
Received 7 November 2023, accepted 20 November 2023, date of publication 30 November 2023,
date of current version 11 December 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3338149

Evaluation and Refinement of an Explicit
Virtual-Memory Primitive
YANNICK LOECK AND CHRISTIAN DIETRICH
Operating System Group, Hamburg University of Technology, 21073 Hamburg, Germany

Corresponding author: Yannick Loeck (yannick.loeck@tuhh.de)

This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – 468988364, 501887536.
Publishing fees supported by Funding Programme Open Access Publishing of Hamburg University of Technology (TUHH).

ABSTRACT The general-purpose virtual-memory subsystem of Linux does not scale to the multi-
million IOP/s SSDs of today. Further, its implicit write-back and back-fill semantic hinders data-intensive
applications, like databases, more than it actually helps. In contrast, explicit virtual-memory abstractions,
as introduced by ExMap, provide an Exokernel-like interface tomanipulate theVMsurface. Thereby, the user
application remains in full control over the VM surface and can benefit from low operation latencies. In this
paper, we investigate the performance of the existing ExMap abstraction and propose enhancements for its
system-call interface, its process-local memory pool management, and the user-space page-state tracking.
With memory-mapped I/O vectors, the global bundle list, and exported page tables, we improve the end-to-
end throughput of in-memory random B+tree lookups by up to 5.7 percent, while the out-of-memory case
improves by up to 4.9 percent.

INDEX TERMS Virtualmemory, explicit file-mapped I/O, high-performance I/O, user-space solution, buffer
manager, performance optimization.

I. INTRODUCTION
With modern SSDs alleviating the performance penalty for
random access, and high-bandwidth memory [1] increasing
the in-core processing speed, the operating system (OS)’s
virtual-memory and I/O subsystems now have to handle
multiple million events per second. For example, one
Samsung PM1733/35 [2] SSD alone serves up to 1.5 million
random 4KiB reads per second (rand: 6GiB/s, seq: 7GiB/s).
And while kernel-bypass technologies, like SPDK [3], bring
high-performance I/O to the user space, the virtual memory
(VM) subsystem is still a major bottleneck [4], [5], [6], [7].

For data-intensive applications, like database management
systems (DBMSs), this evolution is challenging and, together
with the need for explicit control over the data [8], [9],
forces the developer to leave aside existing OS abstractions in
favor of user-space solutions. For the DBMS community, the
buffer manager [10], [11], which is essentially a user-space
equivalent of a page cache, is a seminal example of this
approach. Such buffer managers require user-space page-

The associate editor coordinating the review of this manuscript and
approving it for publication was Wei Liu.

state tracking and induce a page-lookup overhead for every
access (e.g., via a hash table [12]), which slows down the
latency-critical in-memory access path.

Therefore, Leis et al. [7] recently proposed VmCache,
a new DBMS buffer-manager design that uses hardware-
supported virtual memory to translate page identifiers to
virtual-memory addresses, while retaining explicit control
over back-fill/write-back decisions. In a nutshell, VmCache
implements an explicitly-controlled file-mapped I/O abstrac-
tion: On top of a sparsely-populated anonymous mapping,
whose size matches the storage device, VmCache explicitly
reads/writes pages from/to disk at linearly-displacedmapping
offsets. Thereby, VmCache significantly speeds up the in-
and out-of-memory access paths and even outperforms the
LeanStore buffer manager [11].
For VM manipulations, VmCache comes with the ExMap

Linux kernel extension, which is a specialized virtual address
space (VAS) abstraction for high-performanceVMprimitives.
ExMap optimizes VM operations by (1) bypassing most
parts of Linux’s VM subsystem, (2) using process-local
memory pools, and (3) providing batched operations, which
avoid costly TLB shootdowns [13], [14]. Thereby, ExMap

VOLUME 11, 2023

 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 136855

https://orcid.org/0009-0009-6343-4766
https://orcid.org/0000-0001-9258-0513


Y. Loeck, C. Dietrich: Evaluation and Refinement of an Explicit Virtual-Memory Primitive

addresses the performance limitations of VM under Linux
and increases the performance of VmCache for an out-of-
memory random B+tree lookup by 59 percent [7]. And
although Leis et al. [7] presented ExMap as a vehicle to
speed up VmCache operations, we believe that explicit
virtual-memory management is a promising direction to
extend the VM subsystem with specialized interfaces for fast
asynchronous I/O devices.

In this paper, we undertake a thorough analysis of ExMap’s
performance, targeting further performance enhancements
and reducing its memory footprint. We investigate different
user–kernel interfaces, optimize thememory-pool operations,
and use existing paging data structures to make user-space
page-state tracking more efficient. We claim the following
contributions:

• We evaluate the performance of the existing ExMap
abstraction, analyzing it down to the cache-miss level.

• We improve the system-call interface with a memory-
mapped command vector and private file descriptors.

• We replace the stealing-based memory pool with a
cache-friendly process-local free-memory list.

• We extend the explicit memory-management concept by
exposing page-table entries to the application.

The rest of the paper is structured as follows: In Sec. II,
we briefly describe the existing ExMap abstraction and
its current implementation, before we propose different
enhancements in Sec. III. In the evaluation (Sec. IV),
we quantify and compare the performance of the original
ExMap design and our refined variant with synthetic
benchmarks that cover a wide range of application patterns,
and an end-to-end benchmark using VmCache. We discuss
our results (Sec. V) and the related work (Sec. VI) before we
conclude in Sec. VII.

II. THE ExMap ABSTRACTION
ExMap [7]1 is a kernel extension that allows direct and
efficient user-space control over file-mapped I/O and anony-
mous memory. ExMap consists of three components: (1)
the VM surface, which the user manipulates with explicit
operations via (2) multiple explicitly-addressed control
interfaces, and (3) the ExMap-private memory pool, which
contains physical page frames that back the surface virtual-
memory area (VMA). In contrast to classical file-mapped
I/O, ExMap does not provide an implicit back-fill and
write-back automatism but instead necessitates the explicit
initiation of these operations; all page faults are forwarded as
segmentation-fault signals to the user space.

A user-space application creates an ExMap object with a
certain VM surface extent, and sets the number of physical
page frames that back the memory pool. For the ExMap
lifetime, these page frames are drained from the system
allocator, and they are only given back to the system when
the ExMap object is destroyed. As the ExMap and its memory
pool are by design process-private, an ExMap instance cannot

1ExMap is available at https://github.com/tuhhosg/exmap

be shared with other processes but the OS is also relieved
from page zeroing as data cannot leak into other processes.

After mapping the surface, the process uses control
interfaces to issue commands that allocate/release pages or
trigger I/O requests. For each application thread, ExMap
uses a dedicated interface, establishing a one-to-one mapping
between thread and interface. These interfaces are tightly
coupled with the memory pool; all available page frames
are stored in interface-local linked lists, and used for the
requested operations. If the interface-local list does not hold
enough frames, ExMap steals them from other interfaces.
After gathering enough frames, ExMap manipulates the
page tables of the surface VMA with atomic compare-and-
exchange instructions. In contrast to CPU-local free lists,
ExMap’s interfaces allow for controlled locality and give the
user space the possibility of limiting the dispersion of pages
if fewer threads than cores are used.

Further, ExMap provides system calls for scattered and
vectorized VM-surface operations, which also results in
TLB-shootdown batching [13], [14], [15]. To specifymultiple
ranges, the user passes a vector of address–length pairs
(i.e., struct iovec[]). Also, the ExMap file descriptor
acts as a proxy for (a)synchronous read operations from the
actual storage devices: With a single read system call, ExMap
first maps the specific ranges before it forwards the request to
the backing descriptor. Forwrite operations, no such proxying
exists.

A. INTEGRATION WITH VmCache
The VmCache buffer manager creates an ExMap instance
with the extent of the underlying storage medium and
manages the state of all pages in the user space (see Lst. 1).
In its page_state array, which requires one element per
disk page, VmCache tracks which pages are currently present
on the surface to avoid the costly page-fault path. Further,
the page state also holds a page’s locking state (i.e., write-
exclusive, read-shared) and a version number for optimistic
reads.

In Lst. 1, the fixEmpty() function uses ExMap to
allocate a fresh page at a given offset on the surface. For this,
it uses the page-state array to check if the page is already
present. If not, the application passes the on-surface offset to
ExMap via the ioctl() syscall, which returns the amount
of newly populated memory. If the allocation was successful,
meaning that this operation inserted one page, we update
the page state. Please note, that (a) the used iovec only
has exactly one element, and (b) that the given example
contains no race condition as from two concurrent invocations
of fixEmpty() only one ioctl() invocation returns
PAGE_SIZE;

Summarized, ExMap is a specialized kernel extension that
provides fast VAS primitives to be used by an application
that performs its own data management (e.g., DBMS buffer
manager). In their experiments, Leis et al. [7] showed that
ExMap is able to handle up to 286 million 4KiB allocations

136856 VOLUME 11, 2023



Y. Loeck, C. Dietrich: Evaluation and Refinement of an Explicit Virtual-Memory Primitive

FIGURE 1. Design overview of the enhanced (∗) ExMap Design: Within the virtual address space, an ExMap’s
explicitly-managed surface is mapped as a virtual-memory area (VMA). By exporting the page tables (PtMap VMA),
the user space can detect if a page is present. The memory-mapped syscall interface (mIOV) allows the bulk
transfer of system-call parameters. The ExMap’s memory pool is managed with a lock-free global bundle list.

LISTING. 1. Usage Example of ExMap. The fixEmpty() function ensures
that the page at pn is present in memory, allocating a fresh memory page
if necessary.

per second. In contrast, established Linux VM abstractions
only achieve up to 5.2 million operations in this benchmark.

III. ExMap ASSESSMENT AND REFINEMENTS
In the following section, we evaluate the current version
of ExMap and refine it in three architectural aspects: the
system-call interface, the page-state tracking, and memory-
pool management. Our goal is both to enhance ExMap’s
performance and to serve as a blueprint for improving other
high-performance kernel extensions.

A. SYNCHRONOUS SYSTEM-CALL INTERFACES
The ExMap kernel extension is governed from the user
space using a kernel interface. This necessitates finding
the most suitable Linux interface or system call, factoring
in characteristics like operation batching and invocation
overhead. The aim is to establish a versatile solution to

FIGURE 2. Different control interfaces for ExMap.

accelerate user-kernel communication for extensions that
need both rapid synchronous operations (i.e., for allocation
and freeing), which benefit from batching to avoid TLB
shootdowns, and asynchronous operations (i.e., for I/O
commands).

1) PARAMETER PASSING
Traditionally, applications request memory on a VMA via
page faults (see Fig. 2a), making it an implicit synchronous
control interface. However, besides known bottlenecks [7],
[16], [17], page faults have the pitfall to require one kernel
activation per requested frame as the principle does not allow
for batching.

Therefore, ExMap already comes with a vectorized
operation interface. Traditionally, for address-space–related
operations, Unix uses a struct iovec-array to pass
scattered VAS references to the kernel. For example, readv2

(see Fig. 2b) reads sequentially from disk or file into a scat-
tered buffer described by the iov elements. While ExMap
already supports this interface for reading and manipulating
at multiple surface offsets with one system call, it has the
return-value problem. Conceptually, readv is one operation
with one return value (number of read bytes), but batched
operations consist of multiple independent operations, each

2ssize_t readv(int fd, const struct iovec *iov,
int iovcnt).

VOLUME 11, 2023 136857



Y. Loeck, C. Dietrich: Evaluation and Refinement of an Explicit Virtual-Memory Primitive

of which could fail independently. When using readv for
ExMap, we therefore have to stop processing the vector at the
first conflict/error (e.g., empty memory pool, modification
conflict).

To address this problem, we extend each ExMap interface
with a mapped I/O vector (mIOV) (see Fig. 2c), which is a
permanently-present page for bi-directional parameter/return
value transfer. This mIOV page has to be allocated per thread,
which we do by tying it to ExMap interfaces.

Before invocation, the user encodes its I/O vector into the
mIOV of the interface she wants to use. As surface operations
are page aligned and likely reference only a few pages, we use
a dense vector-element encoding with 52 bits for the page
number and 12 bits for the length in pages. Thereby, the user
can pass 512 independent operations on a single mIOV page
to the kernel, without copying. On return, the kernel transfers
the operation result via the same mIOV entry to the user.

mIOVs are similar to and inspired by io_uring’s [18]
persistently-mapped command queues and registered buffers.
With the recent introduction of ucmd (v5.19), io_uring
gained an extensible interface for asynchronous commands
that a file descriptor can provide. In combination with
registered buffers, this allows us to extend ExMap with an
interface similar tomIOV butmore in line with existing Linux
interfaces (see Fig. 2d). In Sec. IV-D, we will compare the
different parameter passing variants.

2) INVOCATION
Like ExMap, many Linux interfaces use file descrip-
tors as handles for non-file objects (e.g., io_uring,
signalfd,. . . ). And although accessing the file-descriptor
table [19] is a scalable operation today, accessing the same
file descriptor concurrently is still problematic: If 128 cores
allocate individual pages (see Fig. 3) via ExMap, 81 percent
of the time is used for reference counting (fget/fput),
while the actual work load takes up only 4 percent.

To alleviate this false sharing without adapting basic
Linux design decisions, we propose private descriptors (see
Fig. 2e), which are clones of other file descriptors to be used
by only one thread. They hold a reference to the original file
descriptor and only forward the invoked operations. Thereby,
in the example, a system call with fd=3 and fd=5 are
semantically equivalent, but will access different reference
counters. The registered-descriptor concept of io_uring
solves the same problem, but is specific to io_uring, with
an SQE flag indicating whether a registered or a normal
file descriptor was given. In contrast, private descriptors are
actual file descriptors and can be used with any existing
system-call interface.

B. GLOBAL BUNDLE LIST—MEMORY-POOL
MANAGEMENT
As every ExMap operation interacts with the memory pool,
the efficient management of free frames is a core performance
consideration. As described in Sec. II, ExMap currently

stores its memory pool in interface-local free lists. These
free lists are protected with locks due to the possibility of
concurrent accesses during page stealing.With highmemory-
pressure situations, this can cause lock contention which
negatively affects performance. Here, ExMap is currently
overly complex in two regards: (1) it uses cache-inefficient
doubly linked lists, and (2) the free memory is scattered over
as many different locations as there are application threads.

Instead, we propose an architectural simplification of the
memory pool, which also improves its performance (see
Sec. IV-F): For that purpose, we introduce the global bundle
list (GBL), a lock-free singly linked list that is global for
an ExMap object and whose elements are bundles of free
frames. Instead of making the bundles linked lists themselves,
we use the underlying memory of one frame as a stack that
stores pointers to further free frames. Thus, in addition to the
bundle-stack frame itself, a full bundle contains 512 more
free frames if the system uses 4KiB pages. With this,
each GBL operation adds or removes 513 free page frames
to/from the pool, which eliminates the need for page stealing
from different interfaces. Additionally, bundles are more
cache-friendly than normal lists, as one cache line worth of
bundle-stack memory contains eight frames, while a linked
list requires one cache line per element.

Making the GBL lock-free requires atomic compare-and-
exchange based interaction for element addition and removal.
For this, we rely on the widely-supported single-word CAS
operation, necessitating the list to be singly linked. As atomic
singly linked lists suffer from the ABA problem, we add a
tag, which is incremented on pushes, to the first list entry.
As frame addresses are 4KiB-aligned, we can have 12 bits
for the tag, which we consider sufficient to solve the ABA
problem for our use case as our in-kernel operations are not
subject to preemption.

While we replace stealing with the GBL, we keep the
command interfaces but equip them with one local bundle as
a free-page cache (see Fig. 1). This local bundle is taken from
the global list and we keep it as long as it holds between 1 and
512 pages, where it satisfies allocation and free operations
without the need to interact with other interfaces. When a
page is freed and the local bundle is almost full (512 pages),
we push the bundle to the GBL and the interface then has an
empty cache. On the next free, we use the incoming page as
the bundle-stack page of the next bundle. Only if a cache has
no local bundle, we take one from the GBL.

Using local bundles means that per interface, up to
2MiB of free memory is inaccessible for other threads as
we do not perform stealing. However, if we keep a strict
one-to-one mapping between threads and interfaces, less
memory becomes inaccessible than with CPU-local free lists
if an application has fewer threads than cores. Nevertheless,
we consider 2MiB of non-reclaimable memory per core as
unproblematic.

With our GBL architecture, only one out of 513 page
allocations has to interact with other CPUs, while the other
512 requests are serviced by the interface’s local bundle.

136858 VOLUME 11, 2023



Y. Loeck, C. Dietrich: Evaluation and Refinement of an Explicit Virtual-Memory Primitive

FIGURE 3. Flamegraph of single-page allocations with ExMap on 128 cores (11 M OP/s).

LISTING. 2. Page version for optimistic reads.

Furthermore, the interface-local page cache is refilled with
a single lock-free pop operation instead of having to collect
pages one by one.

C. PtMap—EXPORTED PAGE TABLES
With the transition from implicit to explicit VMA-surface
management, the user requires the knowledge which page is
currently mapped [7]. For example, in Fig. 1, P1 is mapped
while P3 is currently not backed by physical memory (green).
Leis et al. [7] combined user-space page-state tracking with
locking and versioning. As they store an additional 64-bit
word per page, the page-state array grows with the number
of SSD pages. In comparison, traditional DBMS buffer
managers only require space proportional to the number of
usedDRAMpages. Further, as file-mapped I/O requires more
page tables, we need an additional∼8 bytes for the page-table
entry (PTE); making VmCache more memory hungry than a
traditional hash-table–based buffer manager.

To reduce this space overhead, we extend ExMap with
PtMap, which exposes the last level of the page-table tree as
a read-only mapping to the user space. Thereby, the user can
directly query the PRESENT bit in the corresponding PTE
(see Fig. 1) to check if a page is mapped. As this bit informs
us whether an access will take the in- or the out-of-memory
path, applications can use a less memory-intense schema to
store per-page meta data. For example, we can store the rest
of the page state (lock, version) within the mapped page
itself. Further, exposing the PTEs also gives the user access to
MMU-managed information about accessed and dirty states
(on platforms where these are available). However, using this
additional information is out of scope for this paper.

Technically, the PtMap is a second VMA that is much
smaller than the surface VMA as it only has to make one
PTE per page visible. On AMD64, the PtMap has a 512 times
(4096 / 8) smaller extent, which also limits the MMU
overhead for the PtMap VMA itself to 8/512 bytes per page.
Further, the PtMap maps the same physical memory that is
also used for the surface page tables. Therefore, in Fig. 1, the
four physical pages T0-T3 are not only the page tables of the
surface VMA but also the user-readable memory of PtMap.

Please note, that we populate the PtMap and surface VMAs
lazily with page tables and frames, as it is common practice
in Linux.

Sharing page-table data between surface and PtMap has
two important consequences: (1) physical memory addresses
of memory-page pools leak into the user space, which we will
discuss from a security point of view in Sec. V. (2) PtMap
and the ExMap surface are always in sync as ExMap also
uses atomic operations to modify the page tables. Thereby,
the present bit in the PTE is an atomic synchronization point
for optimistic page accesses.

Another benefit of PtMap is cache related: As the
MMU’s page table walker also requests memory through
the cache, it can reuse cache entries that were already
fetched by the PtMap access. Please note, at page granularity,
modern caches are physically-indexed to avoid the synonym
problem [20]. In contrast, the externally-stored page-state
array will provoke more cache misses on a TLB miss (see
Sec. IV-E).

1) INTEGRATION WITH VmCache
As already mentioned, PtMap enables making user-
space page-state tracking less memory intensive. For this,
we strip the page-presence bit from the page state and
store the remaining information (lock state, version tag)
within the page itself. While this in-band page state increases
the on-disk space requirement, it also allows us to get rid of
the externally-stored page state array. As SSD storage ismuch
cheaper than DRAM, this trade-off is worthwhile.

Within the access path (see Lst. 2), we access the PtMap to
check if a page is present before accessing the surface. Please
note, that VmCache already handles the situation where a
concurrent eviction removes a page while another thread
accesses it optimistically without a (reader) lock. Technically,
this is done by translating segmentation-fault signals to C++

exceptions that abort the transaction.

IV. EVALUATION
The goal of our evaluation is to quantify and compare the
performance of the original ExMap design with our enhanced
variant. As VmCache’s performance is currently primarily
limited by memory bandwidth and I/O latencies, we first
focus on a family of synthetic micro-benchmarks to allow a
separate in-depth analysis of the ExMap design at its limits.
Afterwards, we will perform an end-to-end evaluation to
compare the original ExMap with our refined variant within
the context of VmCache.

VOLUME 11, 2023 136859



Y. Loeck, C. Dietrich: Evaluation and Refinement of an Explicit Virtual-Memory Primitive

Here, we compete against already highly optimized
baselines, with ExMap being able to serve 100-400 million
allocation requests. In contrast, an optimized Linux variant,
using system calls already patched for better performance,
can only achieve 5 million allocations. Further, VmCache
already efficiently utilizes ExMap to be 20 million transac-
tions/s faster than the highly performant Lean Store engine
for the in-memory case. For the out-of-memory case, which
is instead dominated by the I/O bandwidth of the SSD device,
our design nevertheless improves performance as it reduces
the memory overhead which increases the usable memory
available to the buffer manager. This shows that for both the
synthetic benchmarks and the end-to-end evaluation, even
improvements of a few percent over the original ExMap are
significant.

A. EXPERIMENTAL SETUP
1) EXECUTION PLATFORM
We execute our experiments on a single-socket AMD EPYC
7713 server (Zen 3, 64 cores, 128 hardware threads) with
512 GiB of DRAM. Each core has 32KiB of L1D cache and
512KiB of L2 cache, while all cores share 256 MiB of L3
cache. As secondary storage options, we have eight 3.84 TiB
Samsung PM1733 SSDs (PCIe Gen4, MZWLJ3T8HBLS),
each of which is rated at 7000/3800 MiB/s read/write
throughput and 1.5M IOP/s. Our system runs on an unmod-
ified Linux 6.1.8 kernel into which we load the respective
ExMap variant as a loadable kernel module. We use the
GNUC++ compiler (12.2.0) with -O2 optimization level and
jemalloc 5.2 for dynamic heapmanagement, as it outperforms
the standard GNU libc allocator [6].

FIGURE 4. Benchmark overview. Allocator threads request pages on the
ExMap surface, while free threads release pages with the remote and
mixed free strategy.

2) SYNTHETIC BENCHMARKS
For our evaluation, we use a family of synthetic benchmarks
that resemble different usage patterns of an explicit VAS
abstraction. We do not only look at the out-of-memory I/O
case, which are usually dominated by wait times, but also
at CPU-bound use cases where ExMap is used for memory
allocation. In order to push ExMap to its limits, we designed

our benchmarks to have little (cache and performance)
impact, which we will quantify in Sec. IV-B.

In Fig. 4, we show the common structure and operation of
our synthetic-benchmark family:We use one ExMap instance
with a 1 TiB surface and 128MiB of DRAM in the memory
pool per allocator thread. In order to mimic the situation
in a steady state, we initialize ExMap’s memory pool by
allocating all pages and before freeing them randomly.

Furthermore, similar to [7], we use an externally-
stored page-state array, which we manipulate concur-
rently and lock-free via atomic instructions, to track in-
memory/allocated pages. As we use one byte per surface
page, the array takes up 256MiB of DRAMper TiB and alone
would fill up our machine’s L3 cache, making each random
state access a likely cache miss.

Each allocator thread uses one of two patterns to select
512 page numbers, which are immediately locked in the
page-state array. With the sequential pattern, the thread
requests, in a circular fashion, pages from a 512MiB-
large thread-local address range; if previously requested
pages are not freed yet the batch contains holes. This
pattern mimics parallelized sequential-scan workloads. For
the random pattern, the thread selects and locks 512 random
pages from all over the ExMap surface; if a requested page
is still locked, we choose another one. This pattern mimics
workloads that make full use of the random-read capability of
modern SSDs.

As a second step, the allocator thread requests those
512 pages via its thread-private ExMap control interface.
For allocation scenarios, we batch all pages at once, while
we issue 512 separate io_uring read SQEs with a single
system call for SSD-read scenarios. Further, we try to keep
512 read requests in flight, which results, even if addressing
8 disks in parallel, in a queue length of 64, which is sufficient
to saturate our SSDs [2]. As an allocation might fail in
principle (e.g., memory shortage), the touch-memory stage
accesses only one cache line from successfully allocated
pages.

Afterwards, we use one of three free strategies to release
pages: (1) With local free, the allocator thread uses its own
ExMap interface to free the pages before unlocking them in
the state array; this strategy mimics, for example, short-lived
thread-local memory allocations. (2) With remote free, the
allocator pushes the pages (as a batch) to a bounded queue,
where a free thread takes over the responsibility, frees the
pages, before it unlocks the page again; this strategy mimics
the usage of a centralized buffer manager with a coordinated
cache eviction strategy. (3) With the mixed-free strategy, the
allocator releases half of the pages locally, while the other
half is pushed to the remote-free queues.

Sincewe use the same number of allocator and free threads,
we only state the number of allocator threads and report the
number of allocation operations. Also, we use one bounded
blocking queue per free thread to avoid lock contention, and
the push operation tries four queues before it actually blocks.
In sum, the combined capacity of all queues is half the size

136860 VOLUME 11, 2023



Y. Loeck, C. Dietrich: Evaluation and Refinement of an Explicit Virtual-Memory Primitive

of the memory pool (64MiB per thread), whereby allocations
cannot fail due to memory shortage.

During a benchmark run, we use perf_event [21] to
record different CPU counters. We focus on last-level cache
misses as the memory latency today dominates many CPU-
bound workloads. To minimize the measurement impact, the
benchmark reports its results only once per second; each
benchmark configuration is run for 60 seconds.

FIGURE 5. Benchmark overhead without ExMap.

B. BENCHMARK CHARACTERIZATION
ExMap was reported [7] to sustain hundreds of millions of
surface operations per second, a scale at which every induced
cache miss has a significant impact on the performance of
in-memory workloads. This necessitates detailed evaluation
and analysis, both to understand the measurement results and
to discover further optimization potential. Simultaneously,
it is important for the benchmark itself to have a minimal
overhead, in order to provide an accurate evaluation of the
different ExMap variants. Before analyzing those, we first
characterize our synthetic benchmarks by quantitative mea-
surements. This will not only help to understand the different
variants, but we can also quantify the overheads, in terms of
latency and cache pressure that is induced by our benchmark.

To this end, we execute our benchmarks (see Fig. 4)
without performing the ExMap system calls. Therefore, only
the pattern generation, the page-state manipulation, and the
interaction between the allocator and free threads through

the bounded queue remain. Given a theoretically ideal
synthetic benchmark (perfect scalability, no cache impact),
we could measure the upper possible bound of each ExMap
variant.

We execute the six benchmark configurations (2 patterns×

3 free strategies) with up to 128 allocator threads, which is the
number of hardware threads. However, we already reach one
thread per core with 32 mixed and remote allocator threads,
or with 64 local allocators.

From the results (see Fig. 5), we see that sequential/local
is the best case as it runs purely from the cache as each
thread only manipulates the same 128KiB of the state
array. Therefore, at 128 threads, each “allocation” takes
17 ns and provokes 0.004 (last-level) cache misses, which
yields 7.48 billion operations per second as it boils down to
setting/clearing bits on CPU-local L2 cache lines. However,
even if we “free” pages remotely, we still reach 1.97 billion
operations per second (65 ns each).

For the random pattern, we see a significant impact
of the page-state tracking, as two randomly picked pages
are unlikely (2.61 · 10−6%) to be on the same cache
line. Therefore, each operation will result in at least one
cache miss if done purely locally, and two misses if done
remotely. Nevertheless, in this scenario, the AMD Zen
3 cache prefetcher provokes twice as many cache misses as
expected (Fig. 5c). To confirm this being a hardware anomaly
and not caused by our benchmark, we executed the same
benchmark on an AMD Ryzen 7 Pro 5850 CPU. There, the
cache-miss/operation ratio was in the expected range (local:
1.06, remote: 2.25). Nevertheless, even in the worst-case
(remote/random), our benchmark still reaches 631.7 million
operations/s on the Zen3 machine.

With our characterization, we show that sequential/local
has an insignificant impact per operation and even the worst-
case random/remote only induces four cache misses on our
evaluation platform.

C. BASELINE EVALUATION
Next, we will look at the performance of the existing [7]
ExMap abstraction and measure 4KiB allocations as well
as read requests on a single SSD and a Linux Software
RAID-0 with eight SSDs. With the RAID measurement,
we investigate whether Linux in combination with ExMap is
able to saturate the theoretically available 12 million IOP/s.

1) ALLOCATIONS
In Fig. 6a, we confirm that ExMap is able to supply at
least 100 million 4KiB on its surface, even if those pages
are selected randomly and allocated and freed by different
threads. Even then, ExMap still provides 111M pages per
second for 128 threads, which, if read entirely, would require
423 GiB/s DRAM bandwidth. At this point, an operation
takes 1.16 us and induces 14.4 misses. Besides the 4 misses
for the benchmark, this number includes frame allocation
(with stealing), two lock-free page-table manipulations, one
data access and the batched TLB shootdown.

VOLUME 11, 2023 136861



Y. Loeck, C. Dietrich: Evaluation and Refinement of an Explicit Virtual-Memory Primitive

FIGURE 6. Original ExMap performance.

FIGURE 7. ExMap flamegraph on RAID-0 (128 threads).

2) SINGLE-DISK READ
In Fig. 6b, we look at the read performance of ExMap.
For this, we use ExMap’s combined alloc+read operation
via the proxy descriptor. To our surprise, for the sequential
pattern, we see that we achieve more than the 1.5M IOP/s (6
GiB/s) our PM1733 should provide. This is possible as the

Linux block layer [22] merges requests if they are sequential
on disk, even if issued as separate read requests (as our
benchmark does). Thereby, we come close (6 677 MiB/s) to
the 7000 MiB/s for sequential reads.

With the random pattern, we confirm that ExMap is able
to saturate a PM1733 with four allocator threads. At this
point, with random/remote, each operation requires 41 cache
misses. We see that the achieved throughput does not depend
on the free strategy.

3) RAID-0 READ
Fig. 6c shows the read throughput achieved with an 8-disk
software–RAID-0 device. As both patterns hit at least 4 disks
with a 512-page batch, our benchmark could, in principle,
reach the full throughput of this setup with more than
two threads. However, ExMap never reaches this maximal
throughput, even if all 128 cores request blocks sequentially.
As this does not meet our projections from the single-
disk case, we execute a 4KiB random-read benchmark
with the flexible I/O tester [23] (fio) and its io_uring
benchmark, which reads the data into fixed buffers instead
of installing them in the VAS. However, fio achieves only
2 percent (geometric mean) more throughput than ExMap
random/local; exonerating ExMap as the prime suspect.

To confirm this, we record a flamegraph [24], whose x-axis
documents the relative execution-time budget and the y-axis
the call stack. In Fig. 7, we categorize the different execution-
time components: while ExMap is only in 7 percent of the
samples on top of the call stack, the NVMe driver (11%) and
io_uring (13%) require around twice as much execution-
time budget.With 67 percent, the block layer, which performs
the RAID-0 striping, the I/O scheduling, and NVMe request
submission, is the biggest contributor to the overhead, which
is confirmed by the literature [25].
We conclude that ExMap is already well suited to provide

fast memory allocations and I/O access to secondary storage.

D. SYSTEM-CALL INTERFACES
In this section, we compare the cost of invoking ExMap
through its different interfaces. While the invocation over-
head diminishes for batched operations in comparison to the
actual workload, the invocation latency for short operations
becomes an important factor if we want to use ExMap for
memory allocation. To focus on the invocation, we allocate
memory with our sequential/local member benchmark.
Further, we introduce the possibility to disable batched
allocations, while the free step remains batched.

In Fig. 8, we show the average operation time per allocated
page, which alsomeans that the combined system-call latency
for batched allocations is 512 times higher. Please note that
there is no page-fault (PF) result for batched allocations. First,
we see that the effect of the invocation path indeed diminishes
for batched allocations and that the per-page time increases
by a factor of 5.6 from one thread to 128 threads.

136862 VOLUME 11, 2023



Y. Loeck, C. Dietrich: Evaluation and Refinement of an Explicit Virtual-Memory Primitive

FIGURE 8. Overhead of synchronous system-call interfaces with bulk and
single-page allocations.

For the separate allocations, we see that the page-fault
path (PF) starts out slow and becomes 44 times slower with
128 threads as each page fault has to first identify the VMA
object, which still [16] requires read-locking the whole VAS
and a VMA-tree lookup. This overhead is the cost of PF’s
implicity, which is not shared by the other interfaces, where
the user explicitly addresses the ExMap object (and one
specific control interface) with the system-call arguments.

Next, we compare the traditional I/O vector and our
densely-encoded permanently-mapped mIOV. Here, mIOV
outperforms IOV by 25 percent with one thread and by 34
percent for 128 threads. Despite this relative benefit of mIOV,
the absolute latency is unacceptable high (see capped bars in
Fig. 8) due to the fget problem (see Sec. III-A).
For the next three bars, we compare three variants: (1)

For uring_cmd, we use io_uring cmd with a registered
buffer for parameter transfer and a registered file descriptor,
which avoids the refcounting problem. (2) For IOV+pFD,
we use ExMap’s struct iovec allocation interface but
with a private file descriptor (pFD). (3) For mIOV+pFD,
we combine the mIOV with the private descriptor.

We see that registered descriptors indeed avoid the
fget/fput false sharing problem for a high number of
threads. However, io_uring also has some overhead for
enabling asynchronous operations, which are not necessary
for synchronous VAS modifications. While our private
descriptors also avoid false sharing, they further are less
expensive than io_uring and the relative advantage of
mIOV remains for one thread (−25%) and for 128 threads
(−17%).

As a last variant, we extended ExMap with its own system
call (+SC), which requires manipulating the system-call
table from the ExMap kernel module and using an unused
system-call number as there is no API for dynamically reg-
istering a system-call number. With this variant, we explore
what could be achieved with a “proper” Linux system call.
With a custom system-call, we avoid the ioctl security

checks and achieve an additional 24 percent speedup over
mIOV+pFD for single-threaded operations.

Overall, we reduced the system-call overheads for ExMap
by 43 percent for one thread and by 97 percent for
128 threads. Further, we learn that the asynchronous
io_uring cmd interface is a valid choice for kernel
extensions, even if they only want to provide synchronous
operations.

FIGURE 9. Impact of exported page tables.

E. EXPORTED PAGE TABLES
In this section, we quantify the impact of exporting the last
level of the page-table tree to the user space. This has an
influence on both the space overhead and the performance
of ExMap. Again, we focus on the allocation case to bring
ExMap to its limit without being limited by a real SSD.

For the PtMap variant, we remove page-state tracking (see
Fig. 4) from the benchmarks and replace it by the read-
only PtMap. Instead of locking the page from user space, the
pattern only queries the PtMap if a page is already present
and, if not, we optimistically forward the page number to the
allocate stage. If ExMap signals that the allocation succeeded,
the thread knows that it is now the owner of that page and is
responsible for freeing it again.

For the space overhead, PtMap removes the necessity
for a page-state array just to know which page is present.

VOLUME 11, 2023 136863



Y. Loeck, C. Dietrich: Evaluation and Refinement of an Explicit Virtual-Memory Primitive

Since the size of the page-state array reflects the size of
the underlying storage medium, it can become quite large
and, as we have characterized (see Sec. IV-B), induce cache
misses for random workloads. For 1 TiB of surface area
(228 4K pages), a page-state array requires 32 MiB for 1-
bit page state page and 256 MiB with one-byte page state.
In comparison, on x86, PtMap exposes 219 page tables to the
user, which is the inherent cost of having a 1 TiB VMA and
sharing it with the ExMap surface. Still, for its VMA, PtMap
requires 1 024 additional page tables and one additional page
directory (total: ∼4MiB). Therefore, PtMap has an even
lower space overhead than an externally-stored bit vector.

While using less memory, enabling PtMap also has
a performance impact compared to the baseline ExMap
performance (see Fig. 9a, y-axis starts at 90%). Thereby,
the impact is twofold: (1) Each alloc–free pair requires two
memory modifications less, which impacts all workloads
regardless if they purely work from cache or not. (2) Querying
the page state induces no additional cache miss as the
subsequent memory access requires a page-table walk which
also relies on the cache for accessing the page-table tree.

In Fig. 9a, we see both positive effects. For the sequential
pattern, only the lesser modifications come into play and
we see a geometric-mean improvement of up to 5.4 percent.
For the random pattern, we see a significant decrease in
the per-operation cache misses in Fig. 9b. The observed
savings of around 2 cache misses per operation match our
theoretical expectations from our benchmark characterization
(see Fig. 9b). Due to the benchmark complexity, we can
neither confirm nor deny whether the prefetching has the
same influence here as without ExMap. Nevertheless, if we
compare the sequential and the random pattern, we see a clear
benefit from these saved cachemisses, especially with remote
free.

Another concern without user-space page-state tracking
are surface conflicts that occur if two threads want to claim
the same non-present page. With the page-state array, the first
thread locks the page, before it asks ExMap for the page,
and all operations will succeed if there is enough memory.
With PtMap, both threads perform the system call and ExMap
synchronizes the conflict at the PTE with the CAS operation.
However, at least for our random benchmark, we observed
that less than 0.009% of all operations in this tight-loop
benchmark fail due to a conflict.

Overall, we see that the PtMap enhancement is able to
reduce ExMap’s space overhead and increase its performance
at the cost of provoking a tiny fraction of surface conflicts.

F. MEMORY-POOL MANAGEMENT
In this section, we investigate whether the global bundle list
(GBL) outperforms ExMap’s current stealingmechanism. For
this, we perform the allocation throughput test. However,
as the page stealing is also dependent on the number of free
pages in ExMap’s memory pool, we also investigate whether
the pool’s fill level has a significant performance impact.

FIGURE 10. Global bundle list without memory pressure.

In Fig. 10a, we compare the existing ExMap with
inter-interface stealing against our GBL variant. In this
experiment, as for all previous, the queues can hold 50 percent
of the memory pool, whereby the 50 percent are available
for allocations. Further, the number of allocator and free
threads remains balanced for now. The first observation is
that the GBL outperforms the stealing variant in all but
the local/sequential case, where it is 5.3 percent slower
(geometric mean). Here, no memory has to migrate between
interfaces as allocations and frees balance out at every
interface, whereby the GBL provokes more cache misses
per operation (see Fig. 10b). However, by switching to the
random pattern, which induces a higher cache pressure, the
GBL already outperforms baseline ExMap, although it has a
slightly higher per-operation cache-miss rate.

When some or all pages are given to a free worker, the
GBL is up to 92 percent better than the existing strategy
(sequential/remote). Here, it also shows relatively stable
improvements on the average number of per-operation cache
misses. Nevertheless, with higher degrees of concurrency
other effects start to dominate the throughput.

1) MEMORY PRESSURE
In the next step, we investigate the influence of memory
pressure on both memory-pool designs. For this, we only

136864 VOLUME 11, 2023



Y. Loeck, C. Dietrich: Evaluation and Refinement of an Explicit Virtual-Memory Primitive

FIGURE 11. Global bundle list with memory pressure.

perform tests with the remote-free strategy, where the
allocation and free interfaces never match. Furthermore,
we modify our benchmark as follows: First, we reduce
the number of free threads to 25 percent of the number
of allocator threads, so we can be certain that memory is
freed slower than it is being allocated; therefore, the queues
fill up and the allocator threads will regularly block when
pushing their page batch to the queue. Second, we reduce
the number of queues to one global queue, whereby we avoid
queues running empty at the cost of having more contention.
Third, we vary the size of the queue between 10 percent and
100 percent of the memory-pool size. Due to these changes,
the absolute throughput of the setup is not comparable to
the other performed benchmarks, but it allows for a relative
comparison between stealing and the GBL.

In Fig. 11a, we see that both methods are not particularly
sensitive to the number of pages in the pool. Though, for
stealing, we see an unexpected speedup at 100 percent of
allocated memory in cases where the method should need
to collect memory from many interfaces more often. Our
explanation is that, if nearly no memory is available at the
interfaces, ExMap uses an optimized steal path and just grabs
the whole free list instead of shaving off only a few pages,
which involves linear iteration. Besides this anomaly, we see

that the GBL is either on par with stealing or outperforms it.
In the case of the sequential pattern, we even see a speedup of
227 percent (geometricmean) with a small number of threads.
But even for the more challenging random pattern, the GBL
is up to 38 percent faster.

Further, we see that GBL’s relative advantage shrinks
with more allocator threads. However, for this benchmark
scenario, the maximal throughput seems to be at around 60M
IOP/s, which is already reached at 64+16 threads (sequential).
With more threads, the same workload is only distributed
over more cores, which have more than enough time to
complete the operation. We confirm this by looking at the
average number of executed CPU cycles per thread (see
Fig. 11b) over all allocation ratios. As we have fewer software
threads than hardware threads, this number can be compared
to the CPU frequency (2.0 GHz, Boost: 3.7 GHz). We see
that each benchmark executes for fewer and fewer CPU
cycles each second, which confirms our stated hypothesis.
Furthermore, the GBL requires fewer CPU cycles for an
equal or higher number of allocations per second, making it
even more attractive for actual workloads. For example, for
100 allocators, the GBL requires 50 percent (sequential) and
22 percent (random) fewer cycles while reaching the same
allocation throughput.

FIGURE 12. Random lookups on B+Tree. In-Memory: 100M entries
≈14 GiB. Out-of-Memory≈981 GiB.

G. END-TO-END COMPARISON
Lastly, we perform an end-to-end comparison between
the original ExMap and our enhanced variant with the
improved system-call interface, the PtMap, and the GBL.
For this, we use the published [7] VmCache buffer manager,
which builds upon ExMap, and comes with a B+tree that
supports variable-sized keys and optimistic locking. The
buffer manager uses pread() to read from disk, so at most
one I/O request is in flight per thread. Tomake the comparison
fair, we insert the same number of entries into the B+tree but
shrink the baseline’s memory-pool size by the space required
for the page-state array (2GiB DRAM per 1 TiB disk).

For the in-memory case (see Fig. 12a), we insert
100 million entries (8 byte key, 120 byte payload) into the
B+tree, which results in ≈14GiB of data. With a varying
number of threads, we perform random lookups. As we
use a pool size of 128 GiB, all lookups are serviced from

VOLUME 11, 2023 136865



Y. Loeck, C. Dietrich: Evaluation and Refinement of an Explicit Virtual-Memory Primitive

memory, whereby the surface is not modified during the
benchmark and only the PtMap-optimized in-memory path
has an impact. With our enhancements, we can increase the
in-memory lookup performance by a further 5.7 percent for
128 threads.

For the out-of-memory case, we (see Fig. 12b) insert
7.1 billion entries, which results in ≈981GiB of data.
Again, we perform random lookups on the tree. As the pool
size becomes important with this out-of-memory scenario,
we perform the experiment with two memory sizes: 16GiB
and 128GiB. As noted, we shrink the original variants pool
by 2 GiB to account for the page-state array. In Fig. 12a,
we see that for the large pool sizes our enhancements have a
small (+0.63% for t ∈ [140, 240]) impact for the steady state.
However, for the smaller pool, where 2GiB increases the
number of available pages significantly, the enhanced variant
is 4.9 percent better.

Overall, we see that our improvements, especially PtMap,
improve both the in-memory and the out-of-memory path of
the already highly scalable VmCache buffer manager.

V. DISCUSSION
A. SECURITY CONSIDERATIONS OF PtMap
PtMap makes PTEs - typically a kernel-only data structure
- visible, unveiling physical addresses. As this may raise
security concerns at first glance, we will now discuss the
potential implications. Importantly, the bare knowledge of a
physical address is not inherently valuable, but significance
only arises from the usage of the frame.

PtMap only unveils PTEs pointing to frames in our ExMap
memory pool, as we align the start and end of the surface
VMA to huge-page boundaries. Moreover, since ExMap
instances are not shareable among processes, we solely leak
frame addresses utilized for a process’s VAS to the process
itself. Hence, we do not leak physical addresses deployed for
other (either kernel or user-space) mappings.

Nevertheless, one could argue that this information could
indirectly shed light on the kernel’s address layout, poten-
tially jeopardizing KASLR [26]. And although PtMap reveals
which pages are not utilized for the kernel mapping, modern
operating systems shift and randomize their mapping within
the kernel VAS. As a result, having knowledge of a subset of
physical addresses does not provide clues about the location
of kernel code or data.

However, to counter safety concerns for critical environ-
ments, we could restrict access to the PtMap feature to
privileged processes through a process capability. This would
still leave ExMap functioning as normal for unprivileged
processes, while making the benefits of PtMap available for
special applications with high performance demands.

In addition, it is worth noting that exposing physical
addresses to user space is commonplace for kernel-bypass
techniques. For instance, the physical-address mode of
DPDK [27] uses an identity mapping for its memory buffers
to enable the user-space setup of DMA requests. In fact, this

mode is considered the default [28] for DPDK, making it
functional even on systems without an IOMMU.

B. FURTHER PtMap USE CASES
Nevertheless, exposing the physical addresses could also
benefit kernel-bypass interfaces, like SPDK [3]: With
SPDK, the application directly issues NVMe commands into
the memory-mapped command queues, which requires an
address for the DMA transfer. To make this secure, SPDK
creates a DPDK [27] memory pool which contains pinned
(unswappable) memory that is also available in the device’s
I/O-VAS via an I/O-MMU mapping. In a partial kernel-
bypass mode, the user could use ExMap to allocate and free
memory on the surface, extract the physical address from the
PTE, and hand it to the device, which accesses the memory
through an I/O-VAS where all physical addresses from the
ExMapmemory pool are visible. Thereby, one could combine
the benefits of bypassing the Linux block layer (see Fig. 6c)
and having a file-mapped I/O VMA.

C. GLOBAL-BUNDLE LIST
We replace the original distributed frame pool, which
requires stealing, with the GBL. While this has a positive
impact on performance (see Sec. IV-F), it also reduces the
implementation complexity and provides a more predictable
frame-allocation overhead. For the GBL to work, we require
that the bundle-stack page is mapped in the kernel’s address
space, which we achieve through the kernel’s linear mapping
of the physical memory. Nevertheless, for platforms or
operating systems without such a mapping, we can still use
the GBL if we map the bundle-stack page while it is used as
an interface-local bundle.

D. GENERALIZABILITY
Like PtMap, our other enhancements can also have useful
applications outside of ExMap: The GBL is a scalable
container for the allocation of unordered and reusable
resources within a shared-memory system. As an allocation
has to consult exactly two locations (local bundle, GBL
head), it is more predictable than stealing from a distributed
thread-local pool but comes at the cost of a bounded resource
stranding at the local bundles. Further, it is cheap to estimate
the current memory usage from the GBL fill level without
iterating over many resource containers. These properties
make the GBL well suited for integration into other OS
primitives.

Applications that induce many synchronous system calls
that take a file descriptor as an argument will run into
the fput/fget problem. With our proxy file descriptors,
we provide a solution and make the idea of registered
thread-local descriptors widely available without forcing
applications to rewrite their logic around the asynchronous
io_uring interface. Further, having a thread-local memory
region for arguments could reduce the copy overhead for
other low-latency system calls.

136866 VOLUME 11, 2023



Y. Loeck, C. Dietrich: Evaluation and Refinement of an Explicit Virtual-Memory Primitive

VI. RELATED WORK
A. SYSTEM-CALL INTERFACE
FlexSC [29] uses pinned system-call pages for issuing
commands to system-call threads, which however by design
only provides asynchronous system calls. Similarly, as it is
inspired by FlexSC, io_uring [18] uses memory-mapped
command queues, registered buffers, and file descriptors, but
suffers from the overhead of asynchronous commands.

B. FRAME MANAGEMENT
Song et al. [30] also use process-local and CPU-pinned
free lists to recycle pages, However, they do not use page
bundles to reduce contention at the GBL. Bonsai [31] and
RadixVM [16] provide lock-free page faults by using a
balanced RCU tree and radix tree for identifying the faulty
VMA. However, allocating a frame is then up to the specific
VMAbackend, which will usually use the system-wide frame
allocator. FastMap [17] uses spin-locked per-core free lists
and also performs page stealing. While Aquila [32] extends
this to a two-level (core, NUMA) schema, where list-of-lists
are managed at the NUMA level, they still stick with the
stealing approach but on the NUMA level. In contrast, the
GBL removes the cost and unpredictability of stealing and
reduces cache pressure as one cache line on the stack page
contains multiple pages.

C. EXPORTED PAGE TABLES
With /proc/pid/pagemap, Linux already supports
accessing the page tables of a process. However, it only
provides access via read() as it has to translate the infor-
mation to a platform-agnostic PTE format. With Aegis [33],
[34], the user managed their own page tables, which gives
precise “in core” information, but relies on software-filled
TLBs, which are not available anymore. Before hardware
support for extended page tables (EPT), Xen [35] exported
a guest VM’s page table to the VM for read only access
and trapped write accesses to it. Similar to Aegis, Dune [36]
uses EPT to let the user-process manipulate its own page
tables. While the mentioned methods also export page-
table structures, they were proposed to allow user-level
control over the VM and require a fundamentally different
kernel design. In contrast, PtMap integrates easily with
Linux and has the goal to only provide fast in core
information.

VII. CONCLUSION
In this paper, we explored the performance characteristics of
ExMap with a family of synthetic benchmarks and an end-
to-end comparison of random B+tree lookups. While ExMap
is able to saturate a single high-throughput SSD, the Linux
block layer prohibits ExMap from achieving full throughput
from a software RAID-0 array with eight disks. With
memory-mapped I/O vectors and private file descriptors,
we decrease the latency of single-page allocations by up to 97
percent. By managing free frames with the global bundle list,

we increase the throughput for unbatched allocations by up
to 227 percent. Also, by exposing last-level page tables with
PtMap, we reduce not only the space overhead for user-space
page-state tracking, but also speed up random allocations by
up to 6.9 percent.

ACKNOWLEDGMENT
The authors thank their reviewers for their valuable and
constructive feedback. They used ChatGPT version 4 to
improve the grammar and readability of this article; the
resulting output was manually verified and reflects the
authors’ genuine insights.

REFERENCES
[1] H. Jun, J. Cho, K. Lee, H.-Y. Son, K. Kim, H. Jin, and K. Kim,

‘‘HBM (High Bandwidth Memory) DRAM technology and architecture,’’
in Proc. IEEE Int. Memory Workshop (IMW), May 2017, pp. 1–4, doi:
10.1109/IMW.2017.7939084.

[2] D. Jung, 2.5-Inch PCIe SSD Specification, document PM1733, Version 1.1,
Samsung, Suwon-si, South Korea, 2019.

[3] Z. Yang, J. R. Harris, B. Walker, D. Verkamp, C. Liu, C. Chang, G. Cao,
J. Stern, V. Verma, and L. E. Paul, ‘‘SPDK: A development kit to build
high performance storage applications,’’ in Proc. IEEE Int. Conf. Cloud
Comput. Technol. Sci. (CloudCom), Dec. 2017, pp. 154–161.

[4] T. Neumann and M. J. Freitag, ‘‘Umbra: A disk-based system with in-
memory performance,’’ in Proc. CIDR, 2020, pp. 1–7.

[5] A. Crotty, V. Leis, and A. Pavlo, ‘‘Are you sure you want to use MMAP in
your database management system?’’ in Proc. Conf. Innov. Data Syst. Res.
(CIDR), 2022, pp. 1–7.

[6] D. Durner, V. Leis, and T. Neumann, ‘‘On the impact of memory allocation
on high-performance query processing,’’ in Proc. 15th Int. Workshop Data
Manage. New Hardw., Jul. 2019, pp. 1–9.

[7] V. Leis, A. Alhomssi, T. Ziegler, Y. Loeck, and C. Dietrich, ‘‘Virtual-
memory assisted buffer management,’’ in Proc. ACM SIGMOD/PODS Int.
Conf. Manage. Data (SIGMOD). New York, NY, USA: ACM, Jun. 2023,
pp. 1–14, doi: 10.1145/3588687.

[8] G. Graefe, H. Volos, H. Kimura, H. A. Kuno, J. Tucek, M. Lillibridge,
and A. C. Veitch, ‘‘In-memory performance for big data,’’ Proc. VLDB
Endowment, vol. 8, no. 1, pp. 37–48, 2014.

[9] H. V. Jagadish, D. F. Lieuwen, R. Rastogi, A. Silberschatz, and
S. Sudarshan, ‘‘Dalí: A high performancemain memory storage manager,’’
in Proc. VLDB, 1994, pp. 48–59.

[10] J. M. Hellerstein, M. Stonebraker, and J. Hamilton, ‘‘Architecture of a
database system,’’ Found. Trends Databases, vol. 1, no. 2, pp. 141–259,
2007.

[11] V. Leis, M. Haubenschild, A. Kemper, and T. Neumann, ‘‘LeanStore: In-
memory data management beyond main memory,’’ in Proc. IEEE 34th Int.
Conf. Data Eng. (ICDE), Apr. 2018, pp. 185–196.

[12] W. Effelsberg and T. Haerder, ‘‘Principles of database buffer man-
agement,’’ ACM Trans. Database Syst., vol. 9, no. 4, pp. 560–595,
Dec. 1984.

[13] N. Amit, ‘‘Optimizing the TLB shootdown algorithm with page access
tracking,’’ in Proc. USENIX ATC, 2017, pp. 27–39.

[14] M. K. Kumar, S. Maass, S. Kashyap, J. Veselý, Z. Yan, T. Kim,
A. Bhattacharjee, and T. Krishna, ‘‘LATR: Lazy translation
coherence,’’ ACM SIGPLAN Notices, vol. 53, no. 2, pp. 651–664,
Nov. 2018.

[15] N. Amit, A. Tai, and M. Wei, ‘‘Don’t shoot down TLB shootdowns!’’ in
Proc. 15th Eur. Conf. Comput. Syst., Apr. 2020, pp. 1–14.

[16] A. T. Clements, M. F. Kaashoek, and N. Zeldovich, ‘‘RadixVM: Scalable
address spaces for multithreaded applications,’’ in Proc. 8th ACM Eur.
Conf. Comput. Syst. New York, NY, USA: Association for Computing
Machinery, Apr. 2013, pp. 211–224, doi: 10.1145/2465351.2465373.

[17] A. Papagiannis, G. Xanthakis, G. Saloustros, M. Marazakis, and A. Bilas,
‘‘Optimizing memory-mapped I/O for fast storage devices,’’ in Proc.
USENIX Annu. Tech. Conf. (USENIX ATC), 2020, pp. 813–827.

[18] J. Axboe. (2019). Efficient IO with io_uring. [Online]. Available:
https://kernel.dk/iouring.pdf

VOLUME 11, 2023 136867

http://dx.doi.org/10.1109/IMW.2017.7939084
http://dx.doi.org/10.1145/3588687
http://dx.doi.org/10.1145/2465351.2465373


Y. Loeck, C. Dietrich: Evaluation and Refinement of an Explicit Virtual-Memory Primitive

[19] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, F. Kaashoek, R. Morris,
A. Pesterev, L. Stein, M. Wu, Y. Dai, Y. Zhang, and Z. Zhang, ‘‘Corey:
An operating system for many cores,’’ in Proc. 8th Symp. Operating Syst.
Design Implement. (OSDI). Berkeley, CA, USA: USENIX Association,
2008, pp. 43–57.

[20] M. Cekleov and M. Dubois, ‘‘Virtual-address caches. Part 1: Problems
and solutions in uniprocessors,’’ IEEE Micro, vol. 17, no. 5, pp. 64–71,
Sep./Oct. 1997, doi: 10.1109/40.621215.

[21] M. Dimakopoulou, S. Eranian, N. Koziris, and N. Bambos, ‘‘Reliable
and efficient performance monitoring in Linux,’’ in Proc. Int. Conf. High
Perform. Comput., Netw., Storage Anal., Nov. 2016, pp. 396–408, doi:
10.1109/SC.2016.33.

[22] J. Axboe. Deadline IO Scheduler Tunables. Accessed: Dec. 4, 2023.
[Online]. Available: https://www.kernel.org/doc/Documentation/block/
deadline-iosched.txt

[23] J. Axboe. (2022). Flexible I/O Tester. [Online]. Available: https://github
.com/axboe/fio

[24] B. Gregg, ‘‘The flame graph,’’ Commun. ACM, vol. 59, no. 6, pp. 48–57,
May 2016.

[25] S. Koh, J. Jang, C. Lee, M. Kwon, J. Zhang, and M. Jung,
‘‘Faster than flash: An in-depth study of system challenges for
emerging ultra-low latency SSDs,’’ in Proc. IEEE Int. Symp. Work-
load Characterization (IISWC), Nov. 2019, pp. 216–227, doi: 10.1109/
IISWC47752.2019.9042009.

[26] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh,
‘‘On the effectiveness of address-space randomization,’’ inProc. 11th ACM
Conf. Comput. Commun. Secur., Oct. 2004, pp. 298–307.

[27] Intel. (2023). Data Plane Development Kit (DPDK). [Online]. Available:
https://www.dpdk.org/

[28] A. Burakov. (Jun. 2019).Memory in DPDK Part 2: Deep Dive Into IOVA.
[Online]. Available: https://www.intel.com/content/www/us/en/deve
loper/articles/technical/memory-in-dpdk-part-2-deep-dive-into-iova.html

[29] L. Soares and M. Stumm, ‘‘FlexSC: Flexible system call scheduling with
exception-less system calls,’’ in Proc. OSDI, vol. 10, 2010, pp. 33–46.

[30] N. Y. Song, Y. Son, H. Han, and H. Y. Yeom, ‘‘Efficient memory-mapped
I/O on fast storage device,’’ ACM Trans. Storage, vol. 12, no. 4, pp. 1–27,
Aug. 2016.

[31] A. T. Clements, M. F. Kaashoek, and N. Zeldovich, ‘‘Scalable address
spaces using RCU balanced trees,’’ in Proc. 17th Int. Conf. Architec-
tural Support Program. Lang. Operating Syst. New York, NY, USA:
Association for Computing Machinery, Mar. 2012, pp. 199–210, doi:
10.1145/2150976.2150998.

[32] A. Papagiannis, M. Marazakis, and A. Bilas, ‘‘Memory-mapped I/O on
steroids,’’ in Proc. 16th Eur. Conf. Comput. Syst. New York, NY, USA:
Association for Computing Machinery, Apr. 2021, pp. 277–293, doi:
10.1145/3447786.3456242.

[33] D. R. Engler, S. K. Gupta, and M. F. Kaashoek, ‘‘AVM: Application-
level virtual memory,’’ in Proc. 5th Workshop Hot Topics Operating Syst.
(HotOS-V), 1995, pp. 72–77.

[34] D. R. Engler, M. F. Kaashoek, and J. O’Toole, ‘‘Exokernel: An operating
system architecture for application-level resource management,’’ in Proc.
15th ACM Symp. Operating Syst. Princ. (SOSP). New York, NY, USA:
ACM Press, 1995, pp. 251–266, doi: 10.1145/224056.224076.

[35] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, ‘‘Xen and the art of virtualiza-
tion,’’ in Proc. 19th ACM Symp. Operating Syst. Princ. New York, NY,
USA: ACM Press, Oct. 2003, pp. 164–177, doi: 10.1145/945445.945462.

[36] A. Belay, A. Bittau, A. Mashtizadeh, D. Terei, D. Mazières, and
C. Kozyrakis, ‘‘Dune: Safe user-level access to privileged CPU features,’’
in Proc. 10th USENIX Symp. Operating Syst. Design Implement. (OSDI),
2012, pp. 335–348.

YANNICK LOECK received the B.S. and M.S.
degrees in electrical engineering from Leibniz
University Hannover, Germany, in 2018 and 2021,
respectively. He is currently pursuing the Ph.D.
degree in computer science with the Hamburg
University of Technology, Germany.

His research interests include memory man-
agement and provisioning in operating systems,
as well as disruptive memory technologies.

CHRISTIAN DIETRICH received the B.S. and
M.S. degrees in computer science from Friedrich–
Alexander University Erlangen–Nuremberg, Ger-
many, in 2012 and 2014, respectively, and the
Ph.D. degree in computer science from Leibniz
University Hannover, Germany, in 2019.

Since 2021, he has been an Assistant Profes-
sor with the School of Electrical Engineering,
Computer Science and Mathematics, Hamburg
University of Technology, Germany. His research

interests include high-performance operating-system primitives, non-volatile
memory, and semi-dynamic variability.

Prof. Dietrich was a recipient of the Science Price Hannover 2020 (Leibniz
University Society Hannover e.V.). He received the Dissertation Award from
the GI/ITG Fachgruppe Operating Systems 2021. He is an Associate Editor
of Leibniz Transactions on Embedded Systems.

136868 VOLUME 11, 2023

http://dx.doi.org/10.1109/40.621215
http://dx.doi.org/10.1109/SC.2016.33
http://dx.doi.org/10.1109/IISWC47752.2019.9042009
http://dx.doi.org/10.1109/IISWC47752.2019.9042009
http://dx.doi.org/10.1145/2150976.2150998
http://dx.doi.org/10.1145/3447786.3456242
http://dx.doi.org/10.1145/224056.224076
http://dx.doi.org/10.1145/945445.945462

