithm, considering the image
reconstruction and image dividing methods, cannot make a

good prediction for the recognition of the TS on the road. The
major difference between these signs (i.e., numerical parts)
are blocked with the same size, and the reminder parts are
analogous. Hence, the ActInf model employs other data from
the AV environment, including the speed of adjacent vehicles,
GPS data, and so on to make an estimation in each step,
and updates the beliefs for each time for hidden states and
observations. Fig. 13 demonstrates a sample learning process
in the internal processing of the ActInf model which can
happen.

According to Fig. 13, the confidence level bar shows the
minimum and maximum probability of a prediction based
on an accuracy value. Three tables within this figure show
mapping matrices between hidden states and observations
in which the rows and columns depict observations and
hidden states, respectively. It is noteworthy to mention that
we can define different hidden states and observations and
these tables merely illustrate sample matrices to assess the
probability values in different steps. Step 1 presents a scenario
inwhich anAV just entered a new street from another one, and
this vehicle has not any perception of this new environment.
Hence, all probability values can be adjusted by 40% as an
example. If we want to mention an array in the matrix, we can
consider 1 × 1 array which expresses the AV has a speed of
30 at a local area with a probability of 40%. Other arrays
can be similarly described. The terms ‘‘Incoherent 1’’ and
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‘‘Incoherent 2’’ represent that prediction has some features
of SPEED LIMIT 30 or SPEED LIMIT 60 signs, so it is
unknown based on a visual illustration to distinguish between
these two signs. In Step 2, a partial scan of theAV surrounding
has happened and the AV can gain some information from the
environment to improve the knowledge. Based on this step,
this AV can get information on a presence of a pedestrian
and a blocked speed limit sign. This new information helps
the AV to enhance the accuracy of confidence as shown
in the secondmatrix (e.g., 1×1 array). As can be observed, the
confidence level increased from 40% to 90% from Step 1 to
Step 2 after a partial scan of the environment occurred. The
same learning process can occur for Step 3 by gaining more
comprehensive information (i.e., speed of adjacent vehicles,
presence of pedestrians, speed limit) which can lead to the
highest confidence in the prediction of speed limit signs.

B. TIME EFFICIENCY OF AN ACTINF MODEL IN AV
APPLICATIONS
The primary strength of ActInf lies in its ability to provide
quicker decision-making processes, which is crucial in the
rapidly changing environments that AVs navigate. These
models differentiate themselves from POMDPs by reducing
the need for extensive calculations that consider various
observations and actions in uncertain situations. The ActInf
model employs immediate sensory data and predictive mod-
eling to simplify the decision-making process. This approach
enables quicker adaptation to immediate circumstances,
enhancing the efficiency and practicality of ActInf models
in situations demanding prompt action. It directly utilizes
real-time data without the exhaustive calculation of every
potential scenario.

Conversely, POMDPs entail significant computational
demands and extended processing times. This complexity
stems from the POMDPs requirement to meticulously
analyze each potential action sequence and its consequent
effects to optimize future outcomes. Such extensive compu-
tational requirements can lead to inefficiencies, particularly
in complex and real-world driving environments where swift
decision-making is preferable. Therefore, while POMDPs
present a detailed method for decision-making in uncertain
conditions, their high computational load renders them less
viable for real-time operations in AVs. In these instances,
ActInf models emerge as a more time-efficient solution.

VII. CONCLUSION
A comprehensive study evaluating TSR and OC techniques
is presented to illustrate their effectiveness and precision in
fully observable models, which are different from partial
observable models, without regarding uncertainties and
objects’ behaviors. In this article, a comprehensive overview
of ActInf models based on a POMDP model is presented for
assessment with various kinds of environmental occurrences
and CAW in different applications. This article also discusses
the capabilities and superiority of this model in comparison
with ML algorithms. A thorough analysis of the existing

safety concerns associated with AVs is described, focusing
on partial observations of the surrounding environment
and the behavior of various objects. In the context of
autonomous driving, some anomalous scenarios have been
described in which ML algorithms are unable to address
these circumstances or in which they obtain a prediction
based on the objects on the road with less accuracy. Potential
enhancements for this methodology warrant exploration in
future work. Undertaking a comprehensive risk evaluation of
the ActInf model, particularly when rooted in partial obser-
vations, is pivotal. There is an imperative to probe the aug-
mented predictive accuracy this innovative approach brings,
especially in atypical circumstances. It would be judicious
to assess expansive datasets encompassing naturalistic TSs
and other vehicular objects within the autonomous driving
domain to ascertain the efficacy of this strategy. Real-world
driving conditions inevitably present a plethora of unforeseen
and exigent situations. Themyriad of objects, be they static or
in motion, amplifies the intricacy of the model in deciphering
environmental dynamics. Consequently, a rigorous scrutiny
of the model’s acceptance rate is indispensable.
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