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ABSTRACT Bicycles are an ecofriendly mode of transportation, and cycling offers physical and mental
well-being. However, their increased use has resulted in frequent bicycle–human accidents, car-to-bicycle
collisions, related injuries and cyclist crashes. Moreover, rules for safe cycling are limited. Smart healthcare
systems using smartphones and/or wearable devices, such as a cycling monitoring application that can
inform fellow cyclists about the state of the user, can be developed to provide assistance during such
unexpected events. In this study, a one-dimensional convolutional neural network (1DCNN)–bidirectional
long short-termmemory (BiLSTM) based on attentionmechanism (CBiAM)model is proposed for detecting
cyclists’ states using a mobile phone, thereby enhancing their safety and promoting a secure cycling
experience in case of accidents or emergencies. In addition, the ‘‘cycling safe (CySa) dataset,’’ a new
dataset containing data on the cyclists’ actions during cycling, collected from a smartphone positioned
in the cyclists’ pocket is presented. The proposed CBiAM model was trained on the CySa dataset using
different sliding window sizes, batch sizes (Bz), and learning rates (Lr). Experimental results confirmed
the superior performance of the proposed model compared to conventional approaches, such as support
vector machines and artificial neural networks, and existing advanced architectures, such as 1DCNN, long
short-termmemory (LSTM), and Bi-LSTM. The robustness of themodel was validated using public datasets,
such as UCI-human activity recognition (HAR), PAMAP2, Opportunity, MOTIONSENSE, and WISDM,
where it achieved impressive F1-scores of 97.51%, 99.82%, 94.72%, 97.67%, and 87.05%, respectively.

INDEX TERMS Attention mechanism, cycling, human activity recognition, bidirectional LSTM.

I. INTRODUCTION
Cycling has become increasingly popular as an excellent
form of physical exercise that can improve cardiovascular
health, strengthen muscles, and boost mental well-being [1].
Cycling is also cost effective as it does not incur fuel costs and
insurance or parking fees and is free of harmful emissions [2].
However, it involves some potential risks. Bicycles are a
common means of transportation, and in a study conducted
in a large city in Germany, the number of bicycle accidents
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accounted for almost half of all the traffic accidents in the
city [3]. In 2010–2014, approximately 32% of cyclists in
Sweden, suffered from serious injuries due to bicycle acci-
dents [4]. Therefore, the condition of fellow cyclists should
be accessible to offer quick support in case of bicycle crashes
or emergencies, such as administering first aid, calling for
emergency services, or transporting the injured person to a
hospital.

At present, mobile devices (off-body sensing) and/or wear-
able devices (on-body sensing) are commonly used for
monitoring human activities [5]. Smartphones (combined
with off-body and on-body sensing) are equipped with a
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FIGURE 1. Block diagram of a bicycle assistance application.

range of sensing applications that canmeasure various health-
related data, such as heart rate, blood pressure, and oxygen
saturation [6]. Mobile apps collect sensor data and send it to
a server for analysis. Health care professionals can leverage
these datasets to remotely evaluate their patients’ conditions
and adjust their medication dosages by sending them mes-
sages based on the analyzed data.

Similarly, mobile devices can be used in cycling groups
for improved assistance in case of emergencies. Fig. 1 shows
a block diagram of a bicycle assistance application, where
a mobile with various sensors can capture data from each
cyclist in the group. The raw data is then transmitted to
a server via the Internet (cloud infrastructure) or SMS [7].
Using artificial intelligence, the data can be analyzed and
processed by a deep learning (DL) model to predict the con-
dition of each cyclist. Thus, cyclists can have real-time access
to the condition of all members during cycling and offer
prompt assistance when needed. Additionally, with advanced
processing capabilities and the development of mobile appli-
cations, the DL model can be integrated into mobile devices
to perform classification tasks and conveniently transmit pre-
diction results to other devices.

Furthermore, with easy accessibility of mobile and wear-
able devices due to their high energy efficiency, compactness,
and low cost, multiple smartphone built-in sensors can now
be utilized for activity recognition. Accelerometers, gyro-
scopes, and magnetometers are widely used sensors on
mobile devices for activity recognition owing to their pop-
ularity and ease of data collection [8]. An accelerometer
measures a mobile device’s acceleration in three directions
(x, y, and z) to detect movements such as walking, running,
and jumping. A gyroscope measures the device’s rotation
around these three axes to evaluate activities such as turn-
ing or falling. Lastly, a magnetometer measures the Earth’s
magnetic field in three dimensions to determine the device
orientation, which helps recognize activities such as standing
or lying down. Thus, a cyclist’s activity can be effectively
analyzed by combining the information obtained from these
three sensors.

Moreover, positions can be tracked using mobile phones
equipped with the global positioning system (GPS), WiFi,
or location-based services (LBSs). GPS can achieve an accu-
racy of 9 and 15 m for horizontal and vertical positioning,
respectively [9]. And the position of fast-moving objects such
as bicycles can be easily detected using GPS sensor data.
In addition, the transmission of data between a mobile phone
and local server is realistic and feasible nowadays. Thus, a DL
model must be developed for predicting the movement of
cyclists to ensure their safety.

The remainder of this paper is organized as follows:
Section II presents an overview of current research.
Section III outlines the dataset collection, feature selection,
and feature preprocessing, and the proposed one-dimensional
convolutional neural network (1DCNN)–bidirectional long
short-termmemory (BiLSTM) based on attentionmechanism
(CBiAM) architecture is compared with traditional methods.
Section IV presents the experimental results and discussion.
Section V concludes the study.

II. RELATED WORKS
In the past few years, several methods have been pro-
posed for modeling and recognizing human activities. To our
knowledge, although cycling activities have been studied,
human activity recognition (HAR) specifically designed
to assist cycling groups has not been reported yet. For
instance, with an aim to monitor activity using smart-
phone sensors and improve lifestyle, Mannini [10] developed
accelerometer-based activity monitors to classify four activ-
ities, namely ambulation, cycling, sedentary, and painting,
using a support vector machine (SVM) and achieved an
overall classification accuracy of 84.7%. To improve the clas-
sification accuracy, gyroscope and accelerometer data were
also used to train several classifiers, including Naive Bayes,
decision tree, k-nearest neighbors (KNN), and SVM [11].
The decision tree classifier was identified as the best model
because it distinguished various actions with high accu-
racy, such as climbing stairs, descending stairs, driving, and
cycling. A wristband with heart rate and accelerator sensors
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FIGURE 2. Placement of smartphones on participants and the body gestures corresponding to each action.

was used to detect specific activities at home [12]. Therein,
four basic activities, such as standing, sitting, householding,
and cycling with two intensity levels, were considered, and
random forest (RF) and SVM classifiers were applied on the
collected data.

For RF and SVM classifiers, the average recognition
accuracies with leave-one-subject-out cross-validation were
89.2% and 85.6%, respectively, and F1-score values were
0.89 and 0.86, respectively. A study was conducted on
daily activity classifiers for five common activities, such as
cycling, running, sitting, standing, and walking, for health
care applications using acceleration and gyroscope sensors
to manage chronic diseases. The AdaBoost algorithm demon-
strated good performance, achieving a classification accuracy
of 98% [13].
DL has garnered attention from developers in HAR.

Several common DL architectures, such as artificial neural
networks (ANNs) [14], [15], one-dimensional convolutional
neural networks (1DCNNs), auto-encoders, long short-term
memory (LSTM), bidirectional LSTM, and 1DCNN–LSTM
provide high performance in complex classification tasks
and can be easily employed in mobile apps, making them
feasible for further development and wide usage. For exam-
ple, an ANN-based classifier was designed to identify user
identity or find the owner of a phone based on the accel-
eration data of walking recorded while the phone was in
the user’s pocket [15]. The multilayer perceptron (MLP)
achieved 98.11% accuracy in gesture recognition but required
more processing time than SVM.

Furthermore, 1DCNNs and LSTM models have gained
popularity due to their remarkable performance in various
classification problems [16], [17], [18], [19]. For instance,
a 1DCNN-based model was employed for pedestrian activ-
ity recognition [16], which achieved approximately 98%
accuracy in classifying nine types of activities within 2 s.
Additionally, a HAR classifier based on a 1DCNNmodel [17]
predicted two similar actions (going upstairs and walking) at
an accuracy of 96.11%.

Moreover, LSTM-based classifiers have shown outstand-
ing ability in handling sequences with long-term depen-
dencies. For example, a model was designed to identify

everyday activities of individuals with COVID-19 and pro-
vide appropriate recommendations [18], which yielded a
higher classification accuracy of 97.33% compared to tradi-
tional approaches such as decision trees, SVM, and KNN.
Similarly, LSTM-based models have been used for HAR
to improve the quality of life of residents [19] which
obtained higher classification accuracies compared to tradi-
tional approaches such as Naive Bayes or conditional random
fields.

Additionally, a multikernel block CNN-based classifier
was proposed to predict stationary and nonstationary activi-
ties (such as cycling andwalking). Themodel exhibited a high
classification accuracy compared to data fusion techniques,
RF, and CNN-RNN models [20]. Similarly, an ensemble
model (CNN-LSTM) was used for human activity recog-
nition to evaluate various activities on different public
datasets [21], such as UCI-HAR, WISDM, OPPORUNITY,
which achieved a high classification accuracy of 95.78%,
95.85%, and 92.63%, respectively.

The use of Convolutional Neural Networks (CNN) and/or
Gated Recurrent Units (GRU) is an effective solution for rec-
ognizing human activities. For example, generating images
from sensor readings and using CNN to classify human
activities has shown promising results and has enhanced
classification outcomes [22], [23]. The combination of CNN
and GRU, based on the Inception architecture, can capture
not only local patterns at multiple scales but also long-term
dependencies in the sequence data, providing robust detection
in activity classification [24].
Attention mechanism (AM) has recently been applied and

shown promising results in several applications [25], [26],
[27], [28]. An AM-based multihead model was proposed
for HAR, which achieved higher accuracy compared to tra-
ditional techniques. Yin et al. conducted a study on the
combination of CNN-RNN and AM to enhance the classi-
fication performance. The classification accuracy using this
combination was higher than that when only CNN or RNN
was used [28].

In this study, a cycling safe (CySa) dataset comprising
data on five basic activities, such as standing, sitting, walk-
ing with a bicycle, cycling, and falling, was developed.
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Additionally, an AM-based CNN-Bidirectional LSTM
(CBiAM) model was proposed and applied to improve classi-
fication accuracy. Hyperparameter adjustment was performed
to assess the impact of hyperparameters on the model per-
formance. The proposed model was compared with other
classification methods, and the results confirmed that the pro-
posedmodel achieved high accuracy compared to the existing
architectures. Finally, the robustness of the proposed model
on public datasets, such as UCI-HAR, PAMAP2, Opportu-
nity, MOTIONSENSE, and WISDM, was demonstrated.

III. MATERIAL AND METHODS
A. DATASET DESCRIPTION AND PREPROCESSING
1) DATASET COLLECTION
CySa was created by collecting data from mobile sensors
(sensor logger on iPhone 8). Five participants (three males
and two females of 25–30 years) performed five actions:
standing, sitting, walking with a bicycle, cycling, and falling
from a bicycle. Each action was performed for approximately
3 min with a mobile phone placed in the participant’s front
pocket to capture the accelerometer (Ax, Ay, Az), gyroscope
(Gx, Gy, Gz), andmagnetometer (Mx, My, Mz) data, as shown
in Fig. 2. To simulate cycling accidents, the falling action
was defined as when a person falls off the bicycle and rotates
several times to the side. The falling action was designed to be
quick to distinguish it from simply getting off the bicycle. At a
sampling rate of 10 Hz [29], each action performed by one
person contained around 1800–2000 data points, accounting
to around 10,000 data points in total for all five participants.
The total number of data points in the CySa dataset is approx-
imately 50,000 samples, as shown in Table 1.

TABLE 1. Number of data points of the cycling safe dataset1.

2) FEATURE EXTRACTION SELECTION
a: FEATURE SELECTION
After the CySa dataset was collected, different features from
that raw dataset were extracted, such as the mean (Mea),
median (Med), variance (Va), and standard deviation (St),
which are the most used features in HAR [30]. Mea, Med,
Va and St of features were calculated using (1)–(4), respec-
tively. Specifically, Meaim is the median value with a window
size (k), where i is the number of nonoverlapping windows
or is the number of extracted features created by each sensor,
as shown in Fig. 3. m refers to the type of sensor values.
As 9 sensor values (Ax, Ay, Az; Gx, Gy, Gz; andMx, My, Mz)
were used, m ranges from 1 to 9.

FIGURE 3. Feature selection of the CySa dataset.

The length of the samples (k) has a significant effect on
both the computation time and the ability to identify activity
details. The selection of appropriate sample length varies
according to applications, the sample length of 1–5s is recom-
mended for complex activity recognition [8]. Herein, k was
chosen as 10 and a nonoverlapping procedure was used for
feature selection [31].
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where MeaiAx, MediAx, Var
i
Ax and StiAx are mean, median,

variance, and standard deviation of the accelerometer sensor
in x-direction, which is calculated by a window size of k and
a nonoverlapping window of i.

b: FEATURE NORMALIZATION
As the range of the dataset varies, the input must be normal-
ized to avoid training bias. Herein, the datasets are mapped to
a new range and min-max normalization is used for the input
data. The equation is shown below:

xn (i) =
xo (i) − xo (i)min

xo (i)max − xo (i)min

(
xnmax − xnmin

)
+ xnmin (5)

where xn(i) is the normalized feature value of i-th sample,
xo(i)max and xo(i)min are the maximum and minimum feature
values in the original dataset, and xnmax = 1 and xnmin = 0 are
the maximum and minimum feature values of the new range.

c: DATASET VISUALIZATION
Figs. 4(a)–(e) show the magnitudes of the accelerometer,
gyroscope, and magnetometer in the x, y, and z direc-
tions during cycling, falling, sitting, standing, and walking,
respectively. Cycling, falling, and walking produced large
oscillations in the accelerometer, gyroscope, andmagnetome-
ter, as shown in Figs. 4 (a), (b), and (e). Understandably,
these actions comprise a series of alternating leg move-
ments, which can result in sudden changes and vibrations
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FIGURE 4. Normalized magnitude of the sensor values. (a) Cycling, (b) falling, (c) sitting, (d) standing, and
(e) walking.

and significant oscillations in the sensor readings. On the
other hand, as the legs are in stable positions with minimal
movement while sitting and standing, they result in small
oscillations in the accelerometer and gyroscope readings,
as shown in Figs. 4(c) and (d).

B. NEURAL NETWORK ARCHITECTURE
OF THE PROPOSED MODEL
This section discusses several neural network architectures
used to construct the proposed model. The descriptions of
these architectures are as follows:

1) 1DCNN ARCHITECTURE
The 1DCNN model is a variant of the 2DCNN model; it
has been developed and applied for analyzing sequential
data, such as audio signals, or natural language processing
tasks [32]. It is composed of an input layer, convolutional
layers, pooling layers, and fully connected layers. The input
of 1D-CNN is (M × N) matrix, where M is the length of
the data (steps or a sequence of data) and N is the channel
(number of features). The kernel size has the shape of K × N,
where K is given by a designer. For example, as shown
in Fig. 5, K= 2, so the kernel size is the size of a 2× 2matrix.

It will strike from left to right to create convolution maps.
There are two main types of convolutions: overlapping and
nonoverlapping. Overlapping convolution, which is used in
the proposed model, can be useful when a high-resolution
output has to be generated. Nonoverlapping convolution is
typically used to reduce the computational complexity of
convolution operations.

A pooling layer is a new layer added after the convolutional
layer, and it slides over all the regions of the convolution
map according to its stride. The pooling operation reduces
the number of parameters and computation. Max and average
pooling layers are commonly used in CNNs.

In a 1DCNN model, the convolutional layers extract fea-
ture maps by convolving the input signals with learned filters.
These feature maps are then flattened into a 1D array and then
fed into a flattened layer. Finally, a fully connected layer is
used to produce outputs for classification or regression tasks.

2) 1DCNN-BILSTM ARCHITECTURE
The CNN–BiLSTM architecture combines the 1DCNN
and BiLSTM models. The integration of 1DCNN and
LSTM/BiLSTM networks has proven particularly effective
in handling temporal patterns and 1D data. Using this
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FIGURE 5. Architecture of the 1DCNN model.

combination, time-dependent features can be captured and
information loss resulting from convolutional operations can
be mitigated. As shown in Fig. 6(a), the convolutional layers,
pooling layers, and fully connected layers in the 1DCNN
model extract spatial features from the input data. Then, the
valuable features go into the LSTM or BiLSTM layers. The
BiLSTM model is a variant of the LSTM model [33], but it
can process the sequence in both forward and backward direc-
tions, as shown in Fig. 6(c). As depicted in Fig. 6(b), each cell
of the BiLSTM model comprises several main components
such as input (i), output (ot ), and forget (ft ) gates. The i gate
uses the current input (xt) and previous hidden state (ht−1) to
determine the length of the incoming information. The ot gate
uses the current input and the previous hidden state and then
passes them through a sigmoid activation function. Finally,
the ft gate decides whether to retain or omit the information
from the previous state (Ct−1). The mathematical formulas
for these gates are shown in (6)–(10):

it = sig (Wi. [ht−1,Xt ] + bi) , (6)

ft = sig
(
Wf . [ht−1,Xt ] + bf

)
, (7)

Ct = ft ⊗ Ct−1 + it ⊗ tanh (WC . [ht−1,Xt ] + bC ) , (8)

ot = sig (Wo. [ht−1,Xt ] + bo) , (9)

ht = ot ⊗ tanh(C t ), (10)
where Xt , mt , and ht are the inputs at time t, cell update, and
output at time t, respectively; Wi, Wf , WC , Wo are the input
gate weight matrices; and bi, bf , bC , bo are the bias matrices
with respect toWi, Wf , WC , Wo matrices.

3) PROPOSED MODEL
The proposed model combines the DCNN–BiLSTM network
and AM (CBiAM), as shown in Fig.7. 1DCNN–BiLSTM

layers create the sequential data (h1, h2,. . . ,hE), which are
then fed into the AM [34]. In the attention layer, the AM
will calculate the query matrix Q, key matrix K, and value
matrix V based on the data input from the 1DCNN-BiLSTM
layers. The query and key matrices are used to compute
the attention weight of each hidden layer (α1, α2, . . . , αE),
which indicates the relevance of each element in the input
sequence. The AM output is a weighted sum (Z) calculated
by the attention weight and value matrix V, as shown in (11).
Finally, the output of the AM is fed into a fully connected
layer, followed by the softmax function. The architecture of
the proposed model is shown in Table 2

Z (Q,K ,V ) = Softmax
(
QKT
√
DM

)
V (11)

where DM is the dimensionality of the input sequence vector

TABLE 2. The architecture of the proposed model.

C. EXPERIMENTAL SETUP AND EVALUATION
PARAMETERS
1) INPUT AND OUTPUT FEATURES
The CBiAM model uses a sequence of data to predict a
cyclist’s action; therefore, the input of model was shaped as
sequential data. The number of sequences of raw dataset is
defined in (12) and (13):

Si =

[
Meai1,Medi1, . . . ,St

i
9

]N
i=1,

(12)

N =
t − w
w ∗ o

+ 1, (13)

where Si is the input sample i-th, N is the number of input
samples, which is created from the total number of sample
data points (t), w is the length of each sample, and o is the
nonoverlapping ratio (Fig. 8). To maintain the detection time
within 5s, the length of each sample w is chosen as 5 [8].

2) EVALUATION PARAMETERS
The performance of the CBiAM model was compared with
other architectures based on four evaluation metrics: accu-
racy, precision, recall, and F1-score. Accuracy is the total
number of correct predictions divided by the total number
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FIGURE 6. 1DCNN–BiLSTM model architecture.

FIGURE 7. Architecture of the proposed CNN–BiLSTM model with attention mechanism.

of examples in the test set (14). Precision is the number
of correct positive predictions divided by the total number of
positive predictions (15). Recall is the ratio of the number of
correct positive predictions to the sum of true positives and
false negatives (16). Finally, the F1-score, which considers
both precision and recall, is the idea parameter to compare
the classification performance between models, as shown
in (17) [21].

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(14)

Precision =
TP

TP+ FP
(15)

Recall =
TP

TP+ FN
(16)

F1 = 2
Precision ∗ Recall
Precision+ Recall

(17)

where TP, TN, FP, and FN refer to the true positive, true
negative, false positive, and false negative, respectively.

3) HYPERPARAMETER SETTING
To validate the effectiveness of the CBiAM model, the pro-
posed model was trained using different hyperparameters
such as Lr, Bz, and nonoverlapping sliding windows. Five
nonoverlapping ratios (o= 20%, 40%, 60%, 80%, and 100%)
were used herein. The percentage indicates how far the sliding
window travels relative to the first sample. In other words,
the sliding windows will slide one step to the left to create
a new sample if the first level of the sliding window is used
(20%). Similarly, if the fifth level of the sliding window is
used (100%), the next sample will contain the next five sam-
ples without using data from the previous sample, as shown
in Fig. 8. Table 3 lists the hyperparameters used for training
the proposed model.
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FIGURE 8. Sample construction for the input of the proposed model.

TABLE 3. Hyperparameters used to train the proposed model.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
The proposed model was trained using different hyperparam-
eters to find the best model using the CySa dataset. Then,
the proposed model was compared with various models that
have shown good classification performance. Finally, the
proposed model was trained on various public datasets and its
performance was compared with other models to demonstrate
its robustness.

A. IMPACT OF DIFFERENT PARAMETERS
ON THE PROPOSED MODEL
As shown in Fig. 9(a), the training and validation losses
decrease gradually, implying that the network is effectively
learning without overfitting. The CBiAM model efficiently
distinguishes the cyclist activities (Stan, Sit, Wal, Cyl,
and Fal) from the CySa dataset (Table 4). The F1-scores
and accuracies vary according to the Bz, Lr, and level of
nonoverlapping ratio. Specifically, the CBiAMmodel yielded
high F1-scores and accuracies when trained with an Lr
of 0.01 and a Bz of 64, which is an almost 100% F1-score
classification for five ratios. In other hyperparameters, the
CBiAM model exhibited a lower prediction performance
such as F1-scores of 0.9663 (Bz of 256, Lr of 0.01, and
ratio of 80%) and 0.9166 (Bz of 256, Lr of 0.0001, and ratio
of 100%). This error is possibly because the CySa dataset
contains similar features of static activities (Stan and Sit) that

do not have significant oscillations in the sensor readings. For
dynamic activities (Wal, Cyl, and Fal), the CBiAM model
yielded accurate predictions due to significant changes in
accelerometer and gyroscope values across different direc-
tions. Thus, the CBiAM model recognizes these actions with
high accuracy.

FIGURE 9. Training loss/accuracy and validation loss/accuracy of the
proposed model trained on a Bz of 64 and Lr of 10−3, (a) training and
validation loss, (b) training and validation accuracy.

B. COMPARISION WITH OTHER
CLASSIFICATION METHODS
The F1-score of the CBiAM model was compared with
those of the existing architectures for HAR, such as KNN,
SVM, ANN, 1DCNN, LSTM, and BiLSTM. All models
were trained on the CySa dataset; Table 5 shows the best
F1-scores for all models. Overall, all methods performed
well on the CySa dataset. Particularly, DL methods, such
as 1DCNN, LSTM, and BiLSTM, yielded better prediction
results than the traditional learningmethods such as KNN and
SVM. Interestingly, the combination of LSTM/BiLSTM and
1DCNN models showed poor prediction performance, with
F1-scores of 80.79% and 96.65%, respectively, compared to
the single LSTM or single BiLSTM models. However, the
CBiAM model outperformed the single LSTM and BiLSTM
models as well as the classification models with an F1-score
of 100%
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TABLE 4. F1-score of The proposed model on the cysa dataset.

TABLE 5. Experimental results of the activity identification using
different classification methods.

TABLE 6. Public datasets.

C. CLASSIFICATION PERPORMANCE RESULTS
WITH PUBLIC DATASETS
TheCBiAMmodel was trained using different public datasets
to evaluate its classification performance; then, its per-
formance was compared with those of the state-of-the-art
models. Five public datasets, namely UCI-HAR, Opportu-
nity, PAMAP2, WISDM, and MOTIONSENSE, were used.
Table 6 shows the number of samples, features, classes, and
the train/test ratio of each dataset.

1) PUBLIC DATASET DESCRIPTION
a: UCI-HAR
UCI-HAR [40] is a widely used public dataset. The smart-
phones were mounted on the waist of 30 participants who
performed six activities, such as standing, sitting, lying down,
walking, walking downstairs, and walking upstairs. The app
installed on the smartphone recorded information from the
body accelerometer and gyroscope.

b: OPPORTUNITY
The Opportunity dataset contains data on a set of specific
activities, including cleaning the table, preparing a sandwich,
opening and closing the dishwasher, and drinking coffee.
It was created as part of a project aimed at developing
methods for recognizing and understanding human activities
using wearable sensors. To capture the participants’ move-
ments, 12 accelerometers were attached to different parts of
their bodies. A total of 12 participants were involved in the
experiments, and all the actions were labeled in approxi-
mately 57 h. Two types of opportunity annotations are widely
used: (1) low-level locomotion (LLL) [41], which comprises
four classes, namely stand, sit, walk, and lie, and high-level
activities (HLA), which comprises five classes, namely relax-
ing, coffee time, early morning, clean up, and sandwich [42].
The LLL used herein was similar to that used in a previous
study [41].

c: MOTIONSENSE
The MOTIONSENSE dataset was created by researchers at
theMITMedia Lab, and it contained data on six activities per-
formed by 24 participants, such as climbing upstairs, walking
downstairs, sitting, standing, walking, and jogging, within the
same environment and conditions [43]. The accelerometer
and gyroscope sensors in smartwatches were used to measure
attitude, acceleration, gravity, and rotation rate. Specifically,
a total of 1,412,865 samples were collected, capturing 12 fea-
tures: attitude-roll, attitude-pitch, attitude-yaw, gravity-x,
gravity-y, gravity-z, rotation rate-x, rotation rate-y, rotation
rate-z, acceleration-x, acceleration-y, and acceleration-z.

d: PAMAP2
The PAMAP2 dataset contained data on 18 physical activities
performed by nine participants (eight male and one female),
namely (1) lying, (2) sitting, and (3) standing. Three inertial
measurement units (IMUs) were attached to the hand, chest,
and ankle of the participants. The IMUs had a sampling
frequency of 100 Hz, i.e., data were collected every 0.01 s.
The total number of features in the dataset was 52. The
recorded data were obtained from the accelerometer, gyro-
scope, magnetometer, temperature, electromyography, and
heart rate measurements. Typically, six optional activities
were removed from the final dataset, resulting in 12 classes
being retained [44].
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TABLE 7. Performance of the proposed model on public datasets.

FIGURE 10. Confusion matrix of the proposed model on validation using the (a) UCI-HAR, (b) Opport_LLL, (c) MOTIONSENSE,
and (d) WISDM datasets.

e: WISDM
The WISDM dataset contained data on six activities per-
formed by 36 participants, (1) sitting, (2) walking, (3 jogging,
(4) standing, (5) walking downstairs, and (6) climbing
upstairs, and was created by Kwapisz et al. The participants

used an Android phone and placed it in their front leg pockets
to record the data at a sampling frequency of 20 Hz [45].
To maintain data quality, a dedicated individual supervised
the data collection process. The most prevalent activity was
‘‘walking,’’ with 424,400 samples, followed by ‘‘jogging’’
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FIGURE 11. Training performance of the CBiAM model on different batch sizes and learning rates. (a) UCI-HAR, (b) PAMAP2, (c) Opport_LLL,
(d) Opport_HLA, (e) MOTIONSENSE, and (f) WISDM datasets.

with 342,177 samples. ‘‘Standing’’ comprised the least
number of samples (48,395), accounting for 4.4% of the
dataset.

2) COMPARATIVE RESULTS
The proposed architecture was evaluated using five public
datasets; the weighted F1-scores for the best predictions
listed in Table 7. Compared with other architectures, such as
LSTM [58], 1DCNN [41], [47], [49], [53], [57], 1DCNN–
LSTM [21], [48], and 1DCNN–BiLSTM [38], [46], the
CBiAM model was efficient in handling complex activities.
Notably, the proposed network demonstrated superior classi-
fication results on the UCI-HAR dataset (97.52%) compared
to LSTM [58], CNN-GRU [56], and 1DCNN–BiLSTM [46].
Similarly, the AM in the proposed model exhibited better
prediction performance on the Opportunity (LLL) dataset
compared to 1DCNN [41] and 1DCNN–LSTM [48], achiev-
ing an F1-score of 94.72%. Remarkable F1-scores of 99.82%
and 97.67% were achieved on the PAMAP2 and WISDM
datasets respectively, highlighting the superiority of the
CBiAM model over the state-of-the-art approaches.

In the MOTIONSENSE dataset, the proposed model
yielded a high classification accuracy, with a classification
rate of 87.05%, surpassing the results of previous studies.
However, due to the inherent variability in data collection
(where 24 participants performed various actions, introduc-
ing substantial noise and variance), achieving high clas-
sification accuracy was challenging, as similarly observed
in previous studies [20], [48]. For in-depth analysis, the
confusion matrix of the MOTIONSENSE dataset was exam-
ined. The network exhibited lower accuracy in distinguishing
between the actions ‘‘walking downstairs’’ and ‘‘climbing

upstairs’’ because these actions share similar gestures and
thus may appear similar, as shown in Fig. 10(c).
To achieve optimal classification for each dataset, the

proposed model was trained with different Lr and Bz. The
recognition performance varied based on each combination
of the Bz and Lr, as shown in Fig. 11. For instance, both the
UCI-HAR andWISDM datasets yielded favorable prediction
outcomes when trained with a smaller Lr (10−2), as shown
in Figs. 11(a) and (f). In contrast, the PAMAP2, Opportunity,
and MOTIONSENSE datasets achieved improved results
with an Lr of 10−3, as shown in Figs. 11(b)–(e).

Furthermore, we identified that Bz impacted the perfor-
mance of the model. Smaller Bz yielded higher classification
accuracy for the UCI-HAR and WISDM datasets, whereas
larger Bz yielded higher classification accuracy for other
datasets (Opportunity, PAMAP2, and MOTIONSENSE).

We have observed that while the proposed model achieved
a perfect prediction on the proposed Cycling Safety (CySa)
dataset and delivered promising results on most pub-
lic datasets (PAMAP2, Opportunity, MOTIONSENSE, and
WISDM) in comparison to previous studies, the combina-
tion of 1DCNN, BiLSTM, and the Attention mechanism
can lead to an increase in the model’s size, resulting in a
larger memory space occupation in mobile applications. Nev-
ertheless, with the advancements in mobile phone technol-
ogy, modern devices can accommodate substantial amounts
of data and support the installation of resource-intensive
applications.

V. CONCLUSION AND FUTURE WORKS
In this study, the CySa dataset was presented, which is a com-
prehensive collection of cyclists’ actions, such as walking
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with a bicycle, sitting, cycling, and even falling. Additionally,
a DL model, referred to as the 1DCNN–BiLSTM with an
AM (CBiAM) model, was designed to accurately identify
the actions of individual cyclists in cycling groups. The
performance of the CBiAM model was verified via three
experiments conducted using the CySa dataset. Therein, the
impact of sliding window size, Bz, and Lr on the performance
was evaluated. The performance of the proposed model was
compared with those of the existing architectures trained on
public datasets. The results indicate that the proposed model
yields outstanding performance due to the integration of the
AM and BiLSTM model, achieving perfect classification
accuracy (100%) on the CySa dataset. Different architectures
were trained on the same dataset, and the CBiAM model
outperformed the traditional methods, such as SVM and AN,
and advancedDL approaches, including 1DCNN, LSTM, and
BiLSTM. Furthermore, the influence of sliding window size,
Bz, and Lr on the model’s performance was evaluated using
the proposed dataset. The robustness of the CBiAM model
was evaluated based on its enhanced recognition capabilities
across various publicly available datasets, namely UCI-HAR,
PAMAP2, Opportunity, MOTIONSENSE, and WISDM.

The proposed model exhibits favorable recognition per-
formance on the CySa dataset; however, the memory con-
sumption and prediction time across all architectures must
be analyzed in future work. This consideration will pave
the way for an optimal solution pertaining to memory uti-
lization for the trained model, particularly in real-world
applications on mobile devices. Furthermore, a similar ratio
between the training and test sets of public datasets during
the training phase will be used to ensure unbiased com-
parisons. To enhance the reliability of results, a fivefold
cross-validation approach will also be considered.
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