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ABSTRACT There have been many attempts to forecast sub-seasonal to seasonal (S2S) precipitation. One
of them is the Climate Forecast System version 2 (CFSv2) model; however, a bias correction must be applied
before CFSv2 data can be used in each local region. In this research, we aim to address the S2S precipitation
forecasting using our new bias correction on CFSv2 data. Our model is based on the deep learning model:
Attention U-Net having two proposed enhancements: (i) a multi-scale residual block to learn patterns on
different scales and (ii) a combination of customized regression loss and classification loss. Further, we apply
a log scaler to reduce the impact of skewness in the data. Finally, seasonal and meteorological effects are
provided as additional input for our model. CFSv2 is employed as a dataset to be corrected in our study, while
rainfall data from Thailand’s Hydro-Informatics Institute (HII) is served as the ground truth. In the result,
it demonstrates that our model outperforms two baseline models: namely, a linear-downscaling technique
(traditional approach) and a traditional Attention U-Net model. Our model’s root mean square error (RMSE)
and temporal correlation coefficient (TCC) improve about 8.65% and 13.77% respectively, over the linear-
downscaling technique. Besides the results of the Attention U-Net model reveal that our model’s RMSE and
TCC improve by about 15.56% and 12.06%, respectively.

INDEX TERMS Sub-seasonal precipitation forecasting, bias-correction.

I. INTRODUCTION
Precipitation is an important factor in water management
and agriculture in Thailand. A reliable precipitation forecast
is critical in a climate forecasting system. Precipitation
forecasting, in particular, is carried out over a long period of
time. Some periods are influenced by short-term atmospheric
phenomena (weather forecasts), while others are influenced
by long-term atmospheric phenomena (climate forecasts).
As evidenced by previous studies [1], these differences
create a noticeable gap in weather-climate forecasting at
the sub-seasonal to seasonal (S2S) scale. Improving the
accuracy of S2S precipitation prediction has become critical
to closing this gap and improving the performance of various
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applications such as agriculture, water resource management,
and disaster management. Nonetheless, S2S precipitation
forecasting poses research challenges owing to the presence
of intra-seasonal phenomena such as monsoon systems.

Over the past decades, many image-like datasets for
rainfall prediction have been created using a wide range of
methodologies, such as dynamic forecasting models, analog
methods, and machine learning models. Among the tech-
niques to forecast precipitation, a dynamic forecasting model
is one of themost reliable and globally acceptedmethods. The
ability of dynamic forecasting models like Climate Forecast
System version 2 (CFSv2) [2] and European Centre for
Mid-Range Weather Forecasts (ECMWF) [3] to accurately
depict how atmospheric events affect precipitation has been
demonstrated. Nonetheless, many studies have shown that
the outcome of a dynamic forecasting model is significantly
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biased in various aspects when compared to real observations.
Therefore, numerous bias-correction techniques have been
developed to improve and localize the dynamic forecasting
model’s results. Due to their simplicity and explainability,
statistical approaches such as statistical downscaling [4] and
quantile mapping [5] have also been among the most often
used methods for precipitation bias-correction for decades.
Recently, however, deep learning has significantly advanced
and excelled in many meteorological applications, especially
convolutional neural networks (CNN) [6], [7], [8], [9].
Further studies have also been carried out concerning the
impact of various meteorological variables [10], [11] on
S2S precipitation. As a result, deep learning combined with
meteorological effects can have a great effect on precipitation
bias-correction.

Of late, interest in S2S forecasting has increased. Because
of the chaotic nature of the atmosphere, it is typically
thought of as a difficult time horizon to forecast. Scientific
advancements combined with a better knowledge of S2S
sources of predictability have resulted in notable increases in
predicting skills. Numerous studies demonstrate that dynamic
forecasting models such as CFSv2 [2] and ECMWF [3]
are effective at forecasting meteorological variables: namely,
temperature,wind, and geo-potential height. However, when
predicting precipitation, dynamic forecasting models are
found to be far less accurate than predicting temperature [12].
Several attempts have been made to improve S2S prediction
capabilities.

In this study, we aim to correct the bias in the CFSv2
dataset with our deep-learning model. Our model is assessed
over three time periods: weeks 1-2, weeks 3–4, and
weeks 5–6. Our model, Attention U-Net [8], is modified
to correct CFSv2 precipitation dataset bias. Multi-task
learning employs a combination of customized regression
loss and classification loss. Moreover, we concentrate on data
preparation to lessen the influence that a CFSv2 dataset’s
skewness has on bias-correction tasks.

This paper’s contributions are summarized as follows:
• We bias-corrected the sub-seasonal CFSv2 precipitation
using an image-like deep learning network such as
Attention U-Net.

• Two modules help us to improve our model. To begin
with, a multi-scale residual block is employed to learn
the patterns that appeared on various scales. Then,
to enhance the model learning process, a combination
of customized regression loss and classification loss is
employed.

• We used a log scaler for scaling precipitation data to
lessen the impact of the skewness of the data. The added
advantage is that the range of data appears to be more
linear, which helps in the process of model training.

• We also used seasonal and meteorological data to pro-
vide information about Thailand’s unique precipitation
patterns.

This work duly investigates precipitation bias-correction
in Thailand. Numerous machine learning studies have been

carried out. As yet, however, a thorough exploration of bias
corrected S2S precipitation has not been undertaken. Herein,
we wish to expand upon this work. Our work, therefore,
is new and proves to be effective.

The rest of this paper is organized as follows: Section II
discusses the related work. Section III describes the dataset
and proposed method. Section IV describes the experimental
settings. Section V displays the experiment’s results and
discussion. Section VI gives the conclusion of this paper.

II. RELATED WORK
S2S precipitation bias-correction is a challenging topic.
Several approaches have been developed to address this
issue. Herein, we divided our approach into two categories.
The first, frequently utilized by meteorological experts is a
statistical approach. The second is an ML-based technique
for correcting bias in precipitation data at various time
scales.

A. STATISTICAL APPROACH FOR SUB-SEASONAL TO
SEASONAL PRECIPITATION BIAS-CORRECTION
Due to the potential ability of CFSv2 in predicting S2S
precipitation, several methods to correct S2S precipitation
bias from the dynamic forecasting system’s results have
been developed. In general, to correct the bias of CFSv2
precipitation, a variety of statistical techniques, including
quantile mapping and statistical downscaling [4], have been
used for bias-correcting CFSv2 precipitation data. Specq and
Batté [13] applied a statistical-dynamic bias-correction based
on a Bayesian framework corporate with El Nino Southern
Oscillation (ENSO) and Madden-Julian Oscillation (MJO)
as the predictors. Vigaud et. al. [14] demonstrated a spatial
correction methodology for multi-model S2S precipitation
forecasts using local Laplacian eigenfunctions. Li et. al. [5]
determined a copula-based postprocessing method, which
modified probability distribution, allowing their model to
improve prediction concerning extreme values.

Linear downscaling is commonly utilized and widely
acknowledged as a statistical technique [15] for correcting
biases in precipitation results. In this study, we specifically
adopt linear downscaling as the baseline method representing
the statistical approach. The CFSv2 predictions are corrected
by the linear downscaling technique utilizing monthly
climatology as follows:

P′
cfsi,j

= Pcfsi,j ×
µobsi,m

µcfsi,m
(1)

where µobsi,m denotes the monthly climatology of the
Hydro-Informatics Institute (HII) observation at month m at
the i-th position, µcfsi,m denotes the monthly climatology
of the CFSv2 data at month m at the i-th position, Pcfsi,j
denotes the initial prediction from the CFSv2 model at the
j-th sample and the i-th position. Finally, P′

cfsi,j
signifies the

corrected prediction from the CFSv2 model at the j-th sample
and the i-th position.
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B. MACHINE LEARNING-BASED PRECIPITATION
BIAS-CORRECTION MODEL
Initially, precipitation bias-correction relied on some basic
machine learning methods. Subsequently, numerous machine
learning (ML) based studies on bias-correction precipitation
at various time scales have been carried out. As yet,
a thorough exploration of a deep learning (DL)model capable
of bias-correcting S2S precipitation has not been undertaken.
To solve this problem, deep-learning methods have recently
been applied.

As such, machine-learning-based approaches i.e., random
forests [16], [17], [18], [19], support vector machines [20],
[21], and artificial neural networks [22], [23] have been
used for bias-correction of S2S precipitation. Hwang et al.
[11], for instance, used two non-linear machine-learning
models to bias-correct CFSv2’s precipitation and temperature
data. Wang et al. [6], predicted hourly gridded precipitation
using the SRDRN model with a multi-task technique. Fang’s
research showed much promise when using deep learning as
a forecasting model. Espeholt et al. [7] employed MetNet
to bias-correct and increase the resolution of precipitation
from a numeric weather prediction (NWP) model. Moreover,
Attention U-net architect [8] has been used on precipitation
bias-correction tasks and has shown promising results. Ji et al.
[9] implemented two CNN networks as a post processing
method for probabilistic forecasting.

In this study, we chose Attention U-Net, a recent
advancement in the bias correction of precipitation utilizing
DL, to represent our ML-based precipitation bias-correction
baseline. The Attention U-Net model is based on a U-Net
model [24] with the addition of an attention gate (AG).
In modern studies of precipitation bias-correction utilizing a
deep-learning based model, U-Net architecture is frequently
utilized as the base model. U-Net is a U-shaped architecture
comprising an encoder and a decoder. U-Net achieves a
pixel-to-pixel mapping process applied between the input and
output image. As shown in Fig. 2, Attention U-Net, shown
in the white blocks, added an attention gate (red blocks)
between the encoder-decoder skip connection. This attention
gate helps in learning a specific pattern of precipitation.
However, the Attention U-Net architecture proved unsuitable
for predicting strongly fluctuating precipitation patterns at
various scales. Therefore, the Attention U-Net model was
modified to bias-correct CFSv2 precipitation on S2S time
scale.

III. METHODOLOGY
This paper proposes the modified Attention U-Net for
precipitation bias-correction. This section consists of three
parts: dataset, data preprocessing, and the proposed model.
The first section describes in detail each dataset used in
this study. Secondly, data preprocessing is used to handle
precipitation data, which is a highly skewed dataset; all data
has to be in the same format. Furthermore, the data processing
of meteorological data and seasonal data is provided. Finally,

TABLE 1. A summary of the dataset characteristics.

the proposed model, which is based on the Attention U-Net
model, and its modifications are explained.

A. DATASET DESCRIPTION
In this study, two precipitation datasets are used. The
first dataset is CFSv2, which is provided by the National
Oceanic and Atmospheric Administration (NOAA). The
CFSv2 data comes in NetCDF files with 0.2◦

× 0.2◦

resolution. The other dataset is the daily observation data
from the Hydro-Informatics Institute (HII). The HII dataset
has been collected since 2012 and provides a resolution of
1km × 1km. Herein, we corrected the CFSv2 dataset (input)
to the HII dataset (ground truth).

As precipitation is affected by meteorological events,
three additional meteorological indices were collected as an
indicator for those events. The first index is MJO, which is an
eastward moving disturbance of clouds, rainfall, winds, and
pressure that traverses the planet in the tropics and returns to
its initial starting point in 30 to 60 days, on average. MJO has
proved to be a significant factor in sub-seasonal precipitation
forecasting; MJO is provided by the Australia’s bureau
of meteorology (BOM). The second index is the Indian
Monsoon (IM), which is the most prominent of the world’s
monsoon systems that affects India and its surrounding
areas, including Thailand. The Indian monsoon blows from
the northeast during cooler months and reverses direction
to blow from the southwest during the warmest months
of the year. This process brings large amounts of rainfall
to the region during June and July. The Indian monsoon
index is provided by NOAA. The Western Northern Pacific
Monsoon (WNPM) index is the last index in this study,
which is a part of the intertropical convergence zone in the
western northern Pacific Ocean and has an impact on the
eastern region of Thailand. The WNPM index is provided by
NOAA.

In summary, this study utilized two aspects of data,
which are precipitation and three meteorological indices.
In Table 1, a summary of dataset characteristics is
given.
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FIGURE 1. Two histograms of the dataset distribution: (a) HII’s raw
dataset distribution, and (b) HII’s dataset distribution after using a log
scaler.

B. DATA PREPROCESSING
This section is divided into two parts: the preprocessing of
precipitation data and the preprocessing of meteorological
indices. The precipitation preprocessing section discusses
how to construct a uniformly formatted dataset and scaling
approach. Later, the preprocessing of meteorological indices
demonstrates how each index has been processed and
summarized for the model’s input.

1) PRECIPITATION DATA
The objective of preprocessing is to create a uniform format
that can combine together all the information from each
source. Preprocessing of precipitation data consists of two
processes: re-grid precipitation data and scaling data.

The difference in resolution between the precipitation
datasets requires the process of re-gridding. To match the
increased resolution of the HII dataset, the CFSv2 dataset
must be modified. CFSv2 dataset was chosen from the 5.0◦ to
13.0◦ latitude and from 97.0◦ to 105.0◦ longitude. Following
that, the selected CFSv2 data was interpolated using the invert
distance weight (IDW) method to scale the CFSv2 resolution
to meet HII resolution.

After re-gridding the precipitation data, one issue remains,
which is the skewness of the data. Precipitation fluctu-
ation produces a wide range of precipitation data and a
non-uniform distribution of precipitation data. This makes
training the model difficult. Therefore, we utilized a log
scaling method, which is defined as follows, to reduce the
effect of the data skewness:

X ′
= log10(X/α + 1) (2)

where X ′ denotes the scaled precipitation value and X
denotes the original precipitation value; α is a scaling
factor that controls the range of X ′ being mostly between
0 and 1. Compared to raw precipitation data, the log scaled
precipitation data appear to be distributed more uniformly,
as shown in Figure 1.

Precipitation preprocessing enables CFSv2 to have the
same resolution as HII data, which makes it easier to use
the existing deep-learning models. In addition, log scaling
improves the learning process and reduces the exploding
gradient problem.

2) METEOROLOGICAL INDICES AND SEASONAL DATA
TheMJO,WNPM index, and IM index are themeteorological
indices that are used in this study. The MJO index is made up
of three elements of information: RMM1, RMM2, and phase.
Thus, MJO is expressed as:

MJOrep = (RMM12 + RMM22) × phase (3)

RMM1 and RMM2 are amplitudes of the first and second
elements of the MJO, respectively, since MJO is produced
using a signal processing technique. A phase of the index is
represented by the variable phase, and each phase affects a
certain area of the globe. Hence, all meteorological indices
and MJO representations are scaled using a min-max scaler;
summarized values for each index and each week of the year
are determined.

Seasonal data is used to provide the model with historical
trends. We used data obtained from the same week of year
of the previous year as our seasonal data for this study. This
provides an understanding about how the historical pattern is
developed.

Following the completion of data preprocessing, the data
was divided into three datasets for each prediction horizon.
Such details can be found in Section IV of this paper. Each
dataset uses CFSv2 prediction as an input and the timely HII
data that corresponds to it as a ground truth for the model.
Further, the model was given additional information in the
form of seasonal data and summarized indices for the past
eight weeks of each prediction time.

C. ATTENTION U-NET WITH MULTI-TASK HEAD
The Attention U-Net model serves as the base for the pro-
posed modified Attention U-Net model. Since precipitation
patterns fluctuate greatly, it is challenging for a deep-learning
algorithm to learn these patterns. Attention gate helpswith the
learning of precipitation patterns. The attention mechanism
can locate the precipitation areas. As such, the attention
coefficient values in these areas will be large. In contrast,
the attention coefficient of other areas will be close to 0.
Attention gate is a 2-D attention module that suppresses
feature activation in irrelevant regions while focusing on
specific regions. An additive attention mechanism is used
in the attention gate. Due to its lightweight construction,
the attention gate significantly improves the model’s ability
to represent data without increasing computational costs or
the number of model parameters. As shown in Fig. 2, the
modified Attention U-Net model, using the two additional
modules: multi-scale residual block, and multi-tasking,
is implemented.

When a high-resolution image is bias-corrected, the
precipitation patterns have different scales. To handle patterns
on various scales, Attention U-Net architecture makes use of
max-pooling layers. However, this may result in the loss of
information. The multi-scale residual block implements three
residual blocks with kernel sizes of 5, 7, and 9. The purpose of
this module is to identify patterns across three different scales
to provide high-resolution prediction.
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FIGURE 2. Schema of the modified Attention U-Net architecture (four modules): (1) The white blocks show the multi-scale residual blocks
implemented based on U-Net architecture, (2) The red blocks show how we use ‘‘Attention Gate’’ in our model, (3) The blue block represents the
multi-tasking module, and (4) The green blocks represent the use of meteorological indices and seasonal data in our model.

Our dataset has a high degree of skewness, making it
difficult for traditional learning techniques to reliably predict
the range of precipitation. In predicting extreme precipitation
events, the classification head is used with a focal loss to
help the model. Moreover, our model input includes seasonal
data and meteorological indices. Each module aids the model
in enhancing its functionality while preserving and learning
from the historical pattern at its highest resolution. It is noted
that our model uses a multi-head design to support multi-
task learning. Our loss is a combination of regression and
classification loss, as defined below:

Loss = β1 · RL + β2 · CL (4)

where β1 and β2 denote a scaling factor for regression loss
and classification loss, respectively. RL and CL stand for
regression loss and classification loss, respectively. β1 and
β2 are used to scale two losses so that the model can learn
equally from both the regression head and the classification
head. Initial ranges for the classification loss and regression
loss are (0 to 1) and (0 to 0.1), respectively. As a result, we use
β1 and β2 equal to 1.2 and 0.1 so that our regression and
classification losses are in the same magnitude.

In the regression aspect, we applied customized loss to
help the model anticipate the occurrence of rain by penalizing
the raining grid more severely. We also modified the weight
component of the weighted mean absolute error (MAE),
which is written as:

RL =

∑n
i=1 wi ×

∣∣ypred − ytrue
∣∣

n
(5)

wi =


min
ytrue
max

min <

ytrue ≤ min
ytrue ≤ max
ytrue > max

(6)

wherew is the weight of each grid, ytrue is the log-scaled HII’s
precipitation, ypred is the log-scaled CFSv2’s precipitation, n
is the number of grids, andmin andmax denotes theminimum
and maximum weight value. In this study, we use min equals
to log (10/α + 1) and max equals to log (100/α + 1), which
is the minimum and maximum criteria of precipitation as
defined by the Thai meteorological department (TMD). α is
a scaling factor to scale precipitation values to be less than 1.
In this study, we use α equals to 20. Customized regression
loss aids in the model’s ability to identify patterns in the
imbalanced dataset by imposing a greater penalty when it is
raining than when it is not.

In the classification head, we used focal loss [25] to handle
the problem of class imbalance, as our classification loss. The
goal of focal loss is to increase the loss of the class with fewer
members while decreasing the loss from the class with greater
members. Our classification loss is defined as:

CL = −(1 − pt )γ log(pt ) (7)

where pt denotes the class’s estimated probability predicted
by the model. γ is tunable parameter called the focusing
parameter. In this study, we chose to use γ equals to 4 using
the grid search technique.

IV. EXPERIMENTAL SETTING
A. HARDWARE AND SOFTWARE SPECIFICATION
In this work, we used TensorFlow 2.0 and Python 3.8.3 to
train our models. The training device is set up with a NVIDIA
3070 graphics card and 24 GB of RAM.

B. DATASET
The data used in the study was collected between the years:
2012 and 2020. The years 2012 to 2017 were selected as our
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FIGURE 3. Schematic diagram for preparation of dataset: (a) The ground truth shows HII’s precipitation
dataset, which is collected continuously, (b) CFSv2 dataset is produced weekly showing how CFSv2
dataset produced at the start of the 1st week has been handled. Both (c) and (d) demonstrate how we
handle CFSv2 dataset produced at the start of the 2nd and 3rd week, respectively.

training set. The year 2018 was selected as our validation set.
Our test set involved the years 2019 and 2020. This choice
was chosen to hold onto data patterns that happen annually.
As shown in Fig. 3, we used 6 weeks of CFSv2 predictions,
which were predicted at the start of each week, for each of
the samples. We divided the 6 weeks of forecast data into
3 periods: Weeks 1-2, Weeks 3–4, and Weeks 5–6. Following
the collection of three datasets for each prediction horizon,
the associated observation data were chosen as the ground
truth for each model. Finally, our results are evaluated on the
testing dataset.

C. MODEL DETAILS
The modified Attention U-Net architecture, as depicted in
Fig. 2, contains a total of nine layers of multi-scale residual
blocks. The multi-scale residual block consists of three
residual blocks, each utilizing a kernel size of 5, 7, and 9,
respectively. The ELU activation function is employed in this
setting. According to the diagram, layers of the same size
are configured in a similar setting. Residual blocks in layers
1 and 9 are equipped with a total of four filters. Each residual
block in layers 2 and 8 consists of 8 filters. In each residual
block, there are 16 filters allocated for both layers 3 and 7.
The residual blocks in layers 4, 5, and 6 consist of 32 filters.

In terms of model complexity, our model has 1.2 million
trainable parameters based on the configuration mentioned
in previous paragraph. The baseline model, Attention U-Net
with residual blocks and a kernel size of 7, has 500 thou-
sand trainable parameters in total. Our model’s complexity
exceeds that of the Attention U-Net model.

D. TRAINING SETTING
During the training process, the ADAM optimizer was
employed as the chosen optimization algorithm. The learning
rate configuration for the ADAM optimizer was set at 0.01,

while the values of β1 and β2 were set as 0.9 and 0.999,
respectively. In terms of the loss function, a combined loss
was employed in the training process. The loss expressions
are specified in equations 4, 5, 6, and 7 respectively.

E. EVALUATION CRITERIA
This paper evaluated the model’s performance in two
different ways. The first aspect focused on the regression
aspect, which evaluates the results directly from our model.
Herein, the study used the root mean square error (RMSE) to
evaluate performance. RMSE is defined as follows:

RMSE =

√√√√1
n

n∑
i=1

(
Yi − Ŷ

)2
(8)

where n is the number of samples in the test dataset, Yi is the
i-th ground truth, and Ŷ is the i-th prediction.

The second aspect of our study involved the correlation
of our model. We used the temporal correlation coefficient
(TCC), which is a Pearson correlation coefficient for each
grid across all test datasets. TCC can be expressed as:

TCC =

∑n
i=1

(
Ŷi − µ̂

)
(Yi − µ)√∑n

i=1

(
Ŷi − µ̂

)2 ∑n
i=1 (Yi − µ)2

(9)

where n is the number of samples in the test dataset, Yi is the
i-th ground truth, Ŷ is the i-th prediction, µ̂ is the mean of Ŷ
at each grid, and µ is the mean of Y at each grid.

V. RESULTS AND DISCUSSIONS
In this section, we aim to show the results, analyses,
and discussions of our model compared to all baselines
on the testing dataset. There are three subsections. First,
it aims to illustrate the overall performance comparison.
Second, the ablation study is reported to provide an effect of
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each proposed module. Finally, the discussion is presented
focusing on two aspects: (1) the result during a tropical storm
period and (2) a spatial evaluation.

Our proposed model is based on the Attention U-
Net architecture. The multi-scale residual blocks, multitask
learning, and the use of meteorological indices are the three
proposed improvements in this work that are examined in the
ablation test. As shown in Table 2, all results described in the
next sections will have five feature-related acronyms.

TABLE 2. Acronyms of our proposed features.

S2S forecasting is related to a prediction of 2-6 weeks in
advance, and different regions (e.g., northern and southern
of Thailand) often have different precipitation characteristics.
Thus, in all following subsections, the evaluation results are
always reported in details of two aspects: time periods (1-
2 weeks, 3-4 weeks, and 5-6 weeks) and regions (overall,
northern, and southern).

A. OVERALL PERFORMANCE
In this subsection, Table 3 was presented to show an overall
performance of our model (ATT-UNET-MS-MET-ME) and
two baselines (LD andATT-UNET). There are two evaluation
measures: the root mean square error (RMSE) and the
temporal correlation coefficient (TCC).

For the overall time horizons, Table 3 shows that our model
outperformed LD and ATT-UNET for 8.65% and 15.56% in
terms of RMSE improvements and 13.77% and 12.06% in
terms of TCC improvements. Moreover, it shows the same
results that our model is also the winner for northern and
southern areas.

For the details of each time horizon, Table 3 shows that our
model is superior to both baselines in all time horizons (1)-2,
3-4, and 5-6 weeks). In the 1 to 2 week horizon, we reached
24.80 mmHg in RMSE and 0.62 in TCC. Furthermore, the
3 to 4 week results established RMSE of 24.74 mmHg and
TCC of 0.63. Finally, the 5 to 6 week horizon’s RMSE proved
to be 23.30 mmHg and TCC reached 0.65.

In Fig. 4, our model (green line) outperforms other base-
lines, exhibiting the lowest RMSE across all regions. Notably,
a favorable downward trend in RMSE can be observed as the
time horizon extends. The LD model (blue line) maintains a
consistent level of statistical accuracy with a stable RMSE
across all time horizons. However, the ATT-UNET model
shows suboptimal performance, particularly in the 1 to
2-week horizon, where its RMSE surpasses all other models.

TABLE 3. The model’s performance for years: 2019 and 2020 is shown
with the RMSE and TCC for each region and prediction horizon. Boldface
refers to the winners. The values in brackets refer to the improvement in
percentage over LD (first value) and ATT-UNET (second value).

As previously stated, the results show that our model
outperformed both the statistical and machine learning-based
baseline models in every respect. To highlight the progress
accomplished, it is worth noting that our model demonstrated
considerable improvements in Thailand’s southern region,
which is regarded as the most fluctuating region due to the
occurrence of storms throughout the year.

B. ABLATION TEST
In addition to the overall performance evaluation, we conduct
a feature ablation test outlined in Table 4. The table presents
six models, each featuring distinct combinations of attributes.
The initial model, ATT-UNET, implements the Attention
U-Net model. The second model, ATT-UNET-MS, is a varia-
tion of ATT-UNET, integrating multi-scale residual blocks.
The third model, ATT-UNET-MT, employs a multi-task
learning technique with a customized loss for the regression
head and a focal loss for the classification head. The fourth
model, ATT-UNET-ME, introduces meteorological indices
and seasonality effect as additional information for the
ATT-UNET model. The fifth model, ATT-UNET-MS-MT,
combines ATT-UNET with multi-scale residual blocks and
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FIGURE 4. RMSE comparison between Linear downscaling technique (blue line), ATT-UNET (red line), and ATT-UNET-MS-MT-ME (green line). The left
graph is the overall RMSE comparison. The middle graph is the RMSE comparison in the northern region. Finally, the right graph is the RMSE comparison
in the southern region. In each graph, the vertical axis represents the RMSE in mmHg. the horizontal axis represents the time horizon.

TABLE 4. Features ablation study in terms of RMSE and TCC for each prediction horizon and region. Numbers with % refer to the improvement in
percentage over the ATT-UNET model. Boldface refers to the winners. The green numbers indicate the improvement of our model over U-Net model while
red numbers indicate no improvement.

multi-task learning. The final model, ATT-UNET-MS-MT-
ME, incorporates all these strategies.

On the average of three time horizons, overall, our model,
ATT-UNET-MS-MT-ME, with all its features, is seen to
be the winner model with the RMSE of 24.28 mmHg and

TCC of 0.63. In the northern region, the ATT-UNET-MS-
MT-ME emerges as the winner in terms of RMSE, with
a value of 21.21 mmHg. The ATT-UNET-MS-MT model
achieves a TCC value of 0.68, which closelymatches the TCC
value of ATT-UNET-MS-MT-ME in the northern region.
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FIGURE 5. RMSE comparison between Linear downscaling technique (first row), ATT-UNET (second row), and ATT-UNET-MS-MT-ME (third row). The first
column is the comparison from week 1 to 2 model. The second column is the comparison from week 3 to 4 model. Finally the last column is
comparison from week 5 to 6 model. In each figure, the high RMSE value grids appear in dark red.

In the southern region, the model ATT-UNET-MS-MT-ME
has outstanding results in both evaluated aspects, with a
RMSE of 38.44 mmHg and a TCC of 0.47.

The ablation study demonstrates that the addition
of multi-scale residual blocks resulted in a significant
improvement in RMSE over the ATT-UNET model.
While multi-tasking provides minor improvements to TCC.
Furthermore, the incorporation of meteorological indices led
to a small boost in RMSE as well. The use of multi-tasking
with a multi-scale residual block helps the model to perform
better in the northern region, resulting in a significant
improvement in TCC. The impact of meteorological indices
on precipitation in Thailand has been investigated in a
previous study [26]. As in Table 4 demonstrated, the
addition of seasonal affect and meteorological indices led to
substantial enhancements in the RMSE and TCC in every

region. Seasonal effects can improve bias-correction similar
to the seasonal effects in time-series models. While the
ATT-UNET-MS-MT-ME model may not be a winner in
every evaluation when breakdown to each time horizon,
the findings still indicate that incorporating all features
significantly improved the model’s performance, surpassing
baseline model.

C. DISCUSSION
1) PERFORMANCE DURING TROPICAL STORM PERIODS
Thailand frequently experiences tropical storms due to the
influence of nearby monsoon systems. Table 5 is presented
in this subsection to highlight how our model and baseline
models performed during the tropical storm period. Our
objective is to offer a more comprehensive assessment of the
impact of meteorological indices. The Thai Meteorological
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FIGURE 6. TCC comparison between Linear downscaling model (first row), ATT-UNET (second row), and ATT-UNET-MS-MT-ME (third row). The first
column is the comparison from week 1 to 2 model. The second column is the comparison from week 3 to 4 model. Finally the last column is
comparison from week 5 to 6 model. In each figure, the high TCC value grids appear as a green grid while the red grids represent the low TCC value grid.

Department (TMD) issues reports specifying the occurrence
of tropical storms, and for this evaluation, these reports
are used for selecting samples from the test dataset. Two
evaluation metrics, namely RMSE and TCC, are employed
to evaluate performance.

Averaging across all time horizons, Table 5 shows that
our model outperformed LD and ATT-UNET by 15.43%
and 14.12% in terms of RMSE improvements and 20.01%
and 15.38% in terms of TCC, respectively. Furthermore,
it indicates that our model is superior in both the northern and
southern regions. In addition, significant improvements can
be seen in the southern region, as shown by RMSE reductions
of 28.76% and 11.54% when compared to LD and ATT-
UNET, respectively. Moreover, when it comes to TCC in the
southern region, our model outperforms LD and ATT-UNET
by 32.25% and 58.40%, respectively.

The occurrence of a tropical storm leads to fluctuations
in precipitation patterns, which reduces prediction accuracy.
The outcome of this experiment indicates that utilizing our
model with meteorological indices improves the accuracy
of forecasts during storm periods. This improvement could
have a positive impact on disaster planning and agricultural
applications.

2) SPATIAL EVALUATION
For spatial evaluation, our aim is to see how efficiently
the model worked. Spatial evaluation demonstrates the
effectiveness of our model. By displaying RMSE and TCC
onto a map of Thailand, we can use visualization to
compare our results to the baseline models. In Fig. 5, a map
representation of RMSE is shown. The dark red grid means
that the RMSE of that grid is greater (worse) than the
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TABLE 5. The model’s performance during the tropical storm period
present RMSE and TCC values for each prediction horizon and region.
Boldface refers to the winners. The values in brackets refer to the
improvement in percentage over LD (first value) and ATT-UNET (second
value).

RMSE of a lighter red grid. Overall, our model (third row)
appears to have less dark red grids, which highlight the
decrease in RMSE over Thailand compared to both the
linear downscaling (first row) technique and the ATT-UNET
(second row) model. The northern area of Thailand has seen
great improvements over the linear downscaling technique
and ATT-UNET, as there are less dark red grids. Furthermore,
the southern region’s RMSE drastically improved over the
ATT-UNETmodel. The southern area in the third row appears
in lighter red than the southern area in the second row.

In Fig. 6, a map representation of TCC is shown. Thus,
the green grid represents a high TCC value and red grid
shows a low TCC value. Our model (third row) clearly
outperforms both the linear-downscaling (first row) technique
and the ATT-UNET (second row) model, as indicated by the
greater number of green grids. In the northern region, TCC
is drastically improved, outperforming both baseline models:
as the map of our model’s TCC is almost covered in the dark
green grids. In the southern region, our model’s TCC shows a
competitive result with linear-downscaling technique, as our
model has less red grids but also has less dark green grids as
well. A significant improvement over the ATT-UNET model

TABLE 6. The ratio in percentage for the number of grids within each TCC
range to the total number of grids. The TCC value shows the correlation
between the result and the ground truth. The winning model is shown by
its ability to predict a significant amount of grids with TCC values greater
than 0.5, as displayed in the last column. Boldface refers to the winners
and star refers to second place.

can be seen in the southern area since there are much less red
grids.

The table presented in Table 6 displays the count of grids
within TCC range for each model. The findings indicate
that the ATT-UNET-MS-MT-ME model outperformed the
baseline models. Specifically, the percentage of grids falling
within the high TCC range of 0.5-1.0 was 85.38%, 85.90%,
and 89.31% for week 1-2, week 3-4, and week 5-6,
respectively. The observed increase in the proportion of
grids with TCC values over 0.5 was notable, rising from
approximately 70% when employing the linear downscaling
technique to approximately 80% when utilizing ATT-UNET-
MS-MT-ME.While ATT-UNET-MS-MT-ME did not emerge
as the winner model, it was identified as the second-best
model across all three horizons. Besides, there is a slight
difference between the percentage of grids in the ATT-UNET-
MS-MT-ME model and the winner model that have TCC
values greater than 0.5.

VI. CONCLUSION
In this paper, the modified Attention U-Net model, ATT-
UNET-MS-MT-ME, was proposed and utilized in this study
to correct the bias in S2S precipitation from the CFSv2
dataset. This model, based on the Attention U-Net model,
included multi-scale residual blocks and multi-tasking to
emphasize the effect of the specific locations and to enhance
the performance on the imbalanced dataset, respectively.
To the best of our knowledge, this is the first model
that applies deep learning techniques to correct bias in
S2S precipitation from the CFSv2 dataset at national level.
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Features used in this work are meteorological indices as
well as CFSv2’s precipitation data. Results demonstrate
that the proposed model outperformed all baselines, both
the linear-downscaling technique and the Attention U-Net
model. As for the linear-downscaling technique, results reveal
an improvement in TCC (13.77%) and an improvement
in RMSE (8.65%). The Attention U-Net model achieves
improvements in TCC (12.06%) and in RMSE (15.56%).
Especially our model shows the highest improvement in the
southern region of Thailand which is the most difficult area
for the forecasting.

It is important to highlight that our work is tailored for
a precipitation forecasting in Thailand. Thus, the meteoro-
logical indices are limited and chosen only for Thailand.
In future research, the improvement of models can potentially
enhanced by training on a longer period of data; assuming
that the collection of precipitation data spans a longer
period of time, hence increasing the effectiveness of the
model.

ACKNOWLEDGMENT
The authors would like to thank Hydro-Informatics Institute
(HII) for providing the precipitation dataset used in this study.

REFERENCES
[1] A.Mariotti, P. M. Ruti, andM. Rixen, ‘‘Progress in subseasonal to seasonal

prediction through a joint weather and climate community effort,’’ NPJ
Climate Atmos. Sci., vol. 1, no. 1, p. 4, Mar. 2018, doi: 10.1038/s41612-
018-0014-z.

[2] S. Saha et al., ‘‘The NCEP climate forecast system version 2,’’ J. Climate,
vol. 27, no. 6, pp. 2185–2208, Mar. 2014. [Online]. Available: https://
journals.ametsoc.org/view/journals/clim/27/6/jcli-d-12-00823.1.xml

[3] H. Hersbach et al., ‘‘The ERA5 global reanalysis,’’Quart. J. Roy.Meteorol.
Soc., vol. 146, no. 730, pp. 1999–2049, Jul. 2020. [Online]. Available:
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.3803

[4] R. Kotamarthi, K. Hayhoe, L. O. Mearns, D. Wuebbles, J. Jacobs,
and J. Jurado, Empirical-Statistical Downscaling. Cambridge, U.K.:
Cambridge Univ. Press, 2021, pp. 82–101.

[5] M. Li, H. Jin, and Q. Shao, ‘‘Improvements in subseasonal forecasts of
rainfall extremes by statistical postprocessing methods,’’Weather Climate
Extremes, vol. 34, Dec. 2021, Art. no. 100384. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S2212094721000748

[6] F. Wang, D. Tian, and M. Carroll, ‘‘Customized deep learning for
precipitation bias correction and downscaling,’’ Geosci. Model Develop.,
vol. 16, no. 2, pp. 535–556, Jan. 2023. [Online]. Available: https://gmd
.copernicus.org/preprints/gmd-2022-213/

[7] L. Espeholt, S. Agrawal, C. Sønderby, M. Kumar, J. Heek, C. Bromberg,
C. Gazen, R. Carver, M. Andrychowicz, J. Hickey, A. Bell, and
N. Kalchbrenner, ‘‘Deep learning for twelve hour precipitation forecasts,’’
Nature Commun., vol. 13, no. 1, p. 5145, Sep. 2022, doi: 10.1038/s41467-
022-32483-x.

[8] Y. Hu, F. Yin, and W. Zhang, ‘‘Deep learning-based precipitation
bias correction approach for Yin–He global spectral model,’’ Meteorol.
Appl., vol. 28, no. 5, p. e2032, Sep. 2021. [Online]. Available: https://
rmets.onlinelibrary.wiley.com/doi/abs/10.1002/met.2032

[9] Y. Ji, X. Zhi, L. Ji, Y. Zhang, C. Hao, and T. Peng, ‘‘Deep-learning-
based post-processing for probabilistic precipitation forecasting,’’
Frontiers Earth Sci., vol. 10, Sep. 2022, Art. no. 978041. [Online].
Available: https://www.frontiersin.org/articles/10.3389/feart.2022.
978041

[10] C. Wang, Z. Jia, Z. Yin, F. Liu, G. Lu, and J. Zheng, ‘‘Improv-
ing the accuracy of subseasonal forecasting of China precipitation
with a machine learning approach,’’ Frontiers Earth Sci., vol. 9,
May 2021, Art. no. 659310. [Online]. Available: https://www.frontiersin
.org/articles/10.3389/feart.2021.659310

[11] J. Hwang, P. Orenstein, J. Cohen, K. Pfeiffer, and L. Mackey,
‘‘Improving subseasonal forecasting in the Western U.S. with machine
learning,’’ in Proc. 25th ACM SIGKDD Int. Conf. Knowl. Dis-
covery Data Mining. New York, NY, USA: Association for Com-
puting Machinery, Jul. 2019, pp. 2325–2335, doi: 10.1145/3292500.
3330674.

[12] N. Vigaud, A. W. Robertson, and M. K. Tippett, ‘‘Multimodel ensembling
of subseasonal precipitation forecasts over North America,’’ Monthly
Weather Rev., vol. 145, no. 10, pp. 3913–3928, Oct. 2017. [Online].
Available: https://journals.ametsoc.org/view/journals/mwre/145/10/mwr-
d-17-0092.1.xml

[13] D. Specq and L. Batté, ‘‘Improving subseasonal precipitation forecasts
through a statistical–dynamical approach : Application to the southwest
tropical Pacific,’’ Climate Dyn., vol. 55, nos. 7–8, pp. 1913–1927,
Oct. 2020, doi: 10.1007/s00382-020-05355-7.

[14] N. Vigaud, M. K. Tippett, J. Yuan, A. W. Robertson, and N. Acharya,
‘‘Spatial correction of multimodel ensemble subseasonal precipitation
forecasts over North America using local Laplacian eigenfunctions,’’
Monthly Weather Rev., vol. 148, no. 2, pp. 523–539, Feb. 2020. [Online].
Available: https://journals.ametsoc.org/view/journals/mwre/148/2/mwr-d-
19-0134.1.xml

[15] A. H. Azman, N. N. A. Tukimat, and M. A. Malek, ‘‘Analysis of
linear scaling method in downscaling precipitation and temperature,’’
Water Resour. Manage., vol. 36, no. 1, pp. 171–179, Jan. 2022, doi:
10.1007/s11269-021-03020-0.

[16] M. N. Legasa, R. Manzanas, A. Calviño, and J. M. Gutiérrez, ‘‘A posteriori
random forests for stochastic downscaling of precipitation by predicting
probability distributions,’’ Water Resour. Res., vol. 58, no. 4, Apr. 2022,
Art. no. e2021WR030272.

[17] D. Long, L. Bai, L. Yan, C. Zhang, W. Yang, H. Lei, J. Quan,
X. Meng, and C. Shi, ‘‘Generation of spatially complete and daily
continuous surface soil moisture of high spatial resolution,’’ Remote Sens.
Environ., vol. 233, Nov. 2019, Art. no. 111364. [Online]. Available: https://
www.sciencedirect.com/science/article/pii/S0034425719303839

[18] Y. Mei, V. Maggioni, P. Houser, Y. Xue, and T. Rouf, ‘‘A non-
parametric statistical technique for spatial downscaling of precipitation
over high mountain Asia,’’ Water Resour. Res., vol. 56, no. 11,
Nov. 2020, Art. no. e2020WR027472. [Online]. Available: https:
//agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020WR027472

[19] H. Xu, C.-Y. Xu, S. Chen, and H. Chen, ‘‘Similarity and
difference of global reanalysis datasets (WFD and APHRODITE)
in driving lumped and distributed hydrological models in a humid
region of China,’’ J. Hydrol., vol. 542, pp. 343–356, Nov. 2016.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0022169416305613

[20] S. H. Pour, S. Shahid, and E.-S. Chung, ‘‘A hybrid model for
statistical downscaling of daily rainfall,’’ Proc. Eng., vol. 154,
pp. 1424–1430, Jan. 2016. [Online]. Available: https://www.sciencedirect
.com/science/article/pii/S1877705816319038

[21] S. Tripathi, V. V. Srinivas, and R. S. Nanjundiah, ‘‘Downscal-
ing of precipitation for climate change scenarios: A support vector
machine approach,’’ J. Hydrol., vol. 330, nos. nos. 3–4, pp. 621–640,
Nov. 2006. [Online]. Available: https://www.sciencedirect.com/science
/article/pii/S0022169406002368

[22] J. T. Schoof and S. C. Pryor, ‘‘Downscaling temperature and precipitation:
A comparison of regression-based methods and artificial neural
networks,’’ Int. J. Climatol., vol. 21, no. 7, pp. 773–790, Jun. 2001.
[Online]. Available: https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/
joc.655

[23] T. Vandal, E. Kodra, and A. R. Ganguly, ‘‘Intercomparison of
machine learning methods for statistical downscaling: The case of
daily and extreme precipitation,’’ Theor. Appl. Climatol., vol. 137,
nos. nos. 1–2, pp. 557–570, Jul. 2019. [Online]. Available: https://ui
.adsabs.harvard.edu/abs/2019ThApC.137.557V

[24] O. Ronneberger, P. Fischer, and T. Brox, ‘‘U-Net: Convolutional networks
for biomedical image segmentation,’’ 2015, arXiv:1505.04597.

[25] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, ‘‘Focal loss for dense
object detection,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 2,
pp. 318–327, Feb. 2020.

[26] P. P. Sreekala, S. V. B. Rao, K. Rajeevan, and M. S. Arunachalam,
‘‘Combined effect of MJO, ENSO and IOD on the intraseasonal variability
of northeast monsoon rainfall over south peninsular India,’’ Climate Dyn.,
vol. 51, nos. 9–10, pp. 3865–3882, Nov. 2018, doi: 10.1007/s00382-018-
4117-3.

135474 VOLUME 11, 2023

http://dx.doi.org/10.1038/s41612-018-0014-z
http://dx.doi.org/10.1038/s41612-018-0014-z
http://dx.doi.org/10.1038/s41467-022-32483-x
http://dx.doi.org/10.1038/s41467-022-32483-x
http://dx.doi.org/10.1145/3292500.3330674
http://dx.doi.org/10.1145/3292500.3330674
http://dx.doi.org/10.1007/s00382-020-05355-7
http://dx.doi.org/10.1007/s11269-021-03020-0
http://dx.doi.org/10.1007/s00382-018-4117-3
http://dx.doi.org/10.1007/s00382-018-4117-3


T. Faijaroenmongkol et al.: Sub-Seasonal Precipitation Bias-Correction in Thailand

TANATORN FAIJAROENMONGKOL received
the B.Sc. degree in electrical engineering from
the Department of Electrical Engineering, Fac-
ulty of Engineering, Chulalongkorn University,
Thailand, in 2019. He is currently pursuing the
M.Sc. degree in computer engineering with the
Department of Computer Engineering, Faculty of
Engineering, Chulalongkorn University. His main
research interests include machine learning, deep
learning, and image detection.

KANOKSRI SARINNAPAKORN received the
B.S. and M.S. degrees in statistics from Kasetsart
University, Thailand, the M.S. degree in computer
science from Fairleigh Dickinson University, Tea-
neck, NJ, USA, and the Ph.D. degree in electrical
and computer engineering from the University of
Miami, Coral Gables, FL, USA. She is an expert
in data science, machine learning, and advanced
statistical data analysis. She plays a pivotal role as
a Researcher and the acting Head of the Climate

andWeather Section and theHydroData Science Section, Hydro-Informatics
Institute (Public Organization). Her primary focus involves developing
rainfall prediction models to support the operations of the National Hydro
Informatics Data Center, Thailand.

PEERAPON VATEEKUL (Member, IEEE) received
the Ph.D. degree from the Department of
Electrical and Computer Engineering, University
of Miami (UM), Coral Gables, FL, USA, in 2012.
He is currently an Associate Professor with the
Department of Computer Engineering, Faculty of
Engineering, Chulalongkorn University, Thailand.
His research interests include machine learning,
data mining, deep learning, text mining, big
data analytics, natural language processing, and

applied deep learning techniques in various domains, such as healthcare,
geoinformatics, hydrometeorology, and energy trading.

VOLUME 11, 2023 135475


