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ABSTRACT Blind source separation (BSS) is a critical task in untangling non-stationary signals without
prior information. This paper extensively explores diverse time-frequency analysis (TFA) methods within
BSS systems over the past decade. It underscores the pivotal role of TFA in dealing with non-stationary
signals by characterizing their attributes across time and frequency domains. This approach provides a
comprehensive understanding of signal dynamics that surpasses conventional techniques focusing solely
on temporal or spectral domains. The paper delves into various TFA methods, investigating their influencing
factors and aiding researchers in selecting relevant techniques aligned with their objectives. Furthermore,
it comprehensively reviews contemporary research, categorizing BSS algorithms into three classes. The
role of commonly used TFA methods in each class is systematically evaluated, identifying their strengths
and limitations during different separation stages. The paper addresses challenges in implementing BSS
algorithms, particularly in under-determined systems with fewer mixing channels than source signals.
It highlights the central role of TFA in overcoming these challenges and enhancing separation outcomes.

INDEX TERMS Blind source separation (BSS), mixed matrix, source signal separation, suppress noise,
time-frequency aggregation, time-frequency analysis (TFA), time-frequency resolution.

I. INTRODUCTION

Non-stationary signals find widespread applications in fields
such as medicine, communication, audio processing, geolog-
ical exploration, machine learning [1], and more. However,
these signals are often complex data composed of mixed
signals, affected by noise interference, or distorted dur-
ing transmission. Extracting useful information from these
mixed signals poses challenges, including potential similar-
ities between signals, noise interference, and lack of prior
information about the signals.

A. BACKGROUND
Blind Source Separation (BSS) technology is a crucial tech-
nique specifically designed to address these challenges [2].
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It enables the separation of mixed signals using only observed
signals, even in the absence of prior information about the
signals. This technique is essential in various fields where
non-stationary signals are prevalent.

Many real-life problems can be modeled as BSS systems
[3], [4], [5], such as the denoising problem in signal pro-
cessing, which involves removing noise from signals without
prior knowledge of the noise characteristics. Another exam-
ple is the fault detection problem in mechanical vibrations,
where identifying faults is essential even in the absence of
prior information about the faults. Similar issues arise in
electronic surveillance, radar signals with multiple echoes
and clutter, and image processing problems involving over-
lapping multiple images, all of which can be framed as
problems related to BSS. Research on these problems and
the implementation of improved algorithms are of significant
importance for practical applications in human society.
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However, the study of BSS encounters several challenges
[6], including the Non-Gaussian and Non-independent nature
of observed signals, the underdetermined nature of mixing
systems, ambiguity in mixing processes, and insufficient
prior information, among others. All these factors contribute
to the complexity of separating observed signals.

To address these challenges, researchers have continu-
ously explored various methods. Time-Frequency Analysis
(TFA) is one of the crucial techniques in solving BSS prob-
lems. TFA transforms signals into domains with time and
frequency bivariate information [7], [8]. By extracting sig-
nal features in this time-frequency domain, signals can be
effectively analyzed and processed. Specific signal charac-
teristics appear in certain transform domains, aiding in the
separation of different signal components and the differentia-
tion between signals and noise. Different TFA methods seek
approximate time-frequency features of signals in different
transform domains, making these features more accessible for
researchers to analyze [9], [10], [11]. However, this process
is not straightforward. Over the years, researchers have been
exploring how to handle this situation more effectively, lead-
ing to significant research outcomes.

In summary, BSS systems are the result of continuous
improvements in algorithm performance based on classical
TFA methods. This paper is proposed against the backdrop
of rapid developments in BSS and TFA. It aims to provide
valuable references for the development of BSS technology
by comparing and summarizing the advantages and limita-
tions of different TFA techniques in achieving BSS.

B. PAPER CONTRIBUTION

As mentioned earlier, the continuous improvement in the
performance of BSS systems largely owes to the advance-
ments in TFA methods. Different time-frequency domains
correspond to different TFA methods, and the performance
of generated time-frequency data points can also vary. Before
delving into the study of algorithms for BSS systems, the pri-
mary task is to determine the suitable time-frequency domain.
In this paper, the contributions to researchers are as follows:

i. The extensive discussion of common TFA methods,
including their features and influencing factors, pro-
vides researchers with a clearer understanding of their
characteristics and applicable scenarios.

ii. Summarizing the recent applications of TFA in BSS
algorithms and conducting comparative simulation
experiments on several common TFA methods help
researchers comprehend the strengths and limitations
of various TFA methods used within different cate-
gories of BSS algorithms, offering valuable references
for scholars’ research.

iii. A comprehensive overview of the challenges faced
by BSS and the critical issues that need attention
guides researchers in selecting their research direc-
tions. The role of TFA in addressing challenges in BSS
is explored, and areas requiring further research are
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identified, providing valuable insights for scholars in
their studies.

C. PAPER ORGANIZATION

In this paper, the study conducted a detailed comparative
study of various TFA methods applied in BSS systems over
the past decade.

In Section II, the BSS system is thoroughly explored,
focusing on three key aspects: mixing modes, mixing chan-
nels, and algorithms. Part A discusses the characteristics
of BSS systems under two different mixing modes, while
Part B explores the unique features of BSS systems based
on various mixing channels. Part C provides a summary
of existing BSS algorithms, categorizing them into four
types and emphasizing the significant role of TFA in BSS
algorithms.

In Section III, a comparison of different TFAs in BSS
implementation is presented. This section is divided into four
parts. The first part summarizes the four major influencing
factors of TFA in BSS implementation and compares their
impacts. The applicable conditions of various TFAs in BSS
algorithms are categorized into three types. The B, C, and D
parts respectively introduce these three types of algorithms.
Part B delves into traditional BSS algorithms, dissecting each
step of the algorithm and examining the role of different
TFAs in every stage. Experimental results are analyzed to
conclude the advantages and limitations of various TFAs in
different steps. Part C focuses on the two-step algorithms,
exploring the impact of TFAs in estimating the mixing matrix
and recovering source signals. Challenges faced and solutions
are compared from different perspectives. Part D discusses
nonlinear algorithms, reviewing recent research results on
implementing BSS using nonlinear methods.

In Section IV, existing research findings are combined to
delve deeper into the contributions of TFA in solving BSS
problems.

In Section IV, a comprehensive summary of the paper’s
content is presented, outlining the emerging trends and devel-
opment directions in the field.

Il. BSS SYSTEM

The basic framework of BSS is illustrated in the Figurel.
sn(t), xp(¢) represents the source signal and observation
signal, respectively, nys(¢) represents the interference signal
in the transmission channel, Sy (#) represents the estimated
source signal, N is the number of source signals, and M
is the number of mixing channels. Variations in mixing
modes, the number of mixing channels, and the relationships
between the number of sources lead to different blind source
systems, each requiring distinct research approaches [12].

Below, we will introduce them separately:

A. BSS MIXING MODELS

BSS systems can be categorized into linear mixing mod-
els and nonlinear mixing models based on different mixing
modes.
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FIGURE 1. The basic framework of BSS.

1) LINEAR MIXING MODELS
In the linear mixing model, the observed signals are linear
combinations of source signals and can be represented as:

X =AS ey

Here, X is the observed mixed signal matrix, S is the
source signal matrix, and A is the mixing matrix. Researchers
have further classified linear mixing models according to the
characteristics of the mixing process:

The extensive discussion of common TFA methods,
including their features and influencing factors, provides
researchers with a clearer understanding of their character-
istics and applicable scenarios.

i. Linear Instantaneous Mixing Model: The observed sig-
nals are linear combinations of source signals at the
same moment, indicating an instantaneous mixing pro-
cess. This model is fundamental, straightforward, and
widely applicable, often encountered in various signal
processing problems.

ii. Linear Time-Delay Mixing Model: The observed sig-
nals result from linear combinations of source signals
delayed by different time intervals. This model is com-
monly used to study delays caused by differences in
propagation istances or sensor positions, for instance,
in radar signal processing.

iii. Linear Convolution Mixing Model: The observed
signals are linear combinations of source signals
obtained through convolution operations. This model
is employed in situations where signals might undergo
convolution due to factors like multipath effects during
transmission, often utilized in communication trans-
mission systems.

These classifications facilitate research by providing distinct

scenarios, each requiring specific methodologies for analysis
and separation.

2) NONLINEAR MIXING MODELS

In nonlinear mixing models, the combination of source sig-
nals is not a simple linear weighted sum. In such cases,
the mixing process can be described using nonlinear func-
tions. In nonlinear mixing models, the relationship between
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observed signals and source signals can be represented as:
X =f(S) (2)

Here, X is the observed signal matrix, S is the source signal
matrix, and f(-) is a nonlinear function.

In this category of mixing models, the nonlinear function
can be a polynomial, a nonlinearity function, or an uncertain
function, making the solving process highly challenging. Cur-
rent effective research efforts are focused on utilizing deep
learning to handle highly nonlinear mixing processes, yet
the challenges persist. Consequently, in contemporary algo-
rithms, researchers approximate nonlinear mixing models to
linear ones through constraints, such as constraints on the
distribution of source signals, to alleviate computational dif-
ficulties. Therefore, the subsequent discussions in this paper
primarily revolve around linear mixing models.

B. BSS MIXING CHANNELS

BSS techniques can be categorized according to the number
of mixing channels, dividing them into single-channel and
multi-channel approaches.

1) SINGLE-CHANNEL BLIND SOURCE SEPARATION:

In single-channel BSS, only one channel of observed sig-
nals is available, yet this signal may be a complex linear
combination of multiple source signals. The primary objec-
tive of single-channel BSS is to disentangle the original
multiple source signals from this single-channel observed
signal [13], [14]. These source signals can encompass diverse
types, varying according to the application scenario. Exam-
ples include scenarios where the source signals comprise
sound and background music, a combination of signals and
noise, or multiple individual signals. Single-channel BSS
finds significant utility in the field of signal processing, par-
ticularly in the separation of multi-component mixed signals.
These multi-component mixed signals are compositions of
various distinct source signals. Hence, the application of
single-channel BSS holds paramount importance in practical
contexts.

2) MULTI-CHANNEL BLIND SOURCE SEPARATION:

In the context of multi-channel BSS, there often exists a
relationship between the number of observed channels and
the number of source signals. This relationship helps define
the nature of the problem and falls into three categories:
underdetermined BSS, determined BSS, and overdetermined
BSS.

i. Overdetermined BSS: In overdetermined situations, the
number of observed channels exceeds the number of
source signals. Here, information redundancy among
the observed channels often leads to multiple possible
solutions. Different methods can yield potential solu-
tions, but not all of them are necessarily physically
meaningful.

ii. Determined BSS: In determined scenarios, the number
of observed channels equals or exceeds the number
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of source signals. In such cases, there exists a unique
solution theoretically, which can be obtained through
suitable algorithms.

iii. Underdetermined BSS: Underdetermined situations
occur when the number of observed channels is less
than the number of source signals. In other words, more
source signals need to be separated than the observed
channels can provide information for. Problems in
these cases are typically unsolvable with accuracy,
as they have an infinite number of solutions.

Underdetermined systems, being more representative of real-
world scenarios, are often the focus of intensive research
efforts.

C. BSS ALGORITHMS

In recent years, BSS algorithms have emerged one after
another [15], [16], [17], [18]. Combined with the separation
of BSS in the front, this paper roughly divides BSS algorithms
into the following categories:

1) TIME-FREQUENCY ANALYSIS-BASED BSS

This approach leverages the characteristics of signals in both
the time and frequency domains [19], [20], [21]. TFA meth-
ods, decompose signals in both time and frequency, aiding in
the separation of different components within mixed signals.
Different TFA methods utilize various mathematical tools to
describe the distribution of signals in the time and frequency
domains. The methods used in BSS differ accordingly. Below
are several common TFA methods and their principles:

i. Short-Time Fourier Transform (STFT):

STFT is based on the idea of Fourier transform. It divides
the signal into small segments and computes the Fourier
transform for each segment, obtaining the spectrogram of
each segment. This approach allows us to capture the fre-
quency spectrum of the signal as it changes over time. The
principle behind STFT is to decompose the signal into com-
ponents with different frequency content while preserving the
local characteristics of the signal in time.

ii. Continuous Wavelet Transform (CWT):

CWT employs wavelets, which are localized functions
adjustable in both time and frequency, to analyze signals. The
signal is convolved with wavelets at various scales, providing
a time-frequency representation of the signal. The principle of
CWT lies in analyzing different frequency components of the
signal and adapting to the signal’s characteristics at different
time scales.

iii. Wigner-Ville Distribution (WVD):

WVD integrates information about the signal’s time and
frequency content into a single distribution. It reveals the
signal’s time-frequency characteristics by computing the
instantaneous frequency of the signal. The principle of WVD
involves combining the signal’s time and frequency informa-
tion into a unified time-frequency distribution.

iv. Fractional Fourier Transform (FrFT):
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FrFT is an extension of the Fourier transform. Unlike the
standard Fourier transform, FrFT offers an adaptive rotation
in the frequency domain. It allows the observation of infor-
mation about the signal at different frequency components.
FrFT provides flexibility when dealing with non-stationary
signals, contributing to improved BSS performance.

2) STATISTICAL PROPERTIES-BASED BSS

This method primarily depends on the statistical properties
of signals for separation. Techniques like maximizing inde-
pendence are applied in Independent Component Analysis
(ICA) [22], [23]. Signals are separated by projecting them
onto principal components using eigenvalue or singular value
decomposition, a process referred to as Principal Component
Analysis (PCA) [24]. Moreover, assuming signals are non-
negative, separation is accomplished by decomposing them
into the product of non-negative matrices, a technique known
as Non-negative Matrix Factorization (NMF) [25], and so on.

3) INFORMATION THEORY-BASED BSS

Methods in this category employ information theory concepts
like entropy and mutual information to measure the inde-
pendence between signals, enabling separation. One common
approach is minimizing mutual information between signals
to achieve separation.

4) NEURAL NETWORK-BASED BSS
Methods based on neural networks, especially deep learning
techniques, have made significant progress in BSS. Structures
like Convolutional Neural Networks (CNNs) and Recurrent
Neural Networks (RNNs) excel in separating time-series and
image signals. Deep learning models learn high-level rep-
resentations of signals, enabling more accurate separation,
especially in highly nonlinear mixing scenarios.

List the advantages and disadvantages of these four algo-
rithms through Table 1.

TABLE 1. Comparison of advantages and disadvantages of BSS.

BSS Algorithm

advantages

disadvantages

TFA-Based BSS

Sensitivity to
time-frequency

Easily affected
by noise

characteristics
Statistical . . Sensitive to the
. Suitable for various .
Properties-Based tvpes of sienals assumption of
BSS yp g independence
Information Capabl; of effegtlvely High
handling nonlinear .
Theory-Based . . computational
relationships between -
BSS . complexity
signals
Neural . . Requires a large
Network-Based cotsrll.u;zblrenifozglsgihil};ls amount of data
BSS plex mix g for training

In comparison to other algorithms, methods based on TFA
for BSS prove to be highly versatile. They offer an exten-
sive range of applications, delivering intricate signal features
and showcasing resilience against temporal signal variations.
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These characteristics contribute to their prevalent use across
various practical applications.

Next, this paper explores various applications of TFA in
BSS systems, comparing the strengths and weaknesses found
in current research findings for reference.

lIl. IMPLEMENTATION COMPARISON OF TFA BASED
BLIND SOURCE SEPARATION ALGORITHMS
In BSS systems, the primary objective is to extract source
signals from mixed signals without prior knowledge of the
mixing process or source signal information. In the pursuit of
this goal, TFA emerges as particularly crucial. This section
will focus on exploring methods for achieving blind source
separation and elaborating on the advantages and limitations
of time-frequency analysis in each implementation step.
Firstly, this paper categorizes and summarizes the influenc-
ing factors of Time-Frequency Analysis (TFA) in blind source
separation algorithms, enabling a more comprehensive study
of TFA’s applications in blind source separation systems.

A. FACTORS AFFECTING TFA

1) TF RESOLUTION

For non-stationary signals, there is no way to perform Fourier
Transform (FT) directly, but when they can be regarded as
stationary signals in a short time, use this idea to use a window
function to truncate the non-stationary signals and perform
FT, and realize the analysis of the whole signal by sliding
the window function on the time axis, which is the origin of
short-time FT(STFT). For signal x(¢) L%(R), The definition
of STFT is:

o
STFT,(t,f) = / x(D)h(t — e 27 dr 3)

—00
h(t) is a window function. Due to the introduction of the
window function and the time variable, the research on the
signal includes both the frequency characteristics and the
time domain characteristics. It is a very practical TFA that is
popular with scholars at present. For STFT, the first problem
is how to choose the window function [26], [27]. Common
window functions include rectangular window, Hanning win-
dow, Hamming window, Gaussian window, etc. The principle

for selecting the window function is:

i. the main lobe of the window function spectrum should
be as narrow as possible, and the energy should be
concentrated in the main lobe as much as possible, so as
to obtain a higher TF Resolution.

ii. The sidelobe decays with the frequency as soon as
possible to reduce the distortion caused by spectrum
leakage.

Figure 2 shows the situation of two disjoint chirp signals
under different window functions (the window length=63)
and the influence of different window lengths when the same
window function (Gaussian window) is used. It is obvious
from the figure that the window function and window length
are very important for two-component signal analysis.
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FIGURE 2. Time-frequency diagram of disjoint signals under the influence
of different window functions or window lengths (a. rectangular window,
b. Hamming window, c. Hanning window, d. Gaussian window, (the
window length of a,b,c,d is 63) e. Gaussian window length=13, f.
Gaussian window length=127).

Figure 3 shows two intersecting chirp signals, which have
different window functions and different window lengths.
Because of the intersection, only the improvement of the
window is far from enough, because we need to observe
local features more accurately, which requires higher TF
Resolution.

After the above analysis, once the window function is
selected, the window length in the whole signal analysis pro-
cess is determined. The long window has a higher frequency
resolution, and the short window has a higher time resolution
[28]. That is to say, to obtain a high frequency resolution,
we must pay a low time resolution price. This will lead to
no way to find the most suitable window length to achieve
the maximum TF Resolution of STFT, which is the biggest
problem of STFT.

STFT algorithm has limited TF Resolution due to the
unique window function and the fixed window length. In this
respect, the performance of Wavelet Transform (WT) is rela-
tively good because the definition formula of WT is:

For a given signal x(t) € L%(R), the WT is WT(a, b),
defined as:

oo oo

WTi(a, b):/ x(OW(t)dt = il

—00 a2 J—oo

x(t)ﬂl(%)dt

“

where: a>0 is the scale factor, and b is the time shift fac-
tor. \IJ(%) is a family of functions W(¢) generated by the
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FIGURE 3. Time-frequency diagram of intersection signal under the
influence of different window functions or window lengths (a.
rectangular window, b. Hamming window, c. Hanning window, d.
Gaussian window, (the window length of a,b,c,d is 63) e. Gaussian
window length=13, f. Gaussian window length=127).

shift and expansion of the mother wavelet, called wavelet
basis. From this definition, WT is essentially the correlation
operation between the original signal and the scaled wavelet
function family. Although compared with STFT, the TF Res-
olution of WT is significantly improved due to the existence
of wavelet base, the influence of the mother wavelet of WT
on the result is too great to make the use of WT very cautious.

2) EXISTING CROSS-ITEM INTERFERENCE

Both STFT and WT are limited by window function. On this
basis, people put forward the joint distribution of energy in
TF Domain, namely the famous Wigner-Ville Distribution
(WVD). WVD is a joint TF distribution without window
function. The definition WVD, (t, f) for signal x(¢) can be
expressed as:

e ¢]

WVDx(t’f) = /

—00

xX(r + %)x*(t _ %)e_ﬂ”f dr o (5)

In the equation (5), 7 is the integral variable, ¢ is the time shift,
* represents complex conjugation, ffooo x(t 4 5x*(t — %)
is the instantaneous correlation function of the signalx(z).
Because there is no window function, it is not restricted by the
uncertainty principle and can obtain high-resolution TF dis-
tribution. However, observing the WVD definition formula,
when the signal is composed of multiple components, any
two component signals will generate cross terms. that is for
example: x(t) = x1(t) + x2(¢), at this time, the following
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WVD, (¢, f) formula is brought into (5):

WVD,(t,f) = WVDy, (t,f) + WVDy, (1, f)
+ 2Re(WVDy, 1, (¢, f)) (6)

In formula (6), WVDy, (t,f) and WVD,,(t,f) are the
self-WVD of x; () and x»(¢) respectively, WVDy, 1, (t, f) rep-
resent the mutual WVD of x(¢), xp(¢). It can be seen from
formula (6) that although WVD has good TF Resolution,
it produces mutual WVD, that is, interference term, which
has a great impact on TFA.

Scholars have made a lot of efforts to suppress cross-terms,
the most famous one is Pseudo Wigner-Ville Distribu-
tion (PWVD), Smooth Pseudo Wigner-Ville Distribution
(SPWVD) [29], [30]. PWVD uses the idea of STFT to reduce
the correlation between components through windowing and
truncation in time domain to achieve cross-term suppression.
SPWVD uses the idea of wavelet scaling factor, which is
equivalent to adding windows simultaneously in time domain
and frequency domain. Figure 4 get WVD, PWVD and
SPWYVD for two signal components. It can be clearly seen
from the figure that the interference of WVD cross terms
has a great impact on the analysis. PWVD has inhibition
on the cross terms, and the most significant inhibition effect
is SPWVD. Table 2 is about the comparison of different
traditional TFAs from different aspects.
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FIGURE 4. Signal quadratic time-frequency distribution (a. signal
time-domain waveform b. signal WV time-frequency distribution c.
pseudo-WV time-frequency distribution d. smooth pseudo-WV
time-frequency distribution).

3) TIME-FREQUENCY MATRIX

TF matrix is a matrix composed of sampling points after TF
Transform of the observed signal. For mixed signals x(t) =
Axs(t), TF conversion is performed on both sides at the same
time X (¢, f) = AS(¢, f), and the expansion is in matrix form:

X1, 1) ardiz - din S1, 1)
Xo(t,f) ayaz - axp Sa(t, f)
Xt.hHr=| . = . :
Xm(t»f) am1 Am2 s Amn S”(t’f)
@)
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TABLE 2. Traditional TFA methods.

Calculation complexity
(N is the signal length, H is

mTfﬁ d characteristic advantage shortcoming the time domain window Improvement direction
etho length, and G is the frequency
domain window length)
Fixed window length, NH Ilmre—Fart?qull.ency
STFT Window function Simple, TFA low time-frequency O| —log, H+ NH geregation:
. 2 1.Window length
resolution .
2.Renyi entropy
No window - N
WVD InteruFe energy function, high Introduc?tlon of cross O —log, H+ N 1.Suppress cross items
distribution . items 2
TF Resolution
. Add time window to NH .
PWVD Introduce energy High TF suppress cross terms and O| —log, H+2NH 1. Suppress cross items
distribution Resolution . 2 2.Windows improvement
reduce TF Resolution
Time (}omgm, fr;quency 1.Time frequency
Introduce energy Less impact of domain windowing, TF NHG aggregation
SPWVD A k Resolution reduction, (0] log, H +2NHG ) .
distribution cross items 2 2.Window improvement

large amount of
computation

3.Complexity

Xm(t, f) is the TF conversion coefficient of the observed
signal, S, (¢, f) is the TF conversion coefficient of the source
signal. For the blind source system, x(¢) is the only known
information. It is obtained by converting the signal x(¢) to the
TF Domain X (z, f) through TF conversion, and the effective
information is obtained by analyzing the TF matrix composed
of the TF Points of the mixed signal, so as to gain the design
of the algorithm. In the actual algorithm, the direct use of TF
Point analysis has a large amount of computation, and the
data points have interference, the algorithm performance is
limited.

Therefore, scholars choose to process the TF Points first,
such as removing low energy points to reduce the noise ofin-
terference, or removing redundant data points to reduce the
number of TF Points. Then the signal is sparsely represented,
which is very important for UBSS, because only in this way
can the dimensionality be reduced and the solution be unique.
In general, the TF Transform is different, the performance of
the obtained TF Points is also different. Therefore, choosing
an appropriate TF Transform to obtain high-performance TF
Points is crucial for achieving BSS systems. The improved
algorithm will be introduced in detail later.

4) TF AGGREGATION

For the performance of TF analysis method, our important
criterion is TF aggregation [31], [32], that is, whether the
energy reflected by TF analysis is the most concentrated.
Only the most concentrated can better reflect the local char-
acteristics of each component signal and have better TF
Resolution.

Entropy is a very important tool to describe information
uncertainty. The entropy value is used to judge the uncertainty
of the signal. Scholars use the general form of representation
entropy, namely Renyi entropy, to quantitatively calculate TF
aggregation. A large number of results have proved that this
is reasonable and very useful. The definition formula is as
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follows:

TFR[n, k]
SN S K TFRIn, k]

1 N K
1—a10g2 ZZ

n=1 k=1

E, =

®)

In formula (8), « is an integer greater than 1, representing
the order. N is the number of time points, and K is the number
of frequency points. TFR[n, k] is the TF representation of the
signal.

This formula calculates the TF aggregation of TFA method
in a quantitative way. The degree of TF energy accumulation
is judged by the size of Renyi entropy. The larger the Renyi
entropy value, the more scattered the TF energy is, the worse
the TF aggregation is, and the smaller the Renyi entropy
value, the more concentrated the TF energy is, the better
the TF aggregation is. Therefore, the performance of TFA is
judged by Renyi entropy. In addition, scholars will also use
Renyi entropy to participate in the parameter determination
of TF Transform, so as to adaptively select the optimal TFA.
For example, the determination of window functions and
parameters in parametric TFA are important applications of
Renyi entropy [33], and are also one of the research hotspots
in recent years.

Taking into account the influencing factors of TFA,
this paper categorizes Time-Frequency Analysis-based blind
source separation algorithms into three types:

i. Traditional algorithms that utilize extracted mixed sig-
nal features for separation in part B.

ii. Two-step methods involving estimating the mixing
matrix based on signal sparsity and then recovering the
source signals in part C.

iii. Nonlinear time-frequency analysis methods for separa-
tion in part D.

The following will discuss each step within these three major

categories of algorithms, emphasizing the significance of
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each step in BSS, and discussing the advantages and limi-
tations of TFA in each step.

B. TRADITIONAL ALGORITHMS FOR BLIND SOURCE
SEPARATION IMPLEMENTATION

The traditional algorithm is only applicable to basic BSS.
In basic BSS systems, the number of source signals N is
greater than or equal to the number of channels M. Figure 5
illustrates the system overview of basic BSS:

BSS

FIGURE 5. The system overview of basic BSS.

For traditional algorithms, the implementation is shown in
Figure 6:

Data
preprocessing

Feature
extraction

Recovering
source signal

FIGURE 6. Flowchart of traditional algorithm implementation for blind
source separation system.

1) DATA PREPROCESSING

Firstly, performing necessary data preprocessing on the
received mixed signals is a crucial step in blind source sep-
aration systems. These preprocessing operations encompass
denoising, normalization, and more, aimed at enhancing the
accuracy, separability, and signal quality of the source signals
while also helping to reduce computational load for improved
separation outcomes. However, the choice of data prepro-
cessing varies due to factors such as the characteristics of
the mixed signals, the selected separation algorithm, and the
expected separation outcomes.

Equally significant is the selection of time-frequency anal-
ysis methods. Different time-frequency analysis methods
may require distinct preprocessing steps to ensure an accurate
representation of signals in the time-frequency domain [34].
For instance, with STFT, the signal length may need to be
adjusted to meet the window function’s requirements, while
CWT has certain smoothness and sampling rate prerequi-
sites. Furthermore, preprocessing might involve detrending,
normalization, and other operations to mitigate noise inter-
ference during analysis.

In conclusion, data preprocessing stands as a pivotal
component of blind source separation systems, enhancing
the effectiveness of source signal separation. The synergy
between appropriately chosen time-frequency analysis meth-
ods and preprocessing steps contributes to improved source
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separation, revealing the original information within mixed
signals. During data preprocessing, a comprehensive consid-
eration of signal characteristics, separation algorithms, and
desired separation outcomes is essential. There are various
preprocessing methods, as shown in the following figure:

—>{ Data standardization

—* Denoising

> Filtering

Data
preprocessing

> Decorrelation

Distinguishing
source signals

—»  Data smoothing

Recovering
source signal

—=  Remove outliers

FIGURE 7. Types of data preprocessing.

Next, we will introduce these data preprocessing in detail:

Data Normalization: Standardizing data ensures that each
signal channel has a similar scale, preventing one channel
from disproportionately affecting separation results.

Denoising: Denoising is a vital preprocessing task. Apply-
ing denoising preprocessing to the interfering components
in the received mixed signals to obtain relatively clean sig-
nals not only enhances the effectiveness of source signal
separation but also reduces computational load during the
processing.

Filtering: Applying filters helps eliminate high-frequency
noise or low-frequency interference in signals. The choice of
appropriate filter types (low-pass, high-pass, band-pass, etc.)
and cutoff frequencies should be adjusted based on signal
characteristics.

Decorrelation: The purpose is to reduce the correla-
tion between mixed signals, enhancing the independence of
source signals during separation, thereby improving source
signal separation and accurately recovering the original
source signals.

Data Smoothing: Data smoothing methods can remove
spikes or glitches in data, making the signal more stable and
enhancing the stability of separation algorithms.

Outlier Removal: If there are outliers in the data, consider-
ing their removal or correction prevents them from affecting
separation results.

The preprocessing steps for mixed signals and how to
implement them depend on the characteristics of the received
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TABLE 3. Comparison of benefits of data preprocessing for different mixed signals.

Mixed signal type characteristic preprocessing Benefits of preprocessing
. Denoising S . . .
Biomedical signal separation Low frequency and high Filtering Highlighting Biomedical Signal

amplitude electrical signals

Data Normalization Eigenvalues

Narrow frequency range,

Speech signal separation affected by environmental noise Denmsmg Improve speech 'quahty and signal
. . Decorrelation, separation effect
and changes in human voice
Multiple mixing channels Filtering Standardize sensor signals, time

receiving multiple source signals
may be affected by inaccurate
sensor position and signal delay

Sensor array signal separation

delay estimation, and phase
alignment to improve the accuracy of
signal separation.

Data Normalization
Time Delay Estimation

The frequency range is wide,

Remove noise and unnecessary

including music, vocals, etc Filtering frequency components, improve
Audio separation £ ’ * Data Normalization 4 y ponents, mprov
May be affected by . sound quality and signal separation
? . Decorrelation
environmental noise effect.
Denoising
Usually a time-domain signal, Fllterlng . Remove noise, time delay estimation,
. . . . Data Normalization . :
Radar signal separation which may be affected by noise Decorrelation and phase alignment to improve the
and multipath effects Time Delay Estimation Data accuracy of signal separation.
Smoothing

data and the desired separation outcomes. In this paper,
we summarize the selection of preprocessing and the role
of TFA in data preprocessing, providing a reference for
researchers with similar needs.

Firstly, we begin by studying the data characteristics of the
received mixed signals [35]. BSS systems are applicable in
various scenarios, so mixed signals come in diverse forms
such as the following introduce.

i. Biomedical Signal Separation: Such as the separation
of signals like Electrocardiograms (ECG), heartbeat
signals, and Electroencephalograms (EEG), where
these mixed signals might result from the combination
of various biological signals during measurement.

ii. Speech Signal Separation: In environments with mul-
tiple speakers, mixed signals could be a superposition
of multiple people’s speech sounds received and mixed
through a microphone array.

iii. Sensor Array Signal Separation: In sensor array signal
processing, mixed signals may be represented as the
result of multiple source signals received and mixed by
a sensor array.

iv. Audio Separation: In audio separation, mixed signals
are typically composed of a linear combination of mul-
tiple source audio signals, such as the voices of multiple
people speaking or the sounds of multiple instruments
playing.

v. Radar Signal Separation: In radar signal processing,
mixed signals can be represented as the superposition
of echo signals from different targets in the time and
frequency domains.

Table 3 presents various characteristics of different mixed
signals, indicating suitable preprocessing methods for these
characteristics and the expected goals of implementation.
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Next, we use two chirp signals to simulate the comparison
of results obtained through various TFA methods for data
preprocessing in the context of mixed signal analysis.

Figure 8 presents two mixed signals obtained by applying a
randomly generated 2 x 2 mixing matrix in MATLAB to two
chirp source signals. Figures 9 to 16 show the comparative
results of preprocessing the mixed signals using three dif-
ferent time-frequency transformations: Short-Time Fourier
Transform (STFT), Wigner-Ville Distribution (WVD), Frac-
tional Fourier Transform (FrFT) [36].

Original Chirp Signal 1

',w,uu::.“ ”'”'!.'.'»'v'/fh'ﬂt'\'V'MM;J‘WMIWR"JW.’\J\*ﬂﬂWﬂ‘n’)‘1';'00\'!%;‘1\’}'
J”Il‘ﬁ“‘” (| ‘m .'J,M”%‘fm‘ﬂ..MUu‘uﬂ”ﬁ»‘»’»"WU‘JWN..W‘N‘M\ M W’MWPMMW'L\%W.hwﬂw'

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time

FIGURE 8. Two original chirp signal.

Table 4 presents the conclusions drawn from the above
simulations.

In conclusion, when preprocessing mixed signals,
researchers can choose suitable time-frequency analysis
methods based on the characteristics and needs of the
signal. For example, if researchers focus on the instanta-
neous characteristics of signals, they can try using WVD
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FIGURE 9. Two mixed signal.

Original Spectrogram of STFT for Mixed Signal 1

200

Frequency
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0 0.2 0.4 0.6 0.8 1
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Original Spectrogram of STFT for Mixed Signal 2
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0 0.2 0.4 0.6 0.8 1
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FIGURE 10. Two mixed signal after STFT.

Frequency

400

Frequency

Time

FIGURE 11. Two mixed signal after STFT normalization preprocessing.

or FrFT. If researchers pay more attention to the clear dis-
play of frequency components, they can try using STFT.
However, for different application scenarios, the effective-
ness of different methods may vary. It is recommended
to choose the most suitable method through practical
experiments.
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denoised Spectrogram of STFT for Mixed Signal 1
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FIGURE 12. Two mixed signal after STFT denoising preprocessing.
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Original WVD of Mixed Signal 1
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FIGURE 13. Mixed signals after WVD.
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FIGURE 14. Two mixed signals after WVD normalization preprocessing.

2) FEATURE EXTRACTION

This phase constitutes a pivotal step in realizing the BSS
system. As the system operates without any prior knowledge,
achieving the separation of received mixed signals to recover
the source signals necessitates initiating the process from the
mixed signals themselves. Analysis and extraction of features
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FIGURE 15. Two mixed signals after WVD denoising preprocessing.

FRFT of Original Signal 1, a =0.7

4
200
400 8
600 2
800 1
1000
05 1 15

Sample Index
FRFT of Original Signal 2, a =0.7

200 4
400 3
600 2
800 1
1000
0.5 1 1.5

Sample Index

Transformed Frequency

Transformed Frequency

FIGURE 16. Two mixed signals after FrFT (« =0.7).
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FIGURE 17. Two mixed signals after FrFT (« =0.7) normalized
preprocessing.

from the mixed signals are conducted to identify methods
capable of distinguishing source signals from the mixed ones,
thus achieving the separation [37].

The purpose of feature extraction is to transform prepro-
cessed mixed signals into distinctive feature representations,
facilitating the separation process. The selection of appropri-
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ate feature extraction methods hinges on the data’s nature.
While time-domain feature extraction methods (such as
mean, variance, instantaneous amplitude, and phase) can
capture fundamental statistics and instantaneous properties
in certain scenarios, they might fall short in capturing tem-
poral variability and frequency changes. Frequency-domain
feature extraction methods (such as frequency distribution,
power spectral density, frequency correlation) can provide
insights into signal frequency components, yet they might not
effectively capture instantaneous properties and time-varying
frequency characteristics.

TFA amalgamates the strengths of time and frequency
domains to more accurately depict a signal’s time-varying
frequency traits. TFA methods can provide information like
energy distribution and variations in instantaneous frequency
across various time and frequency intervals, leading to a
more comprehensive signal representation. Consequently,
TFA enhances the representation of intricate and diverse
signals during the feature extraction stage, contributing to a
more precise feature representation for blind source separa-
tion tasks.

However, different TFA methods yield distinct features and
performance outcomes. For instance, time-frequency analy-
sis methods like STFT and Continuous Wavelet Transform
(CWT) can capture evolving frequency characteristics over
time, while WVD can uncover instantaneous frequency and
amplitude traits of signals. FrFT harnesses rotation angles
and integrates time and frequency domain information to
more accurately capture the characteristics of mixed signals.
Moreover, the effectiveness of feature extraction is not only
influenced by the chosen TFA method but also by the nature
of the signals themselves, the level of noise, and the feature
extraction algorithm employed.

During the process of feature extraction, it is common
to differentiate different source signals by extracting the
instantaneous frequency of mixed signals. This approach
is effective because instantaneous frequency can reveal the
changing trends of signals, aiding in the discrimination of
various source signals.

In addition, many studies will also implement BSS based
on other feature extraction methods. As shown in the
Figure 18:

Explanation of various signal features is as follows:

i. Instantaneous Frequency Rate of Change: It calculates
the rate of change of the signal’s instantaneous fre-
quency, revealing the trend of frequency variations.

ii. Spectral Energy Density: By computing the spectral
energy of the signal under different time windows,
it captures the distribution of signal energy across dif-
ferent frequencies.

iii. Instantaneous Amplitude: Extracted from the ampli-
tude information in time-frequency analysis, it cap-
tures the variations in the signal’s instantaneous
amplitude, useful for distinguishing different source
signals.
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TABLE 4. Comparison of data preprocessing for different time-frequency analyses.

TFA Advantages in data preprocessing

Disadvantages in data preprocessing

1. When analyzing the frequency characteristics of
signals within the window, STFT has good

A trade-off between time resolution and frequency resolution, and it is not possible to

STFT . - obtain both high time and high frequency resolutions simultaneously, resulting in poor
frequency resolution for steady-state signals. reprocessing effects such as denoisin
2. Easy to implement and widely used. prep & g
very high time-frequency resolution, which can
PmVlde accurate mfm_‘matlc_m Of. signals in the . 1. Affected by cross terms, it is difficult to achieve preprocessing such as denoising;
time-frequency domain. It is suitable for analyzing . . . . .
WVD : . 2. WVD has a high computational complexity and may introduce artifacts.
the instantaneous frequency changes of signals IS . . .
L . . 3. Small scale vibrations present in the signal may cause time-frequency leakage.
and is suitable for preprocessing non-stationary
signals
1. Suitable for analyzing signals with fractional
order time-frequency characteristics, which can 1. The computational complexity is relatively high, especially when achieving fractional
FrFT better capture the time-frequency changes of the order.

signal.
2. Insensitivity to noise

2. For different fractional order choices, the results may vary to some extent.

Instantaneous
—»
Data frequency
preprocessing
Instantaneous
—> Frequency Rate of
Feature Change
extraction
Spectral Energy
™ Density
Recovering
source signal Instantaneous
L .
Amplitude

FIGURE 18. Different feature extraction methods.

iv. Group Delay: Describes the signal’s propagation speed
at different frequencies, providing insight into distin-
guishing different source signals.

v. Time-Frequency Entropy: Measures the level of dis-
order of the signal in the time-frequency domain,
describing the signal’s irregularity.

With the estimated instantaneous frequency obtained, the
next step involves distinguishing source signals using meth-
ods such as clustering.

3) RECOVERING SOURCE SIGNALS
After extracting features to separate the source signals,
we utilize methods such as STFT, CWT, WVD, and FrFT
for separating and recovering the source signals from both
the original mixed signals and the mixed signals with added
noise [38], [39].This allows us to compare the significant role
of time-frequency analysis in the process of source signal
recovery.

Figure 19-22 illustrate the waveform of the separated
signals obtained using the STFT, CWT, WVD, FrFT-based
estimation of instantaneous frequency.
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FIGURE 19. Comparison of source signals recovered using STFT (a.
Recovered component 1, b. Recovered component 2).

From Figures 19-22, it can be observed that STFT and
WVD exhibit relatively better recovery results, whereas CWT
shows inferior performance primarily due to the impact of
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FIGURE 20. Comparison of source signals recovered using CWT (a.
Recovered component 1, b. Recovered component 2).

cross-terms, leading to significant deviations. FrFT achieves
moderate recovery results, but its computational complex-
ity is substantial, requiring further improvements to become
practical. Table 5 provides a comparison of the advan-
tages and disadvantages faced in recovering source signals
using these four TFAs. Scholars can choose the appropri-
ate time-frequency analysis method based on their specific
requirements.

4) PERFORMANCE COMPARISON

The separation performance will be quantified using the Pear-
son correlation coefficient, represented as r. ranges from -1
to 1, The correlation coefficient between two signals X and
Y is calculated using the formula (9):

> (si — 5)Gi — 5)
IS (si=92Gi - 3

In the formula (9), s represents the estimated source sig-

nals, while § represents the actual source signals. and s and
5§ denote the means of s and $. A higher correlation coeffi-

©))

r(s,s) =
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FIGURE 21. Comparison of source signals recovered using WVD (a.
Recovered component 1, b. Recovered component 2).

cient, closer to 1, indicates that the separated signals closely
resemble the source signals. Conversely, a coefficient closer
to 0 suggests a significant disparity between the separated
and source signals, while a coefficient closer to -1 indicates
a negative correlation, signifying an inverse relationship.
In summary, a larger correlation coefficient implies a better
separation effect.

Mixed signals with varying signal-to-noise ratios will be
separated using the four TFA methods through feature extrac-
tion. The estimated source signals will be compared using
the Pearson correlation coefficient to evaluate the separation
performance, as illustrated in the Figure 23.

Observing Figure 23, it is evident that the separation per-
formance of the WVD is generally poorer. This is due to the
quadratic nature of WVD, which generates cross-terms dur-
ing the transformation process, resulting in weak correlations
between the separated signals and the source signals, leading
to suboptimal separation performance.

STFT and WT tend to exhibit inferior separation per-
formance in low signal-to-noise ratio conditions. As the
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TABLE 5. The advantages and limitations of different TFA in BSS.

TFA Advantages in BSS

Signal types suitable for

Disadvantages in BSS .
analysis

1. The frequency of the signal can be captured

over time. Resolution limitation: There is a trade-off S
. . . . . The estimation of parts of the
2. can adjust the time and frequency resolution ~ between time resolution and frequency . . .
STFT ! . . . . . signal with rapid frequency
by selecting the window size. resolution, which cannot be achieved at the same
. . . . . changes may not be accurate.
3. Simple implementation and wide time.
application.
. 1. Th tational lexity is high and
1. can adapt to frequency changes at different 1 computationa’ complexity 1S Agh and may
seales require a longer computational time.
CWT . L . 2. The selection of different scales and wavelet Pulse signal
2. can provide high time resolution and . . . .
> functions is sensitive and needs to be adjusted
frequency resolution. . .
based on signal characteristics.
1. can acc.ur.ately captqre the instantancous 1. Easily affected by noise, which may lead to .
characteristics of the signal. . Pulse signal
WVD . f artifacts. - .
2. can provide accurate instantaneous . IR nonlinear signal
. . 2. The computational complexity is high.
frequency information.
1. can capture both time-domain and 1. The computational complexity is high,
FiFT frequency-domain information especially for large-scale signals. nonlinear signal

2. can capture the rotational characteristics of
the signal.

2. The selection of fractional order may need to
be adjusted based on signal characteristics.

signal-to-noise ratio increases, their separation performance
improves, although they are still significantly affected by the
signal-to-noise ratio.

FrFT demonstrates relative insensitivity to noise compared
to other methods, ensuring a stable separation performance
across various noise environments. It is less influenced
by noise during the feature extraction process, providing
relatively better performance. However, even in high signal-
to-noise ratio situations, there is room for improvement in
FrFT’s separation performance.

In summary, each method has its suitable scenarios and
limitations. In practical applications, selecting an appropri-
ate time-frequency analysis method is crucial based on the
specific characteristics of the problem at hand.

To assess the complexity of the algorithms during the
blind source separation process, different TFA methods were
compared concerning their computational complexity, con-
sidering variations in the number of sampled points. This
comparison of the complexity of different TFA methods is
illustrated in figure 24.

Observing the Figure 24, it is evident that there is a sig-
nificant disparity in the computational complexity of BSS
achieved by the four different TFA methods as the number
of sampled points increases.

WVD has a computational complexity of O(N3) which
sharply increases with the number of sampled points. This
is due to the extensive involvement of complex number
operations in the WVD algorithm implementation, lead-
ing to a dramatic surge in computational workload. This
poses a substantial challenge to the algorithm’s implemen-
tation. FrFT’s computational complexity falls approximately
between O(N?2) and O(N3), placing it between WVD and
other methods in terms of complexity. Although lower than
WVD, it still resides within a relatively high complex-
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ity range. This high computational complexity significantly
impacts the algorithm’s implementation, making the opti-
mization of the FrFT algorithm to reduce computational
workload a crucial research direction in blind source sepa-
ration algorithms.

WT has a computational complexity of O(NlogN ), render-
ing it one of the methods with relatively lower computational
demands based on wavelet transformation. This characteristic
makes it one of the preferred blind source separation methods
when computational resources are limited. STFT’s computa-
tional complexity is (N>logN), and it incurs relatively lower
complex number operations when the number of sampled
points is small. Therefore, in situations where resources are
scarce, STFT can be considered an ideal blind source separa-
tion method.

In summary, reducing the computational workload, partic-
ularly for high-complexity methods such as WVD and FrFT,
is a key focus in the research of blind source separation algo-
rithms. When selecting a blind source separation method, it is
crucial to balance the pros and cons of various methods based
on the practical application requirements and the availability
of computational resources.

C. “TWO-STEP” METHODS FOR BLIND SOURCE
SEPARATION IMPLEMENTATION

The previously discussed method is the most essential
and fundamental approach for achieving BSS. However, its
implementation assumes that each source signal is mutually
independent, and the number of mixing channels exceeds
the number of source signals, thus enabling successful signal
separation. Yet, in practical BSS systems, source signals are
often not completely independent, and the number of mixing
channels may be fewer than the number of source signals.
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FIGURE 22. Comparison of source signals recovered using FrFT (a.
Recovered component 1, b. Recovered component 2).
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FIGURE 23. Comparison of the separation performance using different
TFA.

In such scenarios, the available information about the source
signals becomes limited, resulting in an infinite number of
possible solutions, making BSS unattainable.
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FIGURE 24. Comparison of the complexity of different TFA methods.

In 1999, Lee et al. [40] proposed the characterization of
super complete basis. In 2008, B, Tan et al. [41] proposed
an UBSS method based on the estimation of the number of
source signals. Firstly, the observed signals were united and
symmetrically processed to map them to the upper half of
the unit circumference, Then the number of source signals is
estimated by statistical knowledge, and the estimated mixing
matrix is obtained. Finally, the source signal is recovered by
the shortest path method. In 2019, J, Pei et al. [42] applied
the rational ICA method to the UBSS problem with unknown
number of source signals. Firstly, the observed signals are
divided into multiple parts according to time, and then the
rational ICA algorithm is used to estimate the mixing matrix
and source signal in each time interval, and then the adaptive
K-C-means clustering algorithm is used to determine the
number and mixing matrix of source signals, Finally, the
source signals are registered according to the classification
label, and then all the source signals are recovered. However,
the algorithm requires that the number of active source signals
at any time cannot exceed the number of observed signals,
resulting in some limitations of the algorithm.

In recent years, sparse representation has successfully
solved the problem of UBSS. It was originally proposed by
Bofill and Zibulivsky [43] using “two-step” method. The
algorithm first estimates the mixing matrix by clustering
algorithm, and then restores the source signal by shortest path
method. Since then, there have been many UBSS two-step
methods for sparse source signals [44], called Sparse Com-
ponent Analysis (SCA).

The implementation schematic is shown in the Figure 25.

In general, SCA uses a “two-step” approach

i. To enhance the sparsity of signals, some cluster-
ing algorithms such as k-means clustering and fuzzy
c-means clustering are used to cluster the signals that
have shown directivity in the transform domain, so as
to estimate the mixing matrix.
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FIGURE 25. The implementation schematic of “Two-step” methods.

ii. After estimating the mixing matrix, some reconstruc-
tion algorithms such as compressed sensing are used
to reconstruct the source signal. Finally, the obtained
source signal is transformed back to the time domain
through the inverse transformation of the transform
domain.

1) MIXED MATRIX

For the first step, the mixed matrix estimation method:
Bofill proposed the potential function method to find the
straight-line trend in the signal scatter diagram and determine
the mixed matrix, which belongs to the estimation method
of statistical clustering [44]. Li uses the K-means [45] statis-
tical clustering method to estimate the mixed matrix. Theis
and Lang proposed winner takes all algorithm to estimate
mixed matrix [46]. In order to improve the estimation accu-
racy, He et al. [47] Proposed weighted K-means clustering
blind signal separation algorithm. These methods use all data
samples, and there are large errors in clustering estimation.
In 2005, Abrard and Deville proposed the time-frequency
ratio algorithm [48], in 2013, Zhang et al. [49] proposed
the mixing matrix based on subspace projection as well
as clustering methods, in 2017, Xiang et al. [50] proposed
an algorithm estimation using time-frequency independent
complex argument points detection and adaptive hierarchical
clustering. Yilmaz and Rickard proposed degenerate unmix-
ing Estimation Technology (DUET) [51], which assumes that
the signal is very sparse and forms a time-frequency mask.
Therefore, Li [52] also proposed a mixed matrix estimation
method based on wavelet packet transform. In 2020, Xu et al
[53] used the law of large numbers to obtain the estimation
of the mixing matrix and graphically display the number of
source signals.

In references [54], in order to overcome the limita-
tions of the previous algorithms, the concept and retrieval
method of single source interval of signal are proposed. The
method of estimating mixed matrix by using samples of single
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source interval is fast and effective, and has higher accuracy
than clustering method. Single source interval means that in
some intervals, only one signal is large or non-zero, and other
signals are zero or small. In the time-frequency domain, the
single source interval is used to estimate the mixed matrix,
which is called the single source interval mixed matrix esti-
mation method [54]. For enhance the clarity of observed
signal directional vectors, researchers have made various
attempts. Among these, Single Source Point Detection (SSP)
is pivotal. By isolating data points dominated by a single
source signal and reducing interference points, the validity
of the data is improved significantly. The different directions
obtained from sparse data points contribute to the different
column vectors of the mixing matrix. This process represents
the first step in the two-step method, wherein the mixing
relations of the signals are solved based on the observed
signals, leading to the estimation of the mixing matrix.

To understand the improvement idea of SSP detection, the
mixed signal observation matrix in TF Domain is:

Xi(t, 1) aplaiy - A Si(t, f)
X2, ) @1 a2 - don Sa2(t, 1)
X(t,f)= : = . :
Xon(t.f) ant s -y | LSnES)
(10)

For the TF ratio of the observed signal of each channel to
the M-th channel, the TF ratio of the mixed signal X (z, f) at
the SSP is a constant. Using this relationship, as long as all TF
SSPs are found, the mixed vector corresponding to the source
signal Sy (¢, f) can be estimated by using formula (11).

Ly T

Ly
. 1 X1(t;s fr) 1 Xy (t;s fr)
= | — — s — AR 11
ay |:Lk Z Xon(t; s fe,) Ly my Xm(tkivfk,-):| (11)

i=1
Ly indicates the number of TF SSPs. It can be seen that by
achieving effective SSP detection in the sparse TF Domain,
and the mixed matrix can be estimated through a series of
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methods such as clustering, then the separation of source
signals can be achieved. The performance of SSP detection
directly determines the estimation accuracy of the mixed
matrix.

For the improvement of SSP detection algorithm, the gen-
eral idea is divided into two categories:

i. After the TF Transform of the observed signal, the TF
points obtained are filtered to improve the performance of the
subsequent SSP detection algorithm;

ii. A more suitable TF transform is performed on the
observed signal to obtain TF points (TF intervals) that are
easier to detect SSPs or single source areas.

For the first improvement idea, the general algorithm will
be divided into four steps to achieve [55], [56]. The first step is
to perform TF Transform on the observed signal, the second
step is to delete the low energy points of the TF points to
remove the interference noise, or to remove the redundant
data points to reduce the number of TF points. In the third
step, for the use of quadratic TF analysis, we should also
focus on removing the interference of cross terms. In the
fourth step, we should gain SSP detection for the filtered
TF points. In 2018, Y, Q, Chen et al. [57] proposed using
local station and distribution symmetry to detect unit interval
and mixing matrix estimation is obtained through clustering
algorithm. The proposed method does not require region divi-
sion of hypersphere and is easy to operate, so as to effectively
eliminate pseudo SSPs and improve the clustering features of
observed signals. In 2019, Y, B, Li et al. [58] proposed remove
the low-energy TF points to avoid the effect of noise and
reduce the amount of calculation. In 2020, based on the idea
of mean clustering, Li et al. [59] processed a single source
point near each initial clustering center to obtain the final
estimation result of the mixing matrix.

The second way is to improve the traditional TFA method.
The commonly used method is to carry out STFT on the
observed signal to obtain the corresponding TF point. For
a certain time, only one non-zero source point is screened.
The quality of the SSP obtained is different with different
screening methods [57], [60], [61]. Because the physical
meaning of STFT is clear and the calculation is relatively
simple, many of the current estimation of mixing matrix and
the separation of source signals are based on the TF Domain
of STFT.

There are many other papers that try to achieve SSP detec-
tion using other TFA methods [62], [63], [64], [65]. The
SPWVD of the observed signal is obtained by using the
improved WVD. In this TF Domain, it is very obvious that
there are several TF intervals that may exist in the single
source domain of the signal. In this way, the correspond-
ing single source domain can be found by comparing the
variances in several TF intervals, instead of calculating the
entire TF Domain through search and comparison, and the
computational complexity is significantly reduced.

In [62], Tang, et al. proposed the TFA method of
Gabor-SPWVD combination to solve the problem that the
existence of the cross-term of the quadratic TF distribution
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leads to the inaccurate selection of the self-term TF points.
The main idea is to obtain the TF diagram of suppressing
the cross-term interference through the sum operation of the
Gabor transform results and the SPWVD results. After trun-
cation, it is the self-term TF point area. By combining the TF
point region with the SPWVD result again, the effective TF
point map of the mixed signal is obtained, and the estimation
of the separation matrix and the blind separation of multiple
overlapping frequency hopping signals are got.

Lei et al. [63] proposed an improved single source point
detection using SPWVD, and obtained a clear and robust TF
map, in which effective data were extracted [64] combines
STFT with SPWVD. First, the received signal undergoes
STFT, cluster it in the added window, select the desired
approximate region, then segment FFT the signal, find the
corresponding time point, and finally SPWVD the signal in
the selected approximate region, compare the energy of each
region, compare the points obtained in the second step, and
select the required position information point.

Peng et al. [65] also chose to combine the STFT with the
SPWVD, but the idea is quite different. Peng first used the
WYVD to realize the spatial TF distribution of the received
signal, and then covered a layer of STFT in the TF distribution
domain to extract the data points under the cover. After
simulation verification, the data points extracted by this idea
meet the TF points of the single source signal. In short, the
estimation method of mixed matrix using single source inter-
val requires that the source signal has enough single source
interval data to ensure the estimation of mixed matrix. When
the mixed signal is not sufficiently sparse, the mixed matrix
cannot be completely estimated, that is, if a source signal does
not have enough single source interval, the column vector of
the corresponding mixed matrix will not be estimated.

Table 6 is a summary of the TFA comparison of the above
improvements.

To estimate the mixing matrix based on TFA, it is essen-
tial to establish a sparse model in the transform domain of
the observed signals. This model facilitates dimensionality
reduction, allowing solutions for underdetermined systems.
Different levels of sparsity in observed signals exhibit distinct
characteristics in various transform domains. The scatter plot
below provides a visual representation of the sparsity of
observed signals in different transform domains. A stronger
sparsity implies fewer non-zero points in the signal, with
most data points having zero amplitude. In such cases, the
scatter plot of the observed signal points demonstrates clear
directionality. Each direction corresponds to a column vector
of the mixing matrix. Therefore, the clearer the directionality
presented in the scatter plot, the higher the accuracy of the
estimated mixing matrix. Figure 26 illustrates the scatter plots
of signals in different transform domains.

Comparing the scatter plots of figures a to f in Figure 26,
it is evident that the number of time-frequency points in
scatter plot f, obtained after Single Source Point (SSP) pro-
cessing, is indeed fewer than the number of time-frequency
points in scatter plot obtained without SSP. Additionally, the
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TABLE 6. Improvement of TFA in BSS.

Improvement
direction

paper

Improvement points

advantage

shortcoming

Suppress
interference

time-frequency

point

[57] [58][59]

Remove noise points,
redundant data points
and cross-term
interference

Improve the quality of
time-frequency points and
reduce the amount of
calculation

The superiority is not
high, and it does not
improve the
time-frequency
clustering characteristics
essentially

Single source

After STFT, remove

point 015761 data points that do not Improve the clustering The clustering effect is
improvement [60][57][61] meet the characteristics of single ot obvigous
Improvement of characteristics of source points
traditional TFA single source point
method STFT+SPWVD The clustering effect of
. . . Large amount of
[62][63][64][65] superimposed time-frequency points calculation and unstable
time-frequency obtained after superposition
diagram is obvious performance

directional vectors in scatter plot f are significantly clearer.
f shows the scatter plot of time-frequency points obtained
from STFT after removing non-single source points by setting
a threshold, achieving SSP.

From the Figure 26, it is evident that different TFA meth-
ods exhibit varying levels of sparsity and directionality in
observed signals. Therefore, the choice of TFA method is
crucial. Only with an appropriate TFA method can clear
directional vectors be obtained. These distinct directional
vectors are essential for achieving a more accurate mixing
matrix.

To analyze the impact of different TFA methods on the
accuracy of mixed matrix estimation, this paper employs
the Normalized Mean Square Error (NMSE) to evaluate the
estimation accuracy of the mixed matrix. The mathematical
expression for NMSE is provided as follows [12]:

M N 2
2oim1 2= @
Zf“il ZA;I (aij - aij)2

a; and a; represent the values of the true source mix-
ing matrix and the estimated mixing matrix, respectively.
Equation (12) illustrates that NMSE changes with the devi-
ation of the estimated mixing matrix values. The greater the
deviation, the higher the NMSE, indicating better estimation
accuracy of the measurement mixing matrix, resulting in a
smaller NMSE value.

The performance comparison of the estimated mixing
matrices in different environments under the scenario of
M=2, N=3 is shown in Figure 27.

As depicted in the Figure 27, with the increase in SNR,
the impact of noise in the mixed signal diminishes, leading to
smaller NMSE values. This indicates an enhancement in the
accuracy of estimated mixing matrices. Directly estimating
the mixing matrix based on frequency-domain characteristics
yields relatively low precision, regardless of low or high SNR
conditions. Both STFT and CWT are significantly affected
by noise. At low SNR levels, the accuracy of the estimated
mixing matrix is low. However, with the increase in SNR,
the accuracy of the mixing matrix estimation shows the most

NMSE= —10log,, (12)

VOLUME 11, 2023

significant improvement for these methods. On the other
hand, the mixing matrix estimated using FrFT exhibits the
highest accuracy at low SNR levels. However, its accuracy
remains relatively stable with increasing SNR, suggesting
that FrFT is less influenced by noise. Nonetheless, there is
room for improvement in the estimation accuracy of FrFT.

2) SOURCE SIGNAL SEPARATION
For the second step of source signal recovery, there are mainly
the shortest path method to find the L1 norm solution. The
L1 norm solution solved by linear programming is used as
the sparse representation of the signal, and the sparse repre-
sentation of the signal is usually approximate to the estimated
source signal. Yilmaz et al. [51] pointed out that the LO norm
solution as the sparse representation of the source signal is
the most sparsity, but there is no uniqueness and is sensitive
to noise; The L1 norm solution as the sparse representation
of the source signal is unique and robust to noise. At the
same time, if the source signal is sufficiently sparse, the L1
norm solution is equivalent to the L.O norm solution with high
probability and is similar to the source signal. Takigawa et al.
[66] have also analyzed the performance of L1 norm solution,
which shows that when the number of non-zero source signals
at t time is less than the number of perceptron and the source
signal distribution is very steep, the L1 norm solution has
good performance, otherwise it cannot get good separation
effect.

Since then, Georgiev, Theis and Cichocki have considered
a more relaxed K-SCA condition. The K-SCA condition
refers to a condition that the number of non-zero source
signals is less than the number of observation signals at some
sparse points. They have proved that the K-SCA condition is
a sufficient condition for the estimation of source signals and
mixed matrix [67], [68]. This method constructs the normal
vector in polar coordinates, accumulates the data orthogonal
to each vector in m-dimensional space, and then determines
its normal vector, but there are also some problems, such as
errors caused by angular resolution and complex calculation.
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At 2015, Wang et al. [69] proposed estimating the source
signals using both time frequency technology and tempo-
rary structure so as to improve the separation performance.
In 2020, Xu et al. [52] Proposed a method to estimate the
source signal using the minimum intersection angle criterion.

In addition to the improvement of the above steps, the
algorithm is improved from other angles. For example,
in 2021, Haddad et al. [70] expressed the mixed signal as a lin-
ear combination of delay components selected from the over
complete dictionary by using the spatial constraints between
different channels, which can greatly reduce the impact of
delay on separation.

It can be seen from the above steps that the first premise
of all algorithms is that the signal is sparse. The strength
of sparsity directly determines the performance of blind
source separation system. Generally, ideal results can be
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obtained only when the source signal is sufficiently sparse
[711, [72], [73]. The underdetermined blind source separation
algorithm based on sparsity has gradually developed into the
mainstream algorithm. It is the first thing to determine the
sparsity of the signal before the algorithm.

Although most signals are naturally sparse, it is difficult
to estimate the mixing matrix accurately due to the weak
signal sparsity in the time domain [74], [75]. Therefore,
many algorithms transform the observed signals to the fre-
quency domain through time-frequency transformation, and
then solve the problem of underdetermined blind source sep-
aration in the time-frequency domain. The above classical
algorithms and improved algorithms use STFT or CWT to
improve the signal sparsity, but the STFT is an investigation
of the global characteristics of the signal, and the amount of
calculation and algorithm performance need to be improved.
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FIGURE 27. Comparison of the estimated mixing matrices in different
environments.

For the CWT to search for sparse characteristics, it is essential
to select appropriate wavelet basis functions; an inappropriate
choice can lead to inaccurate analysis results. Conversely, the
WYVD is susceptible to cross-term interference, potentially
resulting in false spectral components. This poses a challenge
to searching for sparse characteristics. In the case of the FrFT,
due to the introduction of rotation factors, a more detailed
search for global signal sparsity characteristics is feasible, but
it comes at the cost of significantly increased computational
burden. Therefore, when employing the “two-step’” approach
for UBSS, the choice of TFA method becomes of paramount
importance.

To compare the performance of different TFA methods in
source signal recovery, the observed channel number is set to
M=2, and the number of source signals is N=3. The source
signals are mixed, and various time-frequency analysis meth-
ods are used to estimate the source signals. In Figure 28, when
the signal’s time-domain sparsity is constant (sparsity = 0.7),
the correlation of the estimated source signals using different
time-frequency analysis methods changes with the variation
in observed signal signal-to-noise ratio. Figure 29 illustrates
the variation in the time used to estimate the source signals
using different time-frequency analysis methods when the
signal sparsity remains constant (sparsity = 0.7) and the
observed signal signal-to-noise ratio changes.

Observing Figure 28, under constant sparsity, as SNR
increases, the correlation coefficients between the recovered
and actual source signals approach 1, indicating improved
recovery. Among the methods, STFT and CWT exhibit the
most significant improvement in correlation coefficients with
increasing SNR. These methods perform exceptionally well
in high SNR conditions. In contrast, source signal recov-
ery based on frequency domain features performs poorly
in noisy environments. FrFT shows relatively stable perfor-
mance, although not as good as STFT and CWT in high SNR
situations.

Observing the following Figure 29, under constant spar-
sity, as the SNR increases, the time required for recovering
source signals decreases. This phenomenon occurs because
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Impact of Different TFA on Correlation Coefficients
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FIGURE 28. The correlation of the estimated source signals using
different TFA.
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FIGURE 29. The time used to estimate the source signals using different
TFA.

algorithms consume some time due to noise interference.
Among the methods, the FrFT algorithm consistently exhibits
the highest time consumption, indicating it requires the most
time and has relatively high complexity. On the other hand,
recovering source signals using frequency domain features
takes the least time, suggesting a relatively simple algorithm.
STFT and CWT methods exhibit moderate time consumption
in comparison to other methods [76].

D. NONLINEAR TFA METHODS FOR BSS
IMPLEMENTATION
Nonlinear time-frequency analysis has developed rapidly
in recent years [77], [78]. In nonlinear TFA, researchers
initiate the process by identifying local maxima or the
energy centroid on the time-frequency plane. These points
directly influence the extraction of crucial parameters such
as Instantaneous Frequency (IF) and Group Delay (GD) from
non-stationary signals. The approach involves reallocating
the TFA representation to the energy distribution centroid
associated with each time-frequency point, a method known
as Time-Frequency Reassignment Method (RM) [79].

The RM enhances the interpretability of the TF represen-
tation by redistributing energy from each point on the TF
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spectrogram to its corresponding local spectral centroid posi-
tion. This results in a concentrated energy distribution for the
isolated signal components, making them more distinguish-
able. The spectral centroid’s frequency coordinate signifies
the IF, while the time coordinate signifies the GD. The use of
the Instantaneous Frequency Operator (IFO) and the Group
Delay Operator (GDO) aids in estimating the spectral cen-
troid positions, facilitating the process of TF reassignment.
Subsequent research has built upon this method [80].

While the RM holds theoretical promise for achieving opti-
mal results, its simultaneous compression of signal energy
along the frequency and time axes, coupled with its dis-
regard for phase information, poses challenges for inverse
transforms and reconstructing time-domain signals. This lim-
itation becomes particularly problematic in signal separation
tasks.

To address this limitation, Huang et al. proposed the widely
recognized Adaptive Empirical Mode Decomposition (EMD)
[81]. The aim was to develop a method capable of both
time-domain signal reconstruction and providing a clearer
TFA representation. An iterative approach was introduced
to identify a finite number of Intrinsic Mode Functions
(IMFs) that effectively represent the signal. These IMFs
enable the estimation of critical data, including instantaneous
frequency and amplitude, thereby facilitating efficient signal
separation. Due to EMD’s adaptive nature, it offers high
TF resolution, rendering it a popular TFA choice in recent
years. Researchers have continually enhanced EMD and inte-
grated it with traditional or parameterized TFA methods
[82], [83], [84], [85], [86], [87]. However, EMD still faces
challenges like mode mixing. Although Huang et al. intro-
duced Ensemble Empirical Mode Decomposition (EEMD)
[88] to mitigate such issues, the addition of zero-mean
Gaussian white noise to the signal affects the algorithm’s
robustness.

Drawing inspiration from Empirical Mode Decomposi-
tion (EMD) and phase information estimation techniques
in wavelet transforms, researchers introduced the Syn-
chrosqueezing Transform (SST). This technique enables
simultaneous energy reallocation for each component in
multi-component signals [89]. SST achieves this by reorga-
nizing the energy distribution of each TF point. This dual
benefit enhances the energy of relevant signals, reducing
noise impact and improving noise resilience. Simultane-
ously, it compresses the transformation coefficients obtained
through the time-frequency transformation, thereby enhanc-
ing the interpretability of the time-frequency representation.
Consequently, SST has found widespread application and
emerged as a research focal point in recent years, owing
to its advantages such as high TF concentration, reversibil-
ity, and signal reconstruction capability. Numerous research
breakthroughs have emerged in this domain [90], [91], [92],
[93], [94].

In addition to the traditional TFA-based and two-step
approach for BSS, non-linear TFA methods are also rapidly
evolving in the field of BSS. From EMD to the currently
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popular VMD, these methods are increasingly playing a
significant role in BSS systems [95], [96], [97], [98], [99],
[100], [101], [102]. The main concept involves employing
non-linear algorithms to decompose the observed signals,
thereby simplifying the underdetermined problem into an
overdetermined one.

In [95], G. X. Zhong introduces an innovative approach for
processing EEG signals, combining Independent Component
Analysis (ICA) and Empirical Mode Decomposition (EMD).
The proposed method effectively eliminates noisy artifacts
from EEG signals with remarkable accuracy. This fusion
technique enhances the overall accuracy of artifact removal,
ensuring the reliability of processed EEG data. Aiming at
the uncertainty of single-channel blind source separation
amplitude, [96] proposed an adaptive filtering amplitude cor-
rection method based on the minimum distortion criterion.
In [97], Hao proposed a single-channel blind source separa-
tion method combining EMD and constrained independent
component analysis (CICA). Through EMD decomposition
of the collected fault mixed signal to achieve noise reduction
and single-channel expansion, the effective IMF component
is selected based on the combination of white noise statistical
characteristics and kurtosis value, which is used as the input
signal of BSS, and the target vibration signal is extracted by
CICA method to identify fault characteristics. In [98], It is
very important for UBSS to use EMD to realize the number
identification of source signals. The improved EMD is used to
realize blind source separation. The simulation results further
verify the effectiveness of EMD.

In the application of VMD in BSS system, [99] proposed
a method of SCBSS based on variational mode decomposi-
tion (VMD) and principal component analysis (PCA). The
observed signal is decomposed into a number of modes simul-
taneously using VMD. Then, PCA is used to select the cor-
responding source components from the decomposed modes.
In [100], An UBSS method based on VMD is proposed. The
paper transforms the problem of single-channel underdeter-
mined blind source separation into a non-underdetermined
problem by creating virtual multi-channel signals based on
VMD. The separation of signals is achieved through the Joint
Approximate Diagonalization of Eigen-matrices (JADE) of
fourth-order cumulant matrices. This method establishes
virtual multi-channel signals from the observation signals
using VMD, followed by signal separation through JADE
of fourth-order cumulant matrices, effectively addressing the
underdetermined blind source separation problem and pro-
viding an efficient approach to determine the optimal number
of decomposition layers for VMD.

As a crucial component of the nonlinear TFA method,
SST is frequently employed as a post-processing technique.
SST enhances the energy aggregation of the signal in the TF
plane by reorganizing the energy of each TF point based on
its frequency. This process enhances the sparsity of the TF
domain and mitigates the influence of noise [101], [102].
It serves as an effective strategy to enhance performance in
BSS system.
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E. CONTRIBUTION OF TIME-FREQUENCY ANALYSIS IN
BLIND SOURCE SEPARATION SYSTEMS

BSS is a complex signal processing problem that may
encounter various challenges and difficulties in practical
applications. The application of time-frequency analysis
offers highly favorable conditions for addressing these chal-
lenges in blind source separation systems, making it a crucial
tool in dealing with such scenarios. The following are some
challenges that blind source separation algorithms may face,
along with the contributions of time-frequency analysis in
addressing these challenges:

F. UNDERDETERMINED PROBLEM
Underdetermined scenarios arise when the number of mixed
signals is fewer than the number of source signals, resulting in
an infinite number of solutions and complicating the separa-
tion process. This makes it difficult to solve the problem using
simple linear algebra methods. Overcoming underdetermined
scenarios may require additional information or constraints.
TF Contribution: Time-frequency analysis aids in identify-
ing frequency components and time-varying characteristics
within mixed signals, thereby narrowing down the solution
space for source signals to a certain extent. By analyzing
frequency and temporal information, the estimation of source
signal quantity and characteristics can be achieved more
accurately.

G. NON-GAUSSIANITY AND NON-INDEPENDENCE

Many blind source separation methods rely on the
non-Gaussianity and mutual independence of signals. How-
ever, in some cases, signals may exhibit similar non-Gaussian
characteristics or fail to meet the assumption of mutual
independence, affecting separation outcomes.

TF Contribution: Time-frequency analysis methods may
have lower requirements for non-Gaussianity and non-
independence during the separation process. Time-frequency
analysis focuses more on the signal’s characteristics in the
time-frequency domain, beyond mere statistical properties.

H. NONLINEAR MIXING

If the mixing process is nonlinear, such as oscillations or
modulation, conventional linear separation methods may not
be applicable. Nonlinear mixing leads to the intertwining of
signal components in the time-frequency domain, increasing
the complexity of separation.

TF Contribution: Time-frequency analysis can be
employed to capture the time-frequency characteristics of
nonlinear mixing processes. Some nonlinear time-frequency
analysis methods can model nonlinear features like modula-
tion and oscillation, thereby facilitating better separation.

I. NOISE AND AMBIGUITY

Noise in the data can introduce uncertainty during the sepa-
ration process, disrupting the integrity of separated signals.
Additionally, due to the ambiguity inherent in the mixing
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process, the recovery of source signals might be inherently
uncertain and challenging to accurately separate.

TF Contribution: Time-frequency analysis can be
employed to mitigate the impact of noise on signal sepa-
ration. Through appropriate filtering and signal processing
techniques, signal separability can be enhanced.

J. INSUFFICIENT PRIOR INFORMATION
Lack of prior information about the source signals can limit
the accuracy of separation algorithms. Prior information can
help better constrain the solution space during separation.
TF Contribution: Time-frequency analysis methods can
perform analysis based on inherent data characteristics, often
requiring less reliance on extensive prior information. Time-
frequency analysis approaches extract information from the
data, utilizing the signal’s time-frequency properties.

IV. CONCLUSION

This paper addresses the prevalent issue of non-stationary
signals in practical applications and provides an overview
of the application of various time-frequency analysis (TFA)
methods in blind source separation (BSS) systems over the
past decade. By analyzing several major factors influenc-
ing the performance of time-frequency analysis, improved
algorithms based on these factors are explored and their
advantages and limitations in blind source separation systems
are summarized. However, as research advances and signals
become more complex and variable, along with environ-
mental factors, the application of time-frequency analysis in
blind source separation systems faces heightened demands.
The following are some directions and trends for the future
development of time-frequency analysis:

i. High-Resolution Time-Frequency Representations:
Researchers are striving to develop higher-resolution
time-frequency analysis methods to accurately cap-
ture the temporal variations of signals. This involves
enhancing window function design, wavelet basis func-
tion selection, and more.

ii. Nonlinear Time-Frequency Analysis: The study of
nonlinear time-frequency analysis methods is gaining
significance when dealing with nonlinear signals or
nonlinear mixing scenarios. These methods can better
capture the nonlinear features of signals.

iii. Sparse Representation and Compressed Sensing:
Applying sparse representation and compressed sens-
ing theories to time-frequency analysis can reduce
the number of measurements and samples, thereby
decreasing computational complexity and enhancing
analysis efficiency.

iv. Integration of Deep Learning and Time-Frequency
Analysis: Deep learning techniques have achieved
remarkable success in signal processing, includ-
ing time-frequency analysis. Researchers are explor-
ing ways to combine deep learning methods with
time-frequency analysis to enhance analysis perfor-
mance.
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v. Multi-Source Signal Separation: Time-frequency anal-

vi.

ysis finds extensive application in multi-source signal
separation problems, and researchers are developing
more efficient methods to address multi-source signal
mixing and separation challenges.

Adaptive Time-Frequency Analysis: Adaptive time-
frequency analysis methods can automatically select
appropriate analysis parameters based on signal char-
acteristics, thereby improving analysis accuracy and
adaptability.

In summary, this paper provides an overview of the research
development in blind source separation systems through a
decade of time-frequency analysis methods. The field of
time-frequency analysis is continuously progressing towards
higher resolution, greater accuracy, and adaptability to
diverse signal types. These efforts contribute to a better
understanding and handling of time-varying signals, playing
a larger role in various application domains. We have reason
to believe that as applications such as medical, radar, sonar,
speech processing, etc., continue to expand, and as demands
for signal quality rise, blind source separation systems will
undergo accelerated development.
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