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ABSTRACT This study examines the finite-time event-triggered control (ETC) problem for nonlinear
switched cyber-physical systems (NSCPSs) by using an asynchronous switching strategy. An ETC
scheme, along with a measurement size reduction technique, has been implemented to decrease network
communication burden and redeem network resources. Data quantization is also another efficient method
for reducing the amount of transmitted data via networks.Meanwhile, asynchronous phenomena among ETC
instants are studied, which is much more realistic and difficult in the system under consideration. The prime
intent of this research is to enhance the asynchronous event-triggered control (AETC) technique to guarantee
the resulting closed-loop NSCPS is finite-time bounded (FTB) and prespecified mixed H∞ and passive
performance index γ in the finite-time horizon. A novel set of required conditions in the form of linear matrix
inequalities (LMIs) is enhanced using the Lyapunov-Krasovskii functional (LKF) theory, ensuring that the
FTB criterion is met. Furthermore, the gains are acquired by solving a group of LMIs. Ultimately, a numerical
illustration is provided, showcasing the efficaciousness and practicality of the developed control strategy
through a real-world application known as the vertical take-off and landing helicopter model (VTOLHM).

INDEX TERMS Nonlinear cyber-physical systems, asynchronous event-triggered scheme, quantization,
finite-time control.

I. INTRODUCTION
Networked control systems (NCS) involving sensors, con-
trollers, actuators, and networks are becoming increas-
ingly important for modern society’s structures, such as
smart grids, intelligent housing, and public transit systems
[1]. There is also no dispute that incorporating network
infrastructure into control systems provides several benefits
and conveniences owing to its high dependability, cheap
cost, simplicity of installation, and maintenance across a
wide range of practical applications [2]. Because of these
advantages offered by NCSs, there is a sustained interest in
investigating them, leading to numerous successful results
[3], [4], [5], [6]. However, as a result of the insertion of the
NCSs, various problematic phenomena like packet disorder,
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communication delays, data dropouts, and congestion occur
[7]. Furthermore, switched systems, which are made up of a
collection of subsystems linked by a switching mechanism
that helped orchestrate their switching, are widely used in
intelligent transportation systems, power electronics, robotic
control systems, and other applications [8], [9], [10], [11],
[12]. Different features of switched systems have been
thoroughly investigated, but there has been limited research
on switched systems that transmit data over communication
networks. As such, it remains a highly significant problem
to study switched systems with networked control, which are
referred to as networked switched systems [13]. For example,
the distributed H∞ control design for switched linear NCS is
analyzed in [14] subject to packet dropouts and quantization.

Communication channels are used to transfer signals in
NCSs because sensor energy and communication network
bandwidth are insufficient for many other communication
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activities [15], [16], [17]. As a result, an alternative concept
known as the ETC mechanism has emerged as a potential
approach in NCSs, reducing the communication costs and
computing burden while maintaining acceptable control per-
formance [2]. In an ETC architecture, signals are broadcast
only if the current signal meets the triggering level. Some
important effects of the ETC method have been addressed
due to high usage, enhancing communication bandwidth, and
reducing energy resources [3], [4], [18], [19], [20]. By taking
the advantage of ETC scheme, the authors in [17] studied the
stability and stabilization problem for the networked systems
subject to output feedback control design and cyber-attacks.
In [15], an ETC strategy has been developed for the nonlinear
networked system with limited network bandwidth and
sampling-driven unmatched disturbance. An ETC strategy
for switched NCSs has gotten a lot of attention recently,
with some outstanding results reported in the literature [21],
[22]. Recently, an ETC mechanism for networked switching
systems across a finite horizon has been addressed in [13].
An observer-based ETC strategy for switched systems with
output feedback control laws and mixed time-varying delays
has also been investigated in [8]. In [21], an ETC mechanism
is described for H∞ switched networked systems with the
assistance of the LKF theory.

Among the aforementioned results, a common assumption
would be that the candidate controller usually switches syn-
chronously with its subsystems. In reality, while employing
the ETC technique in switched systems, the event may well
not trigger at the time the system switches. As a result,
when the system switches to a new mode, the prior controller
remains active until the next event happens, resulting in
asynchronism between subsystems and candidate controllers
[23]. For instance, a new AETC mechanism is considered for
T-S fuzzy switched systems in [4]. An asynchronous problem
for fuzzy semi-Markov jump systems is discussed in [24]
subject to ETC, reliable and extended passive control. In
[18], an asynchronous switching problem is investigated for
switched systems via an output ETC scheme. Recently, the
issue of an event-triggered output regulation mechanism for
switched NCSs with packet losses and transmission delays
under asynchronous switching are exhibited in Li et al. [3].

Furthermore, from a pragmatic perspective, NCS security
concerns have gotten a lot of attention in the control industry
since a lot of data has to be transferred across a networked
channel of communication which may be attacked by cyber-
criminals. By exploiting vulnerable communication links,
cyber-attackers attempt to send inaccurate control commands
to control center operators. In recent years, various effective
ways have been described for protecting against cyber-attacks
and making perfect attacks impossible [25], [26], [27], [28],
[29]. To mention a few, in [30], the authors developed a
finite-time sliding-mode controller for a type of Marko-
vian jump cyber-physical systems with randomly occurring
injection attacks. The authors in [5] propose the stochastic
cyber-attacks on hybrid-triggered guaranteed cost control

for networked systems. According to [7], the authors have
developed the issue of distributed ETC for NCSs by analyzing
the implications of cyber-attacks. In [31], the cyber-attacks
problem was investigated for multirate networked systems by
using fading measurements and a round-robin approach. Very
recently, in [32], cyber-attacks are taken into account while
dealingwith networked control systems using a hybrid-driven
mechanism.

On the flip side, it’s conceivable that the network has
space restrictions on its packets. In the networked systems,
persistent communication is an unavoidable phenomenon that
results in high communication traffic and high energy con-
sumption. Therefore, an energy-efficient measurement size
reduction approach is developed, which effectively reduces
transmission times. NCSs with measurement size reduction
technique have received little attention in the literature. Only
a few works have been explored based on this subject so far,
for example, see [33]. For instance, in [34], the authors used
the LKF technique to tackle the issue of an measurement size
reduction approach formultiagent systemswith the stochastic
sampling and intermittent transmission. Zhang et al. [33]
studied the problem of distributed filtering issues for non-
fragile sensor networks with stochastic transmission and
measurement size reduction techniques.

On the other hand, asymptotic/exponential stability of
NCSs is well known to be characterized across an infinite
time period, whereas finite-time stability or boundedness
focuses on the important aspects of the given system in a
finite-time period and does not exceed the specified threshold
value [35], [36], [37], [38]. For practical control systems,
finite-time stability is more conducive to achieving the
quickest transient performance. As a result, a tremendous
amount of research effort has been dedicated to finite-time
stability, stabilization and boundedness issues, producing a
significant quantity of results [11], [39], [40]. In the context
of the finite-time control method, Ren et al. [9] developed
the asynchronous switched networked systems. Additionally,
the finite-time stabilization issues was explored in [41]
for uncertain nonlinear systems with an ETC mechanism.
It has been reported that numerous advanced techniques on
a finite-time control of NCSs have already been published,
but as far as we are aware, this has not yet been explored for
the combination of H∞ and passivity based ETC mechanism
for NSCPSs with cyber-attacks and quantization over a finite-
time span, especially for asynchronous cases.

Motivated by the above considerations, the present work
investigates an AETC scheme that is able to achieve FTB
strategies for NSCPSs with quantization and cyber-attacks.
Based on a novel event-triggered communication scheme,
an asynchronous controller is designed. Compared to existing
works, the contributions of this paper are summarized as
follows.

• In contrast to [7] and [17] an event-triggered-based
asynchronous switching control approach is constructed
to resolve the FTB problem.
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• Based on the asynchronous approach [4], [20], [23],
this is the first attempt to resolve the issue of uncertain
NSCPSs susceptible to ETC scheme, cyber-attacks and
quantization over a finite interval of time. Specifically,
multiple switchings among two consecutive execution
instants are considered, which leads to asynchronous
phenomena and makes the system more practical and
complicated.

• Compared with the work in [9], [13], and [18], our
proposed results focus on the NSCPSs with quantization
and cyber-attacks.

• In addition, to reduce energy consumption, a measure-
ment size reduction approach is used. Furthermore,
the randomly occurring cyber-attacks governed by
a Bernoulli distributed variable are expressed as a
nonlinear function fulfilling the restraining requirement.

• Utilizing Lyapunov stability theory, a novel set of
criteria for achieving the required FTB criterion with
prescribed finite time mixed H∞ and passivity perfor-
mance index has been constructed in the framework of
LMI.

Eventually, a practical numerical example of a VTOLHM
is presented to emphasize the effectiveness of the proposed
control approach.
Notation: The notations used throughout this paper are

standard which are unrevealed as follows:Rnx , Rnu , Rnw and
Rnz represents the nx , nu, nw and nz-dimensional Euclidean
space; L2[0, ∞) represents the space of square integrable
functions over the interval [0,∞). P > 0 (≥ 0) means
that P is real symmetric and positive definite (positive semi-
definite). The superscripts ‘‘T ’’ and ‘‘−1’’ stand for matrix
transposition and matrix inverse, respectively. We use 0 and
I to denote the zero and identity matrix with corresponding
dimension. In symmetric block matrices or long matrix
expressions, we use an asterisk (∗) to represent a term that
is induced by symmetry and diag{. . .} stands for a block-
diagonal matrix.

II. PROBLEM DESCRIPTION
This article pays attention towards the finite-time AETC
design problem for a class of NSCPSs as structured in Fig. 1.
An ETCgenerator and energy limitations are used to conserve
network resources. The event generators release the data,
which is subsequently transferred to the controller through an
unreliable network connection susceptible to cyber-attacks.
Based on the above concern, the nonlinear switched system
with disturbance signal is depicted in the following equation:

Ẋ (t) = Âσ (t)(t)X (t) + Bσ (t)U(t) + Ĉσ (t)(t)F(X (t))

+ D̂σ (t)(t)W(t),

Z(t) = Eσ (t)X (t) +Hσ (t)W(t) (1)

where X (t) ∈ Rnx is the state vector; U(t) ∈ Rnu is the
control input; W(t) ∈ Rnw is said to be the disturbance
input signal that corresponds to L2[0, ∞); Z(t) ∈ Rnz is the
controller output; σ (t) represents the switching signal that

FIGURE 1. AETC framework of NSCPSs.

accepts values from a finite collection I = {1, 2, · · · ,R};

e.g. when σ (t) = i ∈ I, it implies that the ith subsystem has
been enabled, where R denotes the number of subsystems;
The matrices Âi(t), Ĉi(t) and D̂i(t) are denoted as Âi(t) =

Ai + 1Ai(t); Ĉi(t) = Ci + 1Ci(t); D̂i(t) = Di + 1Di(t);
Ai,Bi, Ci,Di, Ei and Hi are well-known constant matrices
of suitable dimensions; Furthermore, the uncertainty in the
parameters 1Ai(t), 1Ci(t) and 1Di(t) are satisfied as fol-
lows: [1Ai(t) 1Ci(t) 1Di(t)] = M1iFi(t) [N1i N2i N3i] ,
whereM1i,N1i,N2i andN3i are well-known constant matri-
ces of required dimension, andFi(t) seems to be an unknown
time-varying function fulfilling F T

i (t)Fi(t) ≤ I , where
I represents the identity matrix. Furthermore, F(X (t)) =[
F1(X1(t)),F2(X2(t)), . . . ,Fn(Xn(t))

]T is a nonlinear vector
function which fulfills the global Lipschitz requirement
∥F(t,X ) − F(t,Y)∥ ≤ βF ∥(X − Y)∥ , ∀X ,Y ∈ Rnf ,

where βF is a positive scalar.
During control signal transmission, an event-based genera-

tor should be deployed to conserve communication resources
[4], [42]. We develop an ETCmethod throughout the paper to
establish the time sequence t̂kh, k ∈ Z+ with t̂kh indicating
the time instant when an event occurs and h > 0 is the
sampling period. Besides that, the control input at the actuator
has been produced by the zero-order-hold inside the holding
interval [t̂kh + τt̂k , t̂k+1h + τt̂k+1

), where τt̂k represents the
communication delay at the release instant t̂kh. Furthermore,
the ETC mechanism has been designed as follows:

t̂k+1h = t̂kh+
min
s

{
sh|eTt̂k (t̂kh+ sh)81σ̂ (t̂k )

et̂k (t̂kh+ sh) > ςσ̂ (t̂k )X
T (t̂kh)82σ̂ (t̂k )X (t̂kh)

}
(2)

where 0 < ςσ̂ (t̂k ) < 1 are known parameters, 81σ̂ (t̂k ) and
82σ̂ (t̂k ) are the positive definite matrices to be generated,
and et̂k (t̂kh + sh) is perhaps the difference between the two
states at the previous transmission instant and the subsequent
sampling instant, i.e. et̂k (ikh) = X (t̂kh) − X (ikh), where
ikh = t̂kh+ sh, s ∈ N.
Remark 1: We established a novel switching signal σ̂ (t)

in the ETC mechanism (2) which also accepts its values

VOLUME 11, 2023 135647



A. Arunkumar, J.-L. Wu: Finite-Time AETC for Switched Nonlinear Cyber-Physical Systems

in R. At the execution instant t̂k , the values of σ̂ (t) may
well be updated, and σ̂ (t̂k ) = σ (t̂k ). During the interval
[t̂k , t̂k+1), it will remain unaltered. Let {ts, s ∈ Z+

} indicate
the switching sequence, where ts represents the sth switching
instant satisfying ts < ts+1 and t0 = 0. It should be
remembered that the switching signal σ (t) may only be
modified at ts. Finally, σ̂ (t) may not be equal to σ (t), at time
instant t. For illustration, assuming t̂k < ts < t̂k+1 < ts+1,

then σ̂ (t) ̸= σ (t) for t ∈ [ts, t̂k+1).
We generate the new state feedback controller based on the

aforementioned trigger condition:

U(t) = K̂σ̂ (t̂k )X (t̂kh). (3)

where, K̂σ̂ (t̂k ) denotes the controller gain that must be
determined for σ̂ (t̂k ) ∈ R.

As shown in Fig. 1, we designed an ETC framework. The
employment of two switching signals σ (t) and σ̂ (t), which
act in subsystems and controllers, respectively, distinguishes
this control method from that in [42]. Subsystems and
controllers switch synchronously, hence there is just one
switching signal, according to [42]. It is evidently conser-
vative since asynchronous switching is ignored because the
switching feature with ETC transmission coexist. In our
control scheme, the switching of subsystems is subject to
σ (t) while the switching of controllers is subject to σ̂ (t̂k ).
As indicated in Remark 1, σ (t) may not be equal to σ̂ (t) at
certain intervals. As a result, the modes of subsystems and
controllers are mismatched at some of these intervals., i.e.,
the closed-loop system has asynchronous behavior.

It is worth noting that once the sample signal is released
into the network at instant t̂kh, it will then be transmitted
to the controller at instant t̂kh + τt̂k , in which τt̂k is the
communication delay induced by the network. Similarly
to what is shown in [9], the interval represents [t̂kh +

τt̂k , t̂k+1h + τt̂k+1
), may be broken down into a number

subintervals. Assume that there is a constant ν that fulfills
[t̂kh + τt̂k , t̂k+1h + τt̂k+1

) =

ν⋃
s=0
Ts, where Ts = [t̂kh +

sh + τt̂k+s , t̂kh + sh + h + τt̂k+s+1
], s = {0, 1, · · · , ν}, ν =

t̂k+1 − t̂k − 1. Define τ (t) = t − t̂kh− sh, 0 ≤ τt̂k ≤ τ (t) ≤

h + τt̂k+s+1
≤ τ . It is possible that the network’s packets

have space limitations. Due to the power restriction, not
all state components are permitted to be transferred. In this
paper, only one element of signal component is picked for
transmission and then encapsulated into a packet, as this is
themost energy-efficient way [34]. Based on thework in [33],
we define the structure of measurement selection scheme as

ϕρ(t) ∈

0, · · · , 1︸︷︷︸
n

, · · · , 0

 , (4)

where ρ(t) ∈ 0 = {1, 2, · · · , n} is a time-varying signal that
indicates which measurement element has been selected. For
illustrate, while the first element is picked for transmission,
we acquire ρ(t) = 1 and ϕρ(t) = diag{1, 0, · · · , 0}.
Whenever the second element is picked for transmission,

we get ρ(t) = 2 and ϕρ(t) = diag{0, 1, · · · , 0}. Depending
on a similar concept, one might have more elements for
transmission. Aside from that, themodified control signal can
be formed as follows, based on the preceding discussion:

Û(t) = Kσ̂ (t̂k )ρ(t)ϕρ(t)(X (t − τ (t)) + et̂k (t)),

t ∈ [t̂kh+ τt̂k , t̂k+1h+ τt̂k+1
). (5)

Remark 2: In the aforementioned approach of reducing
measurement size, we presume that only one element of the
signal can be transmitted to the controller. The above can be
expanded to other general cases. As we endeavor to reduce
the energy consumption of the networked system, the less
information we transmit, the less energy are consumed.

Basically, the control signals are often quantized due to
high convention of digital signals. Thus, the data quantization
Ŭ(t) is examined in the following manner

Ŭ(t) = Q(Û(t)). (6)

where Q(·) = [Q1(·),Q2(·), · · · ,Qm(·)]T is a logarithmic
quantizer and it is described by an odd function, i.e.,Qs(υ) =

−Qs(−υ), (s = 1, 2, · · · ,m). For eachQs(us) it is defined as
follows:

Qs(uls) =


ηls, if

1
1 + δqs

ηls < uls <
1

1 − δqs
ηls,

0, if us = 0
−Qs(−us), if us < 0

(7)

where δqs = (1−ρs)/(1+ρs), (0 < ρs < 1), the quantization
density is ρs, and the set of quantization levels is defined by

ηs =

{
±ηls, η

l
s = ρlsη

l
0, l = 0, ±1, ±2. · · ·

}
∪ {0} ,

0 < ρs < 1, ηl0 > 0. (8)

Define 1q = diag{1q1 , 1q2 , · · · , 1qm}, with 1qs ∈

[−δqs , δqs ], s = 1, 2, · · · ,m. The estimator’s real input may
thus be expressed as,

Ŭ(t) = Q(Û(t)) = (1 + 1q)Û(t) (9)

In most cases, control data is transmitted via a communica-
tion network, which is vulnerable to malicious attacks from
hackers. Further, cyber-attacks are carried out by destroying
or modifying the controller inputs, and by exploiting the
vulnerability of the communications networks, as well. As a
consequence, the ETC mechanism with cyber-attacks looks
like this:

U(t) = Ũ(t) = β(t)Kσ̂ (t̂k )ρ(t)ϕρ(t)(1 + 1q)(X (t − τ (t))

+ et̂k (t)) + (1 − β(t))Kσ̂ (t̂k )ρ(t)ϕρ(t)

× (1 + 1q)G(X (t − d(t))). (10)

where, β(t) ∈ R is a stochastic variable representing the
Bernoullis distributed white series with Prob{β(t) = 1} = β,

Prob{β(t) = 0} = 1 − β; G(X (t)) illustrates the function
of cyber-attack; d(t) indicates the time-varying delay of a
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cyber-attack that fulfills 0 ≤ d(t) ≤ d, where d is a positive
constant.

In order to keep things simple, this paper assumes σ̂ (t̂k ) =

j ∈ R and ρ(t) = a. Then the closed-loop NSCPS (1) along
with (3), (5), (9), (10) can be revealed in the following ways:

Ẋ (t)

= Âi(t)X (t) + BiKjaϕa(1 + 1q)
(
et̂k (t) + β(X (t − τ (t)))

+ (1 − β)G(X (t − d(t)))
)
+ (β(t) − β)(X (t − τ (t))

+ et̂k (t) − G(X (t − d(t)))) + Ĉi(t)F(X (t)) + D̂i(t)W(t).

(11)

Besides that, the assumptions and definitions in the forth-
coming section are more crucial for substantiating the needed
results.
Assumption 1: The nonlinear functions G(X (t)) be the

randomly occurring cyber-attack satisfy ∥G(X (t))∥2 ≤

βG ∥X (t)∥2 , where βG represent a positive scalar.
Assumption 2: For the time-varying exterior disturbance

input W(t), a given positive parameter β, and achieves∫ Tf
0 WT (t)W(t)dt ≤ β, where β ≥ 0 and [0,Tf ] is a fixed
finite-time period.
Definition 1: [18] For any Tf ≥ t ≥ 0, let Nσ (t, Tf )

indicate the switching number of σ (t) over (t, Tf ). If
Nσ (t, Tf ) ≤ N0 +

Tf −t
τa

holds for an integer N0 ≥ 0 and
τa > 0, then τa is referred to as average dwell time.
Definition 2: [9] In the presence of positive constants

C1, C2 and Tf with C1 < C2, a positive definite matrix L
and an external disturbance W(t) satisfying Assumption 2,
the closed-loop NSCPS (11) is said to be FTB with respect to
(C1, C2, Tf , β,L ) if for any t ∈ [0, Tf ]

E
{
max

{
sup

−τ≤t0≤0X
T (t0)LX (t0),

sup
−τ≤t0≤0 Ẋ

T (t0)L Ẋ (t0)
}}

≤ C1 ⇒ E
{
X T (t)LX (t)

}
< C2, t ∈ [0, Tf ],

We propose an AETC issue for NSCPS (11) in the
perspective of quantization across a finite-time interval in this
investigation. In particular, we will construct the proposed
controller in such a manner that the closed-loop NSCPS
(11) is robustly FTB with respect to (C1, C2, Tf , β,L )
and fulfills specified performance measure, that seems to
be, robustly finite-time mixed H∞ and passive performance
index, the following inequality holds:∫ Tf

0
E

{(
γ −1θZT (t)Z(t) − 2(1 − θ )ZT (t)W(t)

)
dt

}
≤ γ

∫ Tf

0
E

{
WT (t)W(t)dt

}
(12)

where θ ∈ [0, 1] is perhaps a weighting parameter
that specifies the trade-off between H∞ and passivity
performances.

III. MAIN RESULTS
The issue of AETC for NSCPS (11) based on FTB and
average dwell time technique with quantization design is

concerned in this section. More accurately, we develop a new
set of sufficient criterion for the existence of AETC design
that can be assessed in terms of LMIs, which makes the
NSCPS (11) is FTB, based on the adequate LKF and the
mixed H∞ and passivity performance.

A. FTB AND AVERAGE DWELL-TIME ANALYSIS
In this part, we construct sufficient conditions for the
closed-loop NSCPS (11) robustly FTB, as well as an AETC
scheme with cyber-attck.
Theorem 1: For given communication channel parameter

0 ≤ β ≤ 1, trigger parameter ςj, nonnegative real
scalars τ , d, the other parameters α, µ, ρ, C1, C2, Tf , β, the
controller gain matrices Kja, then the NSCPS (11) with
AETC sampling technique and cyber-attacks is robustly FTB
with respect to (C1, C2, Tf , β,L ) if there exist symmetric
matrices Pia,Q1ia,Q2ia,R1ia,R2ia, Tia, 81j, 82j, appropri-
ate dimensioned matrices Mlia(l = 1, 2) and scalars
βF , βG, ϵ1 such that the following LMIs applicable for all
i, j ∈ R and a ∈ 0:

9 =

 9ν1 ∗ ∗

9ν2 −℘1 ∗

9ν3 0 −℘2

 < 0 (13)

Pia ≤ µPja,Q1ia ≤ µQ1ja,Q2ia ≤ µQ2ja,

R1ia ≤ µR1ja,R2ia ≤ µR2ja, (14)

W1C1 + λ12β < λ1C2µ
N0e−αTf (15)[

Rlia ∗

Mlia Rlia

]
> 0, (l = 1, 2) (16)

and also any switching signal σ (t) with the average dwell time
fulfilling

τa > τ ∗
a =

Tf lnµ
FA

(17)

where

9ν1 =

 91ν ∗ ∗

92ν 93ν ∗

94ν 0 95ν

 ,

9ν2 =

[
9T

ν21
9T

ν22
9T

ν23
9T

ν24
9T

ν25
9T

ν26
9T

ν27

]T
,

9ν3 =

[
9T

ν31
9T

ν32
9T

ν33
9T

ν34

]T
,

℘1 = diag{0,R−1
1ia,R

−1
2ia,R

−1
1ia,R

−1
2ia, βF , βG},

℘2 = diag{ϵ1i, ϵ1i, ϵ1i, ϵ1i},

91ν =

 91ν11 ∗ ∗

91ν21 91ν22 ∗

91ν31 91ν32 91ν33

 ,

92ν =

 e−αd (R2ia −M2ia) 0 0
e−αdM2ia 0 0
2CTi P

T
ia 0 0

 ,

93ν =

 93ν11 ∗ ∗

93ν21 93ν22 ∗

0 0 −βF

 ,
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94ν =

 2(1 − β)(1 + 1q)ϕTa KT
jaB

T
i P

T
ia 0 0

2β(1 + 1q)ϕTa KT
jaB

T
i P

T
ia 0 0

2DT
i P

T
ia 0 0

 ,

91ν11 = 2PiaAi +Qlia − e−ατR1ia − e−αdR2ia + αPia,
91ν21 = 2β(1 + 1q)ϕTa KT

jaB
T
i P

T
ia + e−ατ (R1ia −M1ia),

91ν22 = e−ατ (−2R1ia +MT
1ia +M1ia) + ςj82j,

91ν31=e−ατM1ia, 93ν11=e−αd (−2R2ia+MT
2ia +M2ia),

91ν33=−e−ατ (Q1ia+R1ia), 91ν32=e−ατ (R1ia −M1ia),

93ν21=e−αd (R2ia−M2ia), 93ν22=−e−αd (Q2ia−R2ia),

95ν = diag{−βG, −81j, −Tia},
9ν22 = τ

[
Ai βBiKjaϕa(1 + 1q) 03n Ci

(1 − β)BiKjaϕa(1 + 1q) βBiKjaϕa(1 + 1q) Di
]
,

9ν23 = d
[
Ai βBiKjaϕa(1 + 1q) 03n Ci

(1 − β)BiKjaϕa(1 + 1q) βBiKjaϕa(1 + 1q) Di
]
,

9ν24 = τβ1(1 + 1q)

×
[
0 BiKjaϕa 04n − BiKjaϕa BiKjaϕa 0

]
,

9ν25 = dβ1(1 + 1q)

×
[
0 BiKjaϕa 04n − BiKjaϕa BiKjaϕa 0

]
,

9ν26 =
[
F 08n

]
, 9ν27 =

[
0 G 07n

]
,

9ν31 =
[
010n τMT

ia 05n
]
, 9ν33 =

[
MT

ia 015n
]
,

9ν32 =9ν34 =
[
ϵ1iN1i 04n ϵ1iN2i 0 ϵ1iN3i 08n

]
,

W1=λ2+τe−ατλ3+de−αdλ4 +
τ 2

2
e−ατλ5 +

d
2

2
e−αdλ6,

FA = ln(λ1C2) − αTf − N0lnµ − ln(W1C1 + λ12β)

and other parameters are zero.
Proof: To achieve the desired result, the LKF for the

closed-loop NSCPS (11) is constructed in the following form:

Vi(X (t)) = X T (t)PiaX (t) +

∫ t

t−τ

eα(s−t)X T (s)Q1iaX (s)ds

+

∫ t

t−d
eα(s−t)X T (s)Q2iaX (s)ds

+ τ

∫ t

t−τ

∫ t

θ

eα(s−t)Ẋ T (s)R1iaẊ (s)dsdθ

+ d
∫ t

t−d

∫ t

θ

eα(s−t)Ẋ T (s)R2iaẊ (s)dsdθ. (18)

By calculating the derivatives of Vi(X (t)) and then taking
into account both sides’ mathematical expectations, we may
arrive at

E{V̇i(X (t)) + αVi(X (t))}

= 2X T (t)PiaẊ (t) + X T (t)

(αPia +Q1ia +Q2ia)X (t) − e−ατX T (t − τ )Q1iaX (t − τ )

− e−αdX T (t − d)Q2iaX (t − d) + τ 2E{Ẋ T (t)RẊ (t)}

− τe−ατ

∫ t

t−τ

Ẋ T (s)R1iaẊ (s)ds

− de−αd
∫ t

t−d
Ẋ T (s)R2iaẊ (s)ds. (19)

where, R = τ 2R1ia + d
2R2ia. Furthermore, it should have

been mentioned that

E{Ẋ T (t)RẊ (t)} = ℵ
T
1 Rℵ1 + β1ℵ

T
2 Rℵ2 (20)

in which

ℵ1 = Âi(t)X (t) + BiKjaϕa(1 + 1q)
(
β(X (t − τ (t)) + et̂k (t))

+ (1−β)G(X (t − d(t)))
)
+Ĉi(t)F(X (t)) + D̂i(t)W(t),

ℵ2 = BiKjaϕa(1 + 1q)
(
X (t − τ (t)) + et̂k (t)

− G(X (t − d(t)))
)
.

According to Lemma 1 in [26] for matricesMlia(l = 1, 2),
the integral terms in (19) can be expressed as

−τe−ατ

∫ t

t−τ

Ẋ T (s)R1iaẊ (s)ds ≤ e−ατ ξT1 (t)01ξ1(t), (21)

−de−αd
∫ t

t−d
Ẋ T (s)R2iaẊ (s)ds ≤ e−αdξT2 (t)02ξ2(t). (22)

where,

ξ1(t) =
[
X T (t) X T (t − τ (t)) X T (t − τ )

]T
,

ξ2(t) =
[
X T (t) X T (t − d(t)) X T (t − d)

]T
,

0l =

 −Rlia ∗ ∗

Rlia −Mlia 0̂l ∗

Mlia Rlia −Mlia −Rlia

 ,

0̂l = −2Rlia +Mlia +MT
lia, (l = 1, 2).

Furthermore, from Assumption 1, we attain that

β−1
G X T (t − d(t))G TGX (t − d(t))

− βGGT (X (t − d(t)))G(X (t − d(t))) > 0, (23)

β−1
F X T (t)F TFX (t) − βFFT (X (t))F(X (t)) > 0. (24)

By unifying (18)-(24) with (2) and then utilizing the Schur
complement Lemma, it is simple to derive that

E{V̇i(X (t)) + αVi(X (t)) −WT (t)TiaW(t)

− eTt̂k (t)81jet̂k (t) + ςjX T (t − τ (t))82jX (t − τ (t))}

= 4T (t)94(t), (25)

where 4T (t) =

[
ξT1 (t) X T (t − d(t)) X T (t −

d) FT (X (t)) GT (X (t − d(t))) eT
t̂k
(t)WT (t)

]
and the element

of 9 are detailed in (13).
According to the approach in [39], the inequality (25) may

be rephrased in the following way:

E{V̇i(X (t)) + αVi(X (t))} −WT (t)TiaW(t) < 0. (26)

Furthermore, integrating (26) with tk to t results in

E{Vi(X (t))} < eα(t−tk )E{Vi(X (tk ))}
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+

∫ t

tk
eα(t−s)WT (s)TiaW(s)ds. (27)

Make the assumption that, as the switching instants tk , the
NSCPS (11) switches from jth subsystem to ith subsystem;
i. e., σ (t−k ) = j, σ (t+k ) = σ (tk ) = i and employing (14),
we acquire

E{Vi(X (t))} < eα(t−tk )µVi(X (t−k ))

+

∫ t

tk
eα(t−s)WT (s)TiaW(s)ds,

< eα(t−tk )µ
[
eα(tk−tk−1)Vi(X (tk−1))

+

∫ tk

tk−1

eα(tk−s)WT (s)TiaW(s)ds
]

+

∫ t

tk
eα(t−s)WT (s)TiaW(s)ds,

= eα(t−tk−1)µVi(X (tk−1))

+ µ

∫ tk

tk−1

eα(t−s)WT (s)TiaW(s)ds

+

∫ t

tk
eα(t−s)WT (s)TiaW(s)ds < · · · ,

< eα(t−0)µNσ (0,t)Vi(X (0))

+ µNσ (0,t)
∫ t1

0
eα(t−s)WT (s)TiaW(s)ds

+ µNσ (t1,t)
∫ t2

t1
eα(t−s)WT (s)TiaW(s)ds

+ · · · + µ

∫ t

tk−1

eα(t−s)WT (s)TiaW(s)ds

+

∫ t

tk
eα(t−s)WT (s)TiaW(s)ds,

≤ eαTf µNσ (0,Tf )
(
E{Vi(X (0))}

+

∫ Tf

0
WT (s)TiaW(s)ds

)
. (28)

We may deduce from Lemma 1 in [39], that

E{Vi(X (t))} ≤ eαTf µN0µ
Tf
τa

(
E{Vi(X (0))}

+ λmax(Tia)β
)

(29)

Then, by setting P̃ia = L −
1
2PiaL −

1
2 , Q̃lia =

L −
1
2QliaL

−
1
2 , R̃lia = L −

1
2RliaL

−
1
2 , (l = 1, 2), it is easy

to get that

E{Vσ (t)(X (t))} ≥ E{X T (t)PiaX (t)},

≥ E{X T (t)L
1
2 P̃iaL

1
2X (t)},

≥
min
i∈N λmax(P̃ia)E{X T (t)LX (t)},

= λ1E{X T (t)LX (t)}. (30)

From the other hand, we acquire

E{Vσ (0)(X (0))}

≤ E{X T (0)PiaX (0)

+

∫ 0

−τ

eαsX T (s)Q1iaX (s)ds

+

∫ 0

−d
eαsX T (s)Q2iaX (s)ds

+ τ

∫ 0

−τ

∫ 0

θ

eαsẊ T (s)R1iaẊ (s)dsdθ

+ d
∫ 0

−d

∫ 0

θ

eαsẊ T (s)R2iaẊ (s)dsdθ}

≤ E{
max
i ∈ N

(
λmin(P̃ia)

)
X T (0)LX (0)

+ τe−ατ
max
i ∈ N

(
λmin(Q̃1ia)

) sup
−τ < θ < 0

× {X T (θ )LX (θ )}

+ de−αd
max
i ∈ N

(
λmin(Q̃2ia)

) sup
−d < θ < 0

× {X T (θ )LX (θ )}

+
τ 2

2
e−ατ

max
i ∈ N

(
λmin(R̃1ia)

) sup
−τ < θ < 0

× {Ẋ T (θ )L Ẋ (θ )}

+
d
2

2
e−αd

max
i ∈ N

(
λmin(R̃2ia)

) sup
−d < θ < 0

× {Ẋ T (θ )L Ẋ (θ )}}

≤
(
λ2 + τe−ατλ3 + de−αdλ4 +

τ 2

2
e−ατλ5 +

d
2

2
e−αdλ6

)
sup

−τ < θ < 0, −d < θ < 0

×

{
X T (θ )LX (θ ), Ẋ T (θ )L Ẋ (θ )

}
≤ W1C1 (31)

From (29) - (31) we can get that

E{X T (t)LX (t)} ≤
E{Vσ (t)(X (t))}

λ1
,

≤
eαTf µN0µ

Tf
τa

(
Vσ (0)(X (0)) + λ12β

)
λ1

,

≤
eαTf µN0µ

Tf
τa

(
W1C1 + λ12β

)
λ1

. (32)

As a result, if the criterion in (15) holds, it is evident
that E{X T (t)LX (t)} ≤ C2, ∀t ∈ [0, Tf ]. Therefore as
consequence, as seen by Definition 2, we have strongly
established that the closed-loopNSCPS (11) is FTB in respect
of (C1, C2, Tf , β,L ). This concludes the proof.

B. FINITE-TIME MIXED H∞ AND PASSIVITY-BASED
CONTROL DESIGN
In this subsection, we extend the result presented in
Theorem 1 with the finite-time mixed H∞ and passivity
approach. A set of necessary criteria is derived for enhancing
finite-time mixed H∞ and passivity performance for the
closed-loop NSCPS (11) with unknown gain matrices.
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Theorem 2: For given communication channel parameter
0 ≤ β ≤ 1, trigger parameter ςj, nonnegative real scalars
τ , d, the other parameters α, µ, ρ, C1, C2, Tf , β, θ, γ,

then the NSCPS (11) with AETC sampling technique
and cyber-attacks is robustly FTB with respect to
(C1, C2, Tf , β,L ) and achieves finite-time mixed H∞

and passivity performance (12), if there exist symmetric
matrices Pia,Q1ia,Q2ia,R1ia,R2ia, 81j, 82j, appropriate
dimensioned matrices Yja,Mlia(l = 1, 2) and scalars
βF , βG, ϵ1 such that the following LMIs applicable for all
i, j ∈ R and a ∈ 0:

9̆ =

 9̆ν1 ∗ ∗

9̆ν2 −℘1 ∗

9̆ν3 0 −℘2

 < 0 (33)

Pia ≤ µPja,Q1ia ≤ µQ1ja,Q2ia ≤ µQ2ja,

R1ia ≤ µR1ja,R2ia ≤ µR2ja, (34)

W1C1 + λ12β < λ1C2µ
N0e−αTf (35)[

Rlia ∗

Mlia Rlia

]
> 0, (l = 1, 2) (36)

and also any switching signal σ (t) with the average dwell time
fulfilling

τa > τ ∗
a =

Tf lnµ
FA

(37)

where

9̆ν1 =

 9̆1ν ∗ ∗

9̆2ν 9̆3ν ∗

9̆4ν 0 9̆5ν

 ,

9̆ν2 =

[
9̆T

ν21
9̆T

ν22
9̆T

ν23
9̆T

ν24
9̆T

ν25
9̆T

ν26
9̆T

ν27

]T
,

9̆ν3 =

[
9̆T

ν31
9̆T

ν32
9̆T

ν33
9̆T

ν34

]T
,

℘1 = diag{γ, 2ν1Pia − ν21R1ia, 2ν2Pia − ν22R2ia,

2ν1Pia − ν21R1ia, 2ν2Pia − ν22R2ia, βF , βG},

℘2 = diag{ϵ1i, ϵ1i, ϵ1i, ϵ1i},

9̆1ν =

 9̆1ν11 ∗ ∗

9̆1ν21 9̆1ν22 ∗

9̆1ν31 9̆1ν32 9̆1ν33

 ,

9̆2ν =

 e−αd (R2ia −M2ia) 0 0
e−αdM2ia 0 0
2CTi P

T
ia 0 0

 ,

9̆3ν =

 9̆3ν11 ∗ ∗

9̆3ν21 9̆3ν22 ∗

0 0 −βF

 ,

9̆4ν =

 2(1 − β)(1 + 1q)ϕTa YTjaB
T
i 0 0

2β(1 + 1q)ϕTa YTjaB
T
i 0 0

2DT
i P

T
ia − 2(1 − θ )Ei 0 0

 ,

9̆1ν11 = 2PiaAi +Qlia − e−ατR1ia − e−αdR2ia + αPia,
9̆1ν21 = 2β(1 + 1q)ϕTa YTjaB

T
i + e−ατ (R1ia −M1ia),

9̆1ν22 = e−ατ (−2R1ia +MT
1ia +M1ia) + ςj82j,

9̆1ν31 = e−ατM1ia, 9̆3ν11=2e−αd (−R2ia +M2ia),

9̆1ν33 = −e−ατ (Q1ia +R1ia), 9̆1ν32=e−ατ (R1ia −M1ia),

9̆3ν21 = e−αd (R2ia−M2ia), 9̆3ν22=−e−αd (Q2ia −R2ia),

9̆5ν = diag{−βG, −81j, −γ − 2(1 − θ )HT
i },

9̆ν21 =

[√
θEi 07n

√
θHi

]
,

9̆ν22 = τ
[
PiaAi βBiYjaϕa(1 + 1q) 03n PiaCi

(1−β)BiYjaϕa(1+1q) βBiYjaϕa(1 + 1q) PiaDi
]
,

9̆ν23 = d
[
PiaAi βBiYjaϕa(1 + 1q) 03n PiaCi

(1−β)BiYjaϕa(1 + 1q) βBiYjaϕa(1+1q) PiaDi
]
,

9̆ν24 = τβ1(1 + 1q)

×
[
0 BiYjaϕa 04n − BiYjaϕa BiYjaϕa 0

]
,

9̆ν25 = dβ1(1 + 1q)

×
[
0 BiYjaϕa 04n − BiYjaϕa BiYjaϕa 0

]
,

9̆ν26 =
[
F 08n

]
, 9̆ν27 =

[
0 G 07n

]
,

9̆ν31 =
[
010n τMT

iaPia 05n
]
,

9̆ν33 =

[
MT

iaPia 015n
]
,

9̆ν32 = 9̆ν34 =
[
ϵ1iN1i 04n ϵ1iN2i 0 ϵ1iN3i 08n

]
,

W1 = λ2 + τe−ατλ3 + de−αdλ4 +
τ 2

2
e−ατλ5

+
d
2

2
e−αdλ6,

FA = ln(λ1C2) − αTf − N0lnµ − ln(W1C1 + γβ),

and other such parameters are zero. Furthermore, the
desired controller gain matrices are computed by K̂ja =

U3−1P−1
11ia3U

TYja.
Proof:TheNSCPS (11) is FTB, according to Theorem 1.

Under zero initial condition, we will demonstrate the
finite-time mixed H∞ and passivity performance of the
closed-loop NSCPS (11). Now, employing the same LKF as
in Theorem 1, and using the same derivations and equation of
(12), it is easy to compute that

E
{
V̇i(X (t)) − αVi(X (t)) + γ −1θZT (t)Z(t)
− 2(1 − θ )ZT (t)W(t) − γWT (t)W(t)

}
= 4T (t)9̆4(t), (38)

where 9̆9,1 = DT
i P

T
ia, 9̆10,1 =

√
θDi, 9̆10,9 =

√
θEi, 9̆9,9 = −γ − 2(1 − θ )HT

i , 9̆10,10 = −γ, and the
remaining terms of 9̆ = 9 which are described this way from
Theorem 1. In addition, with all positive scalars νl (l = 1, 2),
owing to (Rlia − ν−1

l Pia)R−1
lia (Rlia − ν−1

l Pia) ≥ 0, one can
obtain

−PiaR−1
lia Pia ≤ −2νlPia + ν2l Rlia. (39)

Replace −PiaR−1
lia Pia by −2νlPia + ν2l Rlia, PiaBiKja

by BiP1iaKja and define Yja = (U3−1P−1
11ia3U

T )−1Kja
in (13). For obtaining the controller gain matrices, we set
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I = diag{I , · · · , I } ∈ R10×10. Pre- and post-multiplying
(38) by diag{I ,Pia,Pia,Pia,Pia, I , I , I , I , I , I } as
well as its transpose, it is simple to acquire the LMI in (33).
Hence, from inequality (38) and (39), we may imply that

E
{
V̇i(X (t)) − αVi(X (t)) + γ −1θZT (t)Z(t)
− 2(1 − θ )ZT (t)W(t) − γWT (t)W(t)

}
< 0. (40)

It emerges from a simple calculation that

d
dt

{Vi(X (t))e−αt
}

< e−αt
[

− γ −1θZT (t)Z(t)

+ 2(1 − θ )ZT (t)W(t) + γWT (t)W(t)
]
. (41)

Afterward, by integrating the previously mentioned
inequality from 0 to Tf and utilizing (12), it is possible
to conclude that the closed-loop NSCPS (11) is FTB and
satisfies mixed H∞ and passivity performance with respect
to (C1, C2, Tf , β,L ). This brings the proof of the theorem
to a conclusion.

When the proposed controller scheme is applied to the
NSCPS (11) and the network is without cyber-attacks, the
closed-loop system (11) requires the following structure:

Ẋ (t) = Âi(t)X (t) + BiKjaϕa(1 + 1q)
(
et̂k (t)

+ X (t − τ (t))
)
+ Ĉi(t)F(X (t)) + D̂i(t)W(t). (42)

The proof in Theorem 2 leads to the following corollary.
Corollary 1: For given trigger parameter ςj, nonnegative

real scalar τ , the other parametersα, µ, ρ, C1, C2, Tf , β, θ, γ,

then the switched nonlinear NCS (42) with AETC
sampling technique is robustly FTB with respect to
(C1, C2, Tf , β,L ) and achieves finite-time mixed H∞ and
passivity performance (12), if there exist symmetric matrices
Pia,Q1ia,R1ia, 81j, 82j, appropriate dimensioned matrices
Yja,M1ia and scalars βF , ϵ1 such that the following LMIs
applicable for all i, j ∈ R and a ∈ 0:

9̃ =

 9̃ν1 ∗ ∗

9̃ν2 −℘1 ∗

9̃ν3 0 −℘2

 < 0 (43)

Pia ≤ µPja,Q1ia ≤ µQ1ja,R1ia ≤ µR1ja, (44)

W1C1 + λ12β < λ1C2µ
N0e−αTf (45)[

R1ia ∗

M1ia R1ia

]
> 0, (46)

and also any switching signal σ (t) with the average dwell time
fulfilling

τa > τ ∗
a =

Tf lnµ
FA

(47)

where

9̃ν1 =

[
9̃1ν ∗

9̃2ν 9̃3ν

]
,

9̃1ν =

 9̃1ν11 ∗ ∗

9̃1ν21 9̃1ν22 ∗

9̃1ν31 9̃1ν32 9̃1ν33

 ,

9̃ν2 =

[
9̃T

ν21
9̃T

ν22
9̃T

ν23

]T
,

9̃ν3 =

[
9̃T

ν31
9̃T

ν32
9̃T

ν33
9̃T

ν34

]T
,

℘1 = diag{γ, −2ν1Pia + ν21R1ia, βF },

℘2 = diag{ϵ1i, ϵ1i, ϵ1i, ϵ1i},

9̃2ν =

 CTi PT
ia 0 0

2(1 + 1q)ϕTa YTjaB
T
i 0 0

DT
i P

T
ia − 2(1 − θ)Ei 0 0

 ,

9̃1ν11 = 2PiaAi + αPia +Q1ia − e−ατR1ia,

9̃1ν21 = 2(1 + 1q)ϕTa YTjaB
T
i + e−ατ (R1ia −M1ia),

9̃1ν22 = e−ατ (−2R1ia +MT
1ia +M1ia) + ςj82j,

9̃1ν31 = e−ατM1ia, 9̃1ν32 = e−ατ (R1ia −M1ia),

9̃1ν33 = −e−ατ (Q1ia +R1ia),

9̃ν23 =
[
F 05n

]
,

9̃3ν = diag{−βF , −81j, −γ − 2(1 − θ)HT
i },

FA = ln(λ1C2) − αTf − N0lnµ − ln(W1C1 + γβ),

9̃ν21 =
[ √

θEi 04n
√

θHi
]
,

9̃ν22 = τ
[
PiaAi

BiYjaϕa(1 + 1q) 0 PiaCi BiYjaϕa(1 + 1q) PiaDi
]
,

9̃ν31 =
[
07n τMT

iaPia 0
]
, 9̃ν33 =

[
MT

iaPia 08n
]
,

9̃ν32 = 9̆ν34 =
[
ϵ1iN1i 02n ϵ1iN2i 0 ϵ1iN3i 03n

]
,

W1 = λ2 + τe−ατλ3 +
τ 2

2
e−ατλ4,

and other such parameters are zero. Furthermore, the
desired controller gain matrices are computed by K̂ja =

U3−1P−1
11ia3U

TYja.
Remark 3: It is important to highlight that the proposed

model incorporates the following significant elements: non-
linear terms, external disturbances, and malicious attacks, all
of which contribute to the complexity of network security
issues. Specifically, this article focuses on cyberattacks,
which aim to manipulate transmission data by completely
altering the original information using malicious signal inter-
ference. In this context, these attack signals are represented
as a nonlinear function denoted as G(X (t)). Furthermore,
it’s worth noting that simplifying such nonlinear functions
in the derivation of Theorem 1 can be quite challenging due
to the presence of AETC. In order to tackle this challenge,
the article employs the definition of G(X (t)) as outlined in
Assumption 1 to resolve the nonlinear functions. In light of
these considerations, Theorem 1 provides the FTB analysis
for a class of NCS subject to cyber-attacks. Furthermore,
the design of the Lyapunov-Krasovskii function plays a
constructive role in reducing conservatism. A complex
Lyapunov-Krasovskii functional with multiple integration
terms brings a greater number of decision variables to the
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LMIs. Consequently, the computational complexity increases
when the number of decision variables increases. So, there
should be a trade-off between the integral terms in the
construction of the Lyapunov-Krasovskii functional and the
LMI constraints. In this paper, we have chosen an appropriate
LKF of the form (18)without using any free-weightingmatrix
technique, which results in less computational burden.
Remark 4: It should be noted that the LMI-based condi-

tions obtained in this work include several tuning parameters,
namely, β, τ , d, α, µ, ρ, C1, C2, Tf , β, θ, γ, Although the
solvability of the LMI constraints seems to be easy using
any standard numerical software, the selection of the above
parameters is quite difficult. This is because these parameters
can affect the feasibility of the obtained LMIs. A simple way
to select these parameters is to fine-tune them by the trial-
and-error method.

IV. NUMERICAL EXAMPLE
Example 1: The helicopter serves a wide range of appli-

cations, including military and civilian aviation, agriculture,
and various other sectors. The ability for a helicopter to
take off and land vertically significantly impacts its dynamic
capabilities. Therefore, exploring methods to maintain sta-
ble performance during vertical take-off and landing in
real-world operations is a subject that merits investigation.

However, in practical operational scenarios, numerous
physical systems can experience unpredictable variations in
their parameters, resulting in abrupt changes in these param-
eters or even their overall configurations. The utilization of
switched signals plays a crucial role in the examination and
design of the VTOLHM. In this example, the VTOLHM
will be represented as a switched system, as detailed in
references [43], [44], and [45]. Moreover, consider X (t) =[
X T
1 (t) X T

2 (t) X T
3 (t) X T

4 (t)
]T represents the state variables,

encompassing the following components: horizontal velocity
represented by X1(t), vertical velocity indicated by X2(t),
pitch rate denoted by X3(t), and pitch angle represented by
X4(t). The behavior of σ (t) is modeled as switching signal
with the airspeeds of 135 (σ (t) = 1), 60 (σ (t) = 2), and
170 (σ (t) = 3) knots. From the above airspeeds, we can
see that the vertical take-off and landing helicopter runs
at different speeds. The transformation between different
speeds obeys switched signals. The relevant matrix values are
borrowed from [43], [44], and [45] and are given as follows
(i = 1, 2, 3) :

Ai =


−0.0366 0.0271 0.0188 −0.4555
0.0482 −1.0100 0.0024 −4.0208
0.1002 a32i −0.7070 a34i
0 0 1 0

 ,

Bi =


0.4422 0.1761
b21i −7.5922
−5.5200 4.4900
0 0

 .

where, a321 = 0.3681, a322 = 0.00664, a323 =

0.5047, a341 = 1.4200, a342 = 0.1198, a343 =

2.5460, b211 = 3.5446, b212 = 0.9775 and b213 = 5.1120.
Further, we choose the other matrices of NSCPS (11) as
follows:

C1 = C2 = C3 =


0.01 0.1 0.1 0
0.1 0.1 0 0.1
0.2 0.3 0.4 0.1
0.2 0.4 0.1 0.1

 ,

D1 = D2 = D3 =
[
0.2 0.1 0.1 0.2

]T
,

E1 = E2 = E3 =
[
0.2 0.1 0.0 0.1

]
,

M11 = M12 = M13 = diag{0.1, 0.3, 0.1, 0.2}

N11 = N12 = N13 = diag{0.1, 0.3, 0.1, 0.2},

N21 = N22 = N23 = diag{0.1, 0.2, 0.3, 0.2},

N31 = N32 = N33 =
[
0.1 0.3 0 0.2

]T
,

H1 = H2 = H3 = 0.1, F(X (t)) =


tanh(−0.1X1(t))
tanh(0.1X2(t))
tanh(−0.1X3(t))
tanh(0.1X4(t))

 .

For the purpose of simulation, the exogenous disturbance
are taken as W(t) = 0.2exp(−0.01t)r, where r =

a + (b − a)randn, a = −0.5, b = 0.5. Furthermore,
it is assumed that the cyber-attack function is G(X (t)) =

[tanh(−0.5X1(t)), tanh(0.5X2(t)), tanh(−0.5X3(t)),
tanh(0.5X4(t))]T . We use ρ(t) ∈ {1, 2} throughout each
transmission to minimize the measurement size and

ϕρ(t) ∈



1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 ,


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1


 .

Furthermore, we explore two cases to validate the applica-
bility of the suggested control design method. Case 1 consid-
ers both theAETC scheme and cyber-attacks for NSCPS (11),
while Case 2 considers only the AETC strategy for switched
nonlinear NCS (42).

Case 1: Let the cyber-attack and the event based param-
eters are chosen as β = 0.6, and ςj = 0.5. Furthermore, its
remaining parameters are described as follows: γ = 0.9, θ =

0.7, µ = 1.05, α = 0.005, ρ = 0.6, τ = 0.01, d =

0.01, C1 = 0.7, C2 = 1.7657, Tf = 50 and β = 0.7. Then,
the LMI constraints obtained in (33) are solved by employing
MATLAB LMI toolbox and the feasibility can be obtained
with aforementioned parameter values. Based on which, the
feedback gain matrices can be projected by

K11 =

[
0.0217 0.0174 0 0
0.0127 0.0083 0 0

]
,

K21 =

[
0.0053 −0.0011 0 0
−0.0012 −0.0012 0 0

]
,

K31 =

[
0.0020 0.0025 0 0
0.0015 0.0006 0 0

]
,

K12 =

[
0 0 0.0137 0.0095
0 0 0.0090 −0.0035

]
,
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TABLE 1. τ and d were calculated for various γ values.

TABLE 2. τ and d were calculated for various α values.

TABLE 3. Calculated τ = d for different performances.

FIGURE 2. State responses of NSCPS (11).

FIGURE 3. Simulation results of switching and disturbances input signals
for NSCPS (11).

K22 =

[
0 0 −0.0176 −0.0078
0 0 −0.0026 −0.0103

]
,

K32 =

[
0 0 −0.0084 0.0197
0 0 −0.0060 0.0077

]
.

For simulation purposes, the initial state is considered to
be X (0) =

[
−0.2 0.3 0.5 −0.4

]T and the average dwell
time τ ∗

a on the switching signal σ (t) can be determined
as τ ∗

a = 6.0096. As a result, the simulated results are
shown in Figs. 2-7 depending on the aforesaid controller
gain matrices. To summarize, the state trajectories of
NSCPS (11) with and without controller, which are seen in
Fig. 2(a) and 2(b). Then, the corresponding switching signal
σ (t) and the disturbances input signal W(t) are depicted
in Fig. 3(a) and 3(b). Further, Fig. 4(a) and 4(c) depicts
the time evolution of E{X T (t)LX (t)}, where it clearly
showcases that the state doesn’t surpass the value C2. The

FIGURE 4. Evaluation E{X T (t)L X (t)} of NSCPS (11).

FIGURE 5. Responses of release instants and release interval, error and
theresholds for NSCPS (11).

FIGURE 6. Controlled and output trajectories for NSCPS (11).

time evolution of E{X T (t)LX (t)} without controller is
displayed in Fig. 4(b) and 4(d). As a result, it is clear
that the suggested control can maintain the stability of the
considered system though in the existence of cyber-attacks.
The curves of an ETC release instants and intervals, error
and theresholds values are displayed in Fig. 5(a) and 5(b),
respectively. In Fig. 6(a) and 6(b), the controlled and output
trajectories are given. Furthermore, the cyber-attack function
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FIGURE 7. Response of cyber-attack function G(X (·)) and stochastic
variable β(t).

TABLE 4. τ was calculated for various for various γ values.

TABLE 5. τ was calculated for various for various α values.

G(X (·)) and Bernoulli distributed stochastic variable β(t) are
presented in Fig. 7(a) and 7(b). The calculated upperbound
of maximum time-delays τ and d for various γ values are
disclosed in TABLE 1 and also for various α values are
indexed in TABLE 2. Furthermore, τ and d values for several
instances, namely, passivity, mixed H∞ & passivity and H∞

performance are presented in TABLE 3.
As can be seen from the simulation results, the NSCPS in

(11) even in the presence of AETC scheme and quantization
effect is robustly FTBwith respect to (0.7, 1.7657, 50, 0.7, I )
and has a reasonable finite-time mixed H∞ and passivity
performance, demonstrating the suggested controller design’s
adaptability under cyber-attacks.

Case 2: Here, we set β = 0, that is the NCS (42)
works normally without cyber-attacks. Hence, with the same
parameter values carried out in the previous case, the desired
controller gains without cyber-attack are established by

K11 =

[
0.0393 0.0413 0 0
0.0106 0.0089 0 0

]
,

K21 =

[
0.0034 −0.0043 0 0
−0.0015 −0.0076 0 0

]
,

K31 =

[
0.0151 0.0112 0 0
0.0088 0.0020 0 0

]
,

K12 =

[
0 0 0.0114 0.0396
0 0 0.0031 −0.0148

]
,

K22 =

[
0 0 −0.0676 −0.0225
0 0 −0.0112 −0.0237

]
,

K32 =

[
0 0 −0.0556 0.0623
0 0 −0.0402 0.0260

]
.

Here, the state responses for NCS (42) in the presence
and absence of controller are displayed 8(a) and 8(b),
respectively. Moreover, the time history E{X T (t)LX (t)}

FIGURE 8. State responses of NCS (42).

FIGURE 9. Evaluation E{X T (t)L X (t)} of NCS (42).

FIGURE 10. Controlled and output trajectories for NCS (42).

of closed-loop NCS (42) is depicted in Fig. 9(a) and 9(c).
It can be viewed from Fig. 9(a) and 9(c) that the desired
system (42) without cyber-attack is FTB and does not
exceeds the bound C2 = 1.8104. Furthermore, the time
evolution ofE{X T (t)LX (t)},without controller is disclosed
in Fig. 9(b) and 9(d). Moreover, the controlled and output
trajectories for NCS (42) are plotted in Figs. 10(a) and 10(b),
respectively. Further, the release instants and release interval,
error and theresholds for NCS (42) are presented in
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TABLE 6. Calculated τ for different performances.

FIGURE 11. Responses of release instants and release interval, error and
theresholds for NCS (42).

Fig. 11(a) and 11(b). Additionally, the calculated time delay
τ for various γ and α is provided in TABLES 4 and 5,
respectively. Finally, the calculated τ for three different
performances are provided in TABLE 6. Thus, it is verified
that based AETC mechanism for NCS (42) is FTB with
respect to (0.7, 1.8104, 50, 0.7, I ).
The simulation results indicate that the unforced NSCPS

under investigation are unstable. However, the suggested
state feedback control law stabilizes the NSCPS. According
to Figs. 2, 4, 8 and 9, the suggested controller effectively
stabilizes the NSCPS in both circumstances. Furthermore,
as compared to Fig. 2(a), the state trajectories in Fig. 8(a)
converge smoothly and quickly to an equilibrium point.
Furthermore, TABLES 1-3 clearly show that the time delays
for various values of γ, α and the difference performances are
better than the values in TABLES 4-6 respectively, implying
that the absence of a cyber-attack in the system has less
conservative and better performance. As an outcome, it can
be claimed that the suggested control mechanism is more
realistic since it is more generic and can handle quantization,
uncertainty, and cyber-attacks.

V. CONCLUSION
An AETC problem for a category of NSCPS in the presence
of energy limitations and quantization across a finite-time
period is highlighted in this study. An AETC mechanism and
the measurement size reduction techniques are combined in a
unified framework to preserve limited power in communica-
tion networks.Meanwhile, cyber-attacks that occur at random
and attempt to degrade network reliability are represented as a
nonlinear function. Nevertheless, in the proposed controller,
the external disturbances are compensated by incorporating
mixed H∞ and passivity conditions. A novel collection of
adequate requirements in the construction of LMIs ensures
the FTB of closed-loop NSCPS with mixedH∞ and passivity
performance with the help of proper LKF. With the use of
LMIs, the appropriate controller gain matrices are achieved.

Eventually, a VTOLHM example is offered to highlight the
significance of the suggested control strategy.
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