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ABSTRACT The inverse kinematic model is an essential mathematical tool of the performance analysis
and motion control for the parallel mechanism. A diversity of mathematical methods is used for inverse
kinematic modelling. However, for compliant parallel mechanism, the direction of the causative force in the
model is always disregarded in previous works, which leads to large deviation due to the force sensitivity
of the flexure hinge. A straightforward index is proposed to quantitatively evaluate the deviation. A new
approach presented in this paper try to overcome this shortcoming, by considering the forward causative
force during the inverse kinematic modelling, which makes model realize less deviation and more practical
in motion control. Compliant matrix method is adopted to analyze the deformation of the flexure hinge. The
effectiveness of the proposed methodology is verified, based on a 3-PRS compliant parallel mechanism, with
finite element analysis simulation. The proposed methodology can be employed and extended to a variety
of compliant parallel mechanism.

INDEX TERMS Compliant mechanism, inverse kinetostatic model, compliant matrix method, 3-PRS.

I. INTRODUCTION
The compliant parallel mechanism (CPM) is a parallel
mechanism whose joints are replaced by flexure hinges.
In comparison to traditional parallel mechanisms, CPM
realizes motion by elastic deformation of flexure parts,
which by nature have no friction, backlash, or wear. Owing
to these advantages, CPM has been widely employed in
micro-electromechanical systems [1], precise positioning [2],
micromanipulation [3], optical alignment [4], and other appli-
cations. Kinematic model is the basis of the motion control
for the parallel mechanism. Generally, kinematic model can
be divided into forward kinematic model (FKM) and inverse
kinematic model (IKM). FKM can be defined as ‘When the
displacement of the active pair Dp given, solving the position
and posture of the platform Do’, whereas IKM is defined as
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‘When the position and posture of the platform Do is given,
solving the displacement of the active pair Dp’. According to
the definitions, FKM and IKM are reciprocal, which means
that the solution of the FKM should be identical to the condi-
tion of the IKM, and vice verso.

In previous work, the rigid body inverse kinematic model
(RIKM) is commonly used as an approximate IKM for the
CPM, where the mechanical behavior of the flexure hinge
is ignored and the geometric constraint of the kinematic
chain is with ideal joints [5], [6], [7], [8]. RIKM provides
a straightforward method for analyzing the kinematics of
the CPM. However, since CPMs have an inherent coupling
of kinematic-mechanical behaviors and complicated paral-
lel arrangements, the kinematic behaviors differ from those
of rigid-body equivalents. To improve the accuracy of the
RIKM, some studies combined the force-displacement equa-
tions of the flexure hinge into the kinematic chain of the
parallel mechanism [9], [10]. The flexure-based RIKM has
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FIGURE 1. The illustrations of the FKM, BIKM, and FIKM.

a satisfactory accuracy. However, it is difficult to obtain
analytical solution from the model due to the complexity
of the equation set. Thus, the computation of the model is
time-consuming. Castigliano’s second theorem is an energy
approach for analyzing the relationship between displace-
ment and force in flexure hinges, which calculates the
displacement of the flexible structure as the first-order
differential of the total strain energy with respect to the
corresponding external force. Yang et al. [10] developed the
kinematic model of a six-DOF precision positioning stage
using Castigliano’s second theorem. The deviation between
the FEA results and the generated model is approximate 20%.
Author [11] was proposed a piezo-actuated microgripper for
manipulation used. The Castigliano’s second theorem and
RIKM were utilized to analyze the motion performance of
the microgripper, respectively. Lobontiu and Garcia [12] used
the strain energy approach to develop an analytical model
for displacement and stiffness of a bridge-type displacement
amplifier. The predictions from the analytical model were
within 5% of the FEA results. Although Castigliano’s second
theorem is concise, implementing inner-force analysis for
CPM with complex configurations gets relatively challeng-
ing. This is why Castigliano’s second theorem is a minority
method for CPM modelling.

The reciprocity between the FKM and IKM is another
issue in CMP’s kinematics modeling, in addition to being
time-consuming and complicated. Fig. 1(a) illustrates the
FKM of the 3-PRS, with the causative forces running down
the routes from the prismatic joints to the platform. Fig. 1 (b)
shows the IKM, where the position and posture of the plat-
formDo is given and the causative forces are along the routes
from the platform to the prismatic joints. Since the causative
force is directed in the opposite direction as the FKM, the
model shown in Fig. 1 (b) is called back-causative-force
based inverse kinematic model (BIKM). Although the BIKM
follows the definition of the IKM, the reverse causative
force may cause a discrepancy between FKM and BIKM
since the deformation of the flexure hinge is force sensitive.
Fig. 1 (c) illustrates the forward causative force based inverse

kinematic (FIKM), which is considered as a more practical
IKM for CPM.

The compliant matrix approach is a kinetostatic modelling
technique that does not include an inner-force analysis for
the compliant mechanism [13], [14], [15]. However, some
compliant matrix method based kinematic models for CPM
are with back causative force assumption. Rouhani and
Nategh [16] reported a kinetostatic solution to the IKM of
a six-DOF CPM based on the compliant matrix of the flexure
hinge. The screw theory was utilized to transfer the matrix.
Xu et al. [17], [18] analyzed and designed two optoelectronic
packaging used CPMs by using compliant matrix method.
FEA and experimental study validate the accuracy of the
established IKMs. Dan and Rui [9] presented an approach
of the IKM of a six-DOF CPM with spatial beam flexure
hinges. The model corresponds to the FEA results for the
back causative force situation. The preceding efforts appear
to have given a versatile answer to IKM of CPM. When the
IKM solution is applied in forward kinematics simulation,
however, a substantial deviation arises. Because the causative
force does not correspond to the practical circumstance.

This paper presents an approach of the FIKM for a
3-PRS compliant parallel mechanism. The compliant matrix
method is adopted to analyze the deformation of the flexure
hinge. The prismatic joint is replaced by a flexure element
with infinite flexibility to construct a close-loop kinematic
chain. To quantify the deviation between the BIKM and
FIKM, a new index, forward/inverse kinematic deviation
rate (FIDR), is proposed. The finite element analysis (FEA)
is used to validate the accuracy of the proposed FIKM.
The results show that the FIDR between the FIKM and
FEA are finer than the RIKM and BIKM. Furthermore,
the proposed model provides an analytical solution, thus
the computation time is short enough to be used in motion
controlling.

The reminder of this paper is organized as follows. The
FIDR of the rigid body 3-PRS and flexure-based one is
exhibited in Section II. The compliance matrix based BIKM
and FIKM are established in Section III. In Section IV,
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the accuracy of the three models is validated by applying
FEA. Finally, this paper is concluded in Section V.

II. THE DEVIATION BETWEEN FORWARD/INVERSE
KINEMATICS
A. AN INDEX QUANTIFYING THE DEVIATION
When a target pose of themechanismDo is given, the required
input displacements of the active joints Dp can be calculated
by IKM. Then import the Dp into the controller to guide
the parallel mechanism to reach the target pose D′

o. Ideally,
Do and D′

o would be identical. In practice, deviation is exited
due to machining error, assembly error, model error, and so
forth. Previously mentioned index, FIDR, is used to quantify
this deviation. The definition is formulated as follows:

λ mod el1− mod el2
FIDR

= max
(

|d ′

O1−dO1|
d ′

O1

|d ′

O2−dO2|
d ′

O2
· · ·

|d ′
On−dOn|
d ′
On

)
(1)

where doi and d ′
oi are the i

th element of vectorDo andD′
o. The

flow chart of the FIDR calculation is illustrated in Fig. 2.

FIGURE 2. The flow chart of the FIDR.

B. RIGID BODY 3-PRS PARALLEL MECHANISM
Generally, a parallel mechanism is composed of a base, a plat-
form, and multiple limbs. In the rigid body kinematics model,
the joint is an idealization that does not consider any motion
errors. Usually, solving the IKM needs to be based on the
closed-loop kinematic chains implied in parallel mechanism,
as shown in Fig. 3. In this case, the constraint equations of
the closed-loop kinematic chain can be written as follows:

−−→
OO′

{G}+REuler ·
−−→
O′Ai{L} =

−→
OPi{G} + si ·

−−→
PiBi{G}∣∣∣−−→PiBi{G}

∣∣∣ +
−−→
BiAi{G}

(2)

where the subscript {G} indicates the vector is in the global
coordinate system, {L} indicates the vector is in the local
coordinate system. REuler is the transformation matrix con-
verted from Euler angle. It can be seen that the IKM result
is the solving condition of the FKM issue in (34), and vice
verso. Thus, the FIDR of rigid body kinematic model is zero.

C. THE 3-PRS COMPLIANT PARALLEL MECHANISM
In this part, the FIDR of the CPM is analyzed via finite
element analysis (FEA) approach. The 3-D model of the
3-PRS was created by SolidWorks 2020, a commercial soft-
ware for CAD. The model is then imported into Workbench,
a commercial FEA simulation package. Fig. 4 shows the
FEA model of the 3-PRS. The concerned structure param-
eters are set as variables that can auto-change according to
the preestablished variable table. Threaded holes, fillets, and

FIGURE 3. The illustration of the parallel mechanism.

FIGURE 4. The FEA model of the 3-PRS in the co-simulation system.

other characteristics that have little effect on the FEA are
deleted to reduce computing time. The flexure hinges that are
the region of stress concentration are sliced for ease of mesh-
ing, with a mesh size of 0.2 mm. The revolute joint is made of
spring steel with E-modulus of 210 GPa and Poisson’s ratio
of 0.3, while the ball joint is made of Aluminium alloy with
E-modulus of 72 GPa and Poisson’s ratio of 0.3. Table 1 lists
the structure parameters.

TABLE 1. The structure parameters.

Given the pose of the platform Do set in Eq. (3), the
displacements of the prismatic jointsDp is firstly obtained by
FEA, and then set it to the corresponding prismatic joint of
the kinematic chains to obtain a new pose of the platformD′

o.
The local coordinate system is set at the geometric center of
the platform. The next procedures are followed the definition
of the FIDR, as shown in Fig. 2.

Do−θx =
[
θx 0 0

]
, with θx = 0 : 0.01 : 0.1(◦)

Do−θy =
[
0 θy 0

]
, with θy = 0 : 0.01 : 0.1(◦)

Do−dz =
[
0 0 dz

]
, with dz = 0 : 0.01 : 0.1(mm) (3)
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FIGURE 5. The result of the FIDR. (a) The structure angle θ vs λFIDR ; (b) The flexure hinge parameters vs λFIDR .

The deviation of the FIDR is caused by the flexure hinge.
Thus, the relations of the λFIDR with the flexure hinge
parameters and the angle θ is analyzed. Fig. 5 shows the
analysis results. When the platform moves along Z axis,
λFIDR remains small. It is because that themotions of the three
kinematic chains are centrosymmetric. Thus, themotion devi-
ations caused by the flexure hinge is counteracted. The other
two motions, i.e., rotations about X axis and Y axis, have
extremely large λFIDR. Particularly, λFIDR increases while
angle θ decreases and the length of flexure hinge l increases.
The thickness t has little influence on the FIDR. The results
reveal that the inverse kinematic model and the forward given
of the flexure-based 3-PRS have large deviation, which is
totally different from the rigid model expressed by Eq. (34).
Thus, the IKM of the CMP should be reconsidered.

III. THE BIKM AND FIKM OF THE 3-PRS CPM
A. COMPLIANT MATRIX OF THE FLEXURE HINGE
Fig. 6 illustrates a flexure hinge with one end fixed and
another free. When a force system F is applied at the free
end, the displacement D can be calculated as follows:

D{h} = Ch
· F{h} (4)

FIGURE 6. The flexure hinge and the coordinate system.

where subscript h indicates that the matrix or vector are
expressed in flexure hinge fixed local coordinate system.
Ch is the compliant matrix of the flexure hinge. In the
global coordinate system, the transferred force and displace-
ment from point a to point b can be obtained by matrix
transformation

Da{G} = [Tb−a]T
[
R{h}−{G}

]T︸ ︷︷ ︸
JDG−h

Db{h}

Fb{h} =
[
R{h}−{G}

]
[Tb−a]︸ ︷︷ ︸

JFh−G

Fa{G}

(5)

Substituting Eq. (5) into Eq. (4),

Da{G} = [Th−a]T
[
R{h}−{G}

]T Ch [
R{h}−{G}

]
[Th−a]Fa{G}

(6)

For conciseness, two operators are utilized to replace Eq. (5)
and Eq. (6).

Eq.(5) :

{
D{G} = JDG−hD{h}

F{h} = JFh−GF{G}

Eq.(6) : D{G} =

(
JG−h ⊗ Ch

)
· F{G} (7)

The detailed calculation process of Ch can be referred
to Appendix B1.1, while T and R can be referred to
Appendix B1.2.

B. THE BIKM OF THE 3-PRS
According to the definition of the IKM, the pose of the CPM
Do is given, as shown in Fig. 1(b). Isolate ith kinematic chain
as a free-body. The force system that causes the kinematic
chain deforming is Foi. Ignoring the nonlinear behavior, the
displacement and the force at the free end of the kinematic
chain can be expressed as follows:

Doi−Foi = C limbi
o−Foi · Foi (8)

while Doi−Foi can be calculated in another form:

Doi−Foi = JDoi−oDo = Do (9)
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JDoi−o is always identity matrix, since point oi and point o are
coincident.

Where C limbi
o−Foi is the compliant matrix of ith kinematic

chain, which can be obtained by summing up the flexure
elements in the kinematic chain:

C limbi
o−Foi = Jo−pi ⊗ Cpi

+ Jo−h1 ⊗ Ch1
+ Jo−h2 ⊗ Ch2

(10)

According to Eq. (5), the equivalent force of Foi to respect to
the input end can be written as follows:

Fpi = JFpi−oFoi (11)

Substituting Eq. (11) into Eq. (8),

Fpi = JFpi−o ·

[
C limbi
o−Foi

]−1
Do−Foi (12)

Substituting Eq. (12) and Eq. (9) into Eq. (4),

Dpi = Cpi
· JFpi−o ·

[
C limbi
o−Foi

]−1
· Do (13)

The whole kinematic chain of 3-PRS can be written as
follows:

Dp = [Dp1 Dp2 Dp3 ] =
backCp−o · Do (14)

with

backCp−o =
[
backCp1−o

backCp2−o
backCp3−o

]
backCpi−o = Cpi

· JFpi−o ·

[
C limbi
o−Foi

]−1
(15)

Eq. (14) describes the relation of the platform poseDO and the
input displacement Dp. It follows the definition of the IKM.
This modelling approach are widely used for CPM analysis
[16], [17], [18], [19]. However, Eq. (11) shows the causative
force is at the output end. It does not match with the case
in the forward kinematics. Thus, this model is called back-
causative-force based kinetostatic model.

C. THE FIKM OF THE 3-PRS
In forward-causative-force case, assume that Fpi is the
causative force at the prismatic joint. The displacement at out-
put end of the fictitious limb caused by Fpi can be expressed
as follows, and the definition of fictitious limb can be found
in Appendix B1.4.:

Do−Fpi = Cflimbi
o−Fpi · Fpi (16)

with

Cflimbi
o−Fpi = JDo−piCpi (17)

On the other hand, assume a virtual force Fvirtualo applied at
the end of fictitious limb the displacement at the output end
can be expressed as follows:

Do−Fo = Cflimbi
o−Fo · Fvirtualo (18)

Suppose that these two cases lead to a totally same displace-
ment, i.e., Do−Fpi = Do−Fo. The virtual force Fvirtualo can be
calculated as follows,

Fvirtualo = [Cflimbi
o−Fo]

−1
· Cflimbi

o−Fpi · Fpi (19)

Refer to Appendix B1.3, a 3-PRS can be consider as a par-
allel connection of springs, whose compliance matrix can be
obtained by using the rule of equivalent stiffness:

Do−Fo = CCPM
o−Fo · Fo (20)

with

CCPM
o−Fo =

([
Cflimb1
o−Fo

]−1
+

[
Cflimb2
o−Fo

]−1
+

[
Cflimb3
o−Fo

]−1
)−1

(21)

Substituting Eq. (19) to Eq. (52), displacement on point O
caused by the input force is obtained:

Do−Fpi = CCPM
o−Fo · [Cflimbi

o−Fo]
−1

· Cflimbi
o−Fpi · Fpi (22)

The relationship between the input force of the three limbs
and the displacement of the moving platform can be further
expressed in the form of a matrix:

Do−Fp = CCPM
o−Fp · Fp (23)

with

Fp = [Fp1 Fp2 Fp3 ]

CCPM
o−Fp =

[
CCPM
o−Fp1 C

CPM
o−Fp2 C

CPM
o−Fp3

]
CCPM
o−Fpi = CCPM

o−Fo ·

[
Cflimbi
o−Fo

]−1
· Cflimbi

o−Fpi (24)

The displacement of the prismatic joint can be expressed as
follows:

Dp−Fp = CCPM
p−Fp · Fp (25)

with

CCPM
p−Fp =

[
CCPM
p1−Fp1

CCPM
p2−Fp2

CCPM
p3−Fp3

]
CCPM
pi−Fpi = CCPM

p−Fo ·

[
Cflimbi
o−Fo

]−1
· Cflimbi

o−Fpi (26)

where CCPM
p−Fo is the transpose of C

CPM
o−Fp ,

CCPM
p−Fo =

[
CCPM
o−Fp

]T
(27)

Combined Eq. (23) and Eq. (25), the FIKM can be expressed
as follows:

Dp−Fp = CCPM
p−Fp ·

[
CCPM
o−Fp

]†
· Do−Fp (28)

FIGURE 7. The flow chart of the accuracy validation of the model.
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FIGURE 8. The FIDR of RIKM – FEA: (a) λRIKM−FEA
FIDR vs angle θ ; (b) λRIKM−FEA

FIDR vs flexure hinge parameters.

FIGURE 9. The FIDR of BIKM – FEA: (a) λBIKM−FEA
FIDR vs angle θ ; (b) λBIKM−FEA

FIDR vs flexure hinge parameters.

FIGURE 10. The FIDR of BIKM – FEA: (a) λBIKM−FEA
FIDR vs angle θ ; (b) λBIKM−FEA

FIDR vs flexure hinge parameters.

IV. FEA VALIDATION
In order to verify the established model, the predictions are
compared to the FEA results. The compliant matrix of the
V-shape flexure hinge can be found in [20]. The structure
parameters of the of the model are listed in Table 1.

A. ACCURACY OF THE BIKM
To quantify the accuracy of the BIKM, the deviation ratio is
defined as follows:

ζFEA−BIKM

= max
(

|dEFA1−dBIKM1|
dEFA1

|dEFA2−dBIKM2|
dEFA2

|dEFA3−dBIKM3|
dEFAn

)
(29)

where dEFAi and dBIKMi are the ith element of the dis-
placement vector solved from the FEA and theoretic model,

FIGURE 11. The input displacement sequence of the trefoil.

respectively. Fig. 7 illustrates the flow chart of the accuracy
validation.
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FIGURE 12. The trefoil trajectory of the 3-PRS: (a) The Do of the trefoil trajectory; (b) The λFIDR of the three models.

The FEA results in Section II are reused. The BIKM
established in Section III is utilized to calculate the theoretic
predictions, where the structure and material parameters are
consistent with the FEA simulation. The number of the sam-
ples is 180. Each sample date is processed by Eq. (28). Table 2
lists the statistical result of the deviation ratio. The maximum
error is 3.31%, the minimum one is 0.12%, the mean is
1.81%, and the median is 1.46%. The results show that the
BIKM has an extremely high accuracy for back causative
force-based motion.

TABLE 2. The statistical result of the deviation ratio.

B. THE FIDR OF THE RIKM, BIKM AND FIKM
Although the BIKM has a great consistency and accuracy
compared with FEA results, it is not appropriate to be used
in motion control due to the force status is inconsistent with
the forward case. The FIDR is a straightforward index to
assess the theoretical model that can be used for motion
control or not. In this part, the FIDR of the RIKM, BIKM
and FIKM with the FEA are presented, respectively. First,
give the expected poses of the platform Dexpected

O , which is
listed in Eq. (3). Second, use the RIKM, BIKM and FIKM
to calculate the displacement at prismatic joint DRIKM

p DBIKM
p

and DFIKM
p , respectively. Then, import DRIKM

p DBIKM
p and

DFIKM
p to the FEA software and obtain the pose of the plat-

form DRIKM−FEA
O , DBIKM−FEA

O and DFIKM−FEA
O , respectively.

Finally, calculate the FIDR by Eq. (3).
Fig. 8 shows the analysis results of the RIKM. No matter

how angle θ and flexure hinge parameters change, λRIKM−FEA
FIDR

remains small when the platform moves along Z axis due
to the symmetric distribution of the force. As for the other
two DOFs, the λRIKM−FEA

FIDR is large. Particularly, λRIKM−FEA
FIDR

increases with angle θ reduce and length l increase.
Fig. 9 is the analysis results of the BIKM. The relation of

the λBIKM−FEA
FIDR with the variables are almost identical with the

FEA-FEA result shown in Fig. 5. It is because that the input

displacement calculated by BIKM and obtained by FEA are
closed, as shown in Table 2.

Fig. 10 presents the results of the FIKM. The deviation
is significant reduced compared with the other two IKMs.
Specifically, λRIKM−FEA

FIDR increase with angle θ decrease. the
maximum deviation value is within 0.1. As for the flexure
hinge parameters, short l and large t bring small λRIKM−FEA

FIDR .
The largest deviation is within 0.13.

Overall, the three IKM models are able to provide fine
prediction when the platform moves along Z axis. However,
for the other two DOFs, RIKM and BIKM have a large devi-
ation of FIDR, which is sensitive to angle θ and flexure hinge
parameters. On the contrary, FIKM keeps a fine prediction
on the other two DOFs. The maximum deviation is within
13%. Thus, FIKM is an IKM accurate enough to be used in
structure design and kinematics control.

C. THE COMPOUND MOTION OF THE 3-PRS
According to the analysis results shown in Fig. 8 -Fig. 10,
the two rotation DOFs has a large deviation of the FIDR.
Thus, it is necessary to test the compound motions containing
rotation around X and Y axes. To do so, a trefoil trajectory is
used, which can be expressed as follows:

Do =
[
θx θy 0

]
(30)

with {
θx = sin (3t) · cos (t)
θy = cos (3t) · sin (t)

(31)

FIGURE 13. The input displacement sequence of the helix.
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FIGURE 14. The helix line trajectory of the 3-PRS: (a) The Do of the helix trajectory; (b) The λFIDR of the three models.

Calculate the input displacements by RIKM, BIKM, and
FIKM respectively. Fig. 11 illustrates the calculation results.
Then, import the input vectors DRIKM

p , DBIKM
p and DFIKM

p
into the FEA model and obtain the pose of the platform
DRIKM−FEA
O , DBIKM−FEA

O and DFIKM−FEA
O , respectively.

Fig. 12 presents the results of the trefoil trajectory of the
3-PRS. The trajectory of the FIKM is much close to the ref-
erence one with deviations within 0.03. On the contrary, the
RIKM and BIKM are far away from the reference trajectory
with deviations larger than 0.35. It implies that the proposed
FIKM is able to predict the compound motions with two
rotations.

It is known that the 3-PRS has three motion DOFs includ-
ing θx , θy, dz. A spatial trajectory, helix line, is utilized to test,
which can be formulated as follows:

θx =
t

240
· sin(t)

θy =
t

240
· cos(t)

dz =
(t − 2π) × 10−3

2π

(32)

The input displacements of the prismatic joints obtained by
IKM models are illustrated in Fig. 13. The analysis results
are presented in Fig. 14, which shows that the FIKM has the
finest prediction with a deviation within 0.08. The other two
IKM models performs bad with deviations larger than 0.4.

V. CONCLUSION
This paper discussed the inverse kinematic modelling of
the flexure-based 3-PRS parallel mechanism. The deviation
between the BIKM and FKM of the CPM was exhibited
via FEA simulation. To quantify the deviation, a new index,
FIDR, was proposed. FEA studies showed that the devia-
tion of the flexure-based 3-PRS is larger than 0.8, which
is sensitive to angle θ and flexure hinge parameters. three
IKM models are established to predict the motion of the
3-PRS. RIKM has a large deviation due to the neglect of
the flexure hinge. BIKM is unsatisfying since the causative
force in the model is opposite to the practical situation. Final,
the improved model, FIKM, provides a great prediction on
the complex compound trajectory with a maximum deviation

within 8% that is fine enough to be used on kinematic con-
trol. The simulation results validate the effectiveness of the
proposed methodology that can be employed and extended to
a variety of compliant parallel mechanism.

APPENDIX A
See Table 3.

APPENDIX B
A. DERIVATION OF THE COMPLIANCE MATRIX OF
FLEXURE HINGE
Compliance matrix describes the force-deformation rela-
tionship of a flexure hinge, it can be derived according
to Castigliano’s theorem. Since the flexure hinges used in
this paper have V-shaped in front view, takes the V-shaped
revolute joint and V-shaped spherical joint as example, the
derivation of their compliance matrix can be carried out by
the following steps:

a) Formulate the function of the V-shape:

y(x) =



l/2 + t/2 + (1 −
√
2)r − x,

x ∈ [0, l/2 −
√
2/2r]

t/2 + r −

√
r2 − (x − l/2)2,

x∈ [l/2 −
√
2/2r, l/2 +

√
2/2r]

−l/2 + t/2 + (1 −
√
2)r + x,

x ∈ [l/2 +
√
2/2r, l]

(33)

b) Assuming the force F = [ fx fy fz Mx My Mz ]T acted
on the free end of the flexure hinge and deform it,
according to the Clapeyron theorem, the elastic strain
energy equals to the work of F , it can be formulated as
follows:

V =

∫ l

0

Fx(x)2

2EA
dx+

∫ l

0

αFy(x)2

2GA
dx+

∫ l

0

αFz(x)2

2GA
dx

+

∫ l

0

Mx(x)2

2GIp
dx +

∫ l

0

My(x)2

2EIy
dx+

∫ l

0

Mz(x)2

2EIz
dx

(34)

where α is shear coefficient, Iy and Iz is moment of inertia
about y axis and z axis, Ip is polarmoment of inertia,A is cross
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TABLE 3. Nomenclature

sectional area. All of them are geometric related parameters,
i.e., can be calculated by y(x) [5], [21], [22]. G and E is shear
modulus and elastic modulus, respectively.

Fx(x) = fx
Fy(x) = fy
Fz(x) = fz
Mx(x) = Mx

My(x) = fzx +My

Mz(x) = −fyx +Mz

(35)

c) The relationship between the deformation vector and
the load vector can be expressed as follows:

1 =
∂V
∂Fi

= Cij · Fj (36)

where Fi means the ith element of F , and Cij is the element
of compliance matrix at (i, j).

Now, complete compliance matrix is obtained by (4).

B. DERIVATION OF THE TRANSFORMATION MATRIX AND
ROTATION MATRIX
1) ROTATION MATRIX R{A}−{B}

Suppose that frame B could be convert by frame A though a
series rotation about z-y-x axis in sequence with respective
angle γ, β, α, then the rotation matrix is formulated as:

A⇀B
Q (α, β, γ ) =

 1 0 0
0 cα −sα
0 sα cα

  cβ 0 sβ
0 1 0

−sβ 0 cβ


×

 cγ −sγ 0
sγ cγ 0
0 0 1

 (37)

A three-dimension vector in frame B can be expressed in
frame A by following transformation:

v{A} =
A⇀B
Q ·v{B} (38)
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In this paper, since no matter force vector or deforma-
tion vector are six-dimension, and the first three-dimensional
and the last three-dimensional represent the quantities
along/about the three coordinate axes respectively, the rota-
tion matrix is furtherly formulates as:

R{A}−{B}(α, β, γ ) =

 A⇀B
Q 0

0
A⇀B
Q

 (39)

2) TRANSFORMATION MATRIX TB−A
Suppose that a force F act on point A, the equivalent force at
another point B will be:

f Bx = f Ax
f By = f Ay
f Bz = f Az
MB
x = MA

x − [
⇀

BA]z · f Ay + [
⇀

BA]y · f Az
MB
y = MA

y + [
⇀

BA]z · f Ax − [
⇀

BA]x · f Az
MB
z = MA

z − [
⇀

BA]y · f Ax + [
⇀

BA]x · f Ay

(40)

Formulate above equations group in matrix form, yield:

FB =

[
I 0
P I

]
· FA,with P(

⇀

BA)

=


0 −[

⇀

BA]z [
⇀

BA]y

[
⇀

BA]z 0 −[
⇀

BA]x

−[
⇀

BA]y [
⇀

BA]x 0

 (41)

Define the transformation matrix:

TB−A(
⇀

BA) =

[
I 0
P I

]
(42)

C. DERIVATION OF THE COMPLIANCE-BASED MATRIX
METHOD OF SERIAL AND PARALLEL MECHANISM

1) Transformed compliance matrix of a single flexure
hinge

In the simplest case, namely the force vector and deformation
vector are both in flexure hinge fixed local coordinate system
{h}, and force are acting on the free end of the flexure hinge,
the deformation can be calculated by:

D{h} = Ch
· F{h} (43)

However, in general case, force vector and deformation vector
may be expressed in another coordinate system, or force
may not act directly on the h point, but elsewhere in the
mechanism, and then pass to the h point, etc. In order to make
Eq. (11) more universal, three points matrix method [13] is
introduced, with help of transformation matrix and rotation
matrix:

Db{G} = [Th−b]T
[
R{h}−{G}

]T Ch [
R{h}−{G}

]
[Th−a]Fa{G}︸ ︷︷ ︸

=Dh{h}︸ ︷︷ ︸
=Dh{G}

(44)

For simplicity, define:

JG−h ⊗ Ch
= [Th−b]T

[
R{h}−{G}

]T Ch [
R{h}−{G}

]
[Th−a]

(45)

The so-called three points, namely point a - the point of
application of force, point h - end point of the flexure hinge,
and point b - interest point of deformation(displacement). The
proof process is as follows:

1) Transfer the force to the flexure hinge and transform it
into local coordinate, calculate the deformation of the
flexure hinge Db{G};

2) Transform the Db{G} to the specified coordinate (e.g.
global coordinate system) with R{G}−{h}, since rota-
tion matrix is orthogonal matrix, the following formula
always holds:

R{G}−{h} = [R{h}−{G}]−1
= [R{h}−{G}]T (46)

3) Now Dh{G} is known, based on small deformation
assumption, Db{G} can be further calculate by

dbx = dhx + [
⇀

hb]z · θhy − [
⇀

hb]y · θhz

dby = dhy − [
⇀

hb]z · θhx + [
⇀

hb]x · θhz

dbz = dhz + [
⇀

hb]y · θhx − [
⇀

hb]x · θhy

θbx = θhx

θby = θhy

θbz = θhz

(47)

Rewrite above equations group into matrix form, yield:

dbx
dby
dbz
θbx
θby
θbz


︸ ︷︷ ︸
Db{G}

=

 I

0 [
⇀

hb]z −[
⇀

hb]y

−[
⇀

hb]z 0 [
⇀

hb]x

[
⇀

hb]y −[
⇀

hb]x 0
0 I


︸ ︷︷ ︸

Tb−h



dhx
dhy
dhz
θhx
θhy
θhz


︸ ︷︷ ︸
Dh{G}

(48)

Compared to Eq. (42), it can be found that Tb−h is the
transpose of Th−b:

Tb−h = [Th−b]T (49)

1) SERIAL MECHANISM
Assume there is a serial chain with one fixed end and one
free end, comprises multi flexure hinges interconnected with
several rigid links. The point load interacts and deforms with
all the flexible hinges on the series chain between the point
of force and the fixed end, so that the displacement at the
point of interest p is calculated by the linear superposition of
all the individual displacements generated by the interaction
between the load and any flexible hinge. The individual dis-
placement of a flexure hinge is derived by Eq. (12), the linear
superposition can be formulated as:

Dchain
{G}

=

∑
JG−hi ⊗ Chi

· F{G} (50)
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2) PARALLEL MECHANISM
Since multi limbs parallelly connect at a center point O,
the displacement for each limb is identical, namely DO =

Dlimb1 = Dlimb2 = . . . = Dlimbn. On the same time, the
external force f acting on the point O is the sum of the reaction
forces of each limb, namely:

f = f limb1 + f limb2 + · · · + f limbn

=

∑
[C limbi]

−1
Dlimbi (51)

The force-deformation relationship of the parallel mechanism
is:

[CParallel]−1
· DO = f =

∑
[C limbi]

−1
Dlimbi (52)

Hence,

CParallel
= (

∑
[C limbi]

−1
)−1 (53)

D. DERIVATION OF THE COMPLIANCE-BASED MATRIX OF
3-PRS CPM
Although in general, limb is defined as the parts between
the moving platform and the base, each limb includes the
flexible hinges at both ends and the rigid connecting rod in
themiddle. However, for ease of operation, the skeleton of the
piezoelectric ceramic and the moving platform is considered
as extended part of the limb. In order to avoid confusion, this
limb including extended part is called ‘‘fictitious limb’’ in this
paper.

It is worth noting that, the rigid bodies (rigid link between
in the middle and the skeleton of the platform) in fictitious
limb are not deformable, which equivalent to a flexure hinge
whose compliance matrix’s elements are all zero. On the
contrary, since piezoelectric ceramic’s deformation is freely
controlled according to demand, it is regarded as a soft spring
in moving direction. Based on these reasonable simplifica-
tions, the transformed compliance matrix of jth fictitious limb
is:

Cflimbj
=

5∑
i=1

JjG−hi ⊗ Chi

=

5∑
i=1

[
Tjhi−o

]T [
Rj

{hi}−{G}

]T
Chi

[
Rj

{hi}−{G}

] [
Tjhi−o

]
(54)

where Ch1 refer to the piezoelectric ceramic actuator,
Ch2 refer to the revolute flexure hinge, Ch3 refer to the rigid
link in between, Ch4 refer to the spherical flexure hinge and
Ch5 refer to the skeleton of the platform. Ch2 and Ch4 can be
obtained according to Appendix B1.1. Ch1, Ch3 and Ch5 are
set as follows:

Ch1
=


0 0 0 0 0 0
0 0 0 0 0 0
0 0 100000 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ,Ch3
= Ch5

=


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 (55)

Noted that, when i = 5,
⇀

hio
j

{G} equal to zero vector.
Rj

{hi}−{G}
= R{hi}−{G}(0, βi, ϕj) can be calculated by (7) with

βi =

{
−π/2, i = 1, 5
−π/2 + θ, i = 2, 3, 4

(56)

Tjhi−o = Tjhi−o(
⇀

hio
j

{G}) can be calculated by (42) when
⇀

hio
j

{G}

is given as follows:

⇀

hio
j

{G} =
⇀

hih4
j

{G} +
⇀

h4h5
j

{G}

= Li ·
[
− cos θ · cosϕj − cos θ · sinϕj sin θ

]
+ rtop ·

[
− cosϕj − sinϕj 0

]
(57)

with

Li =


lrevolute + lrigidlink + lspherical, i = 1
lrigidlink + lspherical, i = 2
lspherical, i = 3
0, i = 4

and

ϕj =


0, j = 1
2π/3, j = 2
−2π/3, j = 3

(58)

FIGURE 15. Coordinate systems on fictitious limb.
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