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ABSTRACT This research is the first of its kind to leverage the power of Quantum Machine Learning
(QML) to perform multi-class classification of Cardiovascular Diseases (CVDs). We propose a novel
approach that enables multi-class classification with Pegasos Quantum Support Vector Classifier (QSVC).
The QSVC and the Pegasos QSVC significantly outperform the classical SVC by a margin of +10.76%
and +9.72%, respectively. The paper further ventures into a quantum deep learning based architecture with
a novel Quanvolutional Neural Network (QNN) implementation, outperforming not only its classical CNN
counterpart by+3.88% but also the other models by achieving 97.31% accuracy, 97.41% precision, 97.31%
recall, 97.30% F1 score, and 99.10% specificity.

INDEX TERMS Quantum machine learning (QML), quantum support vector machine (QSVM), Pegasos,
quanvolutional neural network (QNN), medical image classification, cardiovascular disease classification.

I. INTRODUCTION
Cardiovascular diseases (CVDs), one of the largest causes
and concerns of mortality and disability in the world [1],
refers to a group of illnesses that affect the heart muscles.
In 2020, approximately 19 million deaths were found to be
caused by CVD globally. This increase was about 18.7%
higher than in 2010. Some examples of CVDs include
myocardial infarction, arrhythmia, stroke, and coronary
artery disease. They are frequently brought on by a conflu-
ence of risk factors comprising smoking, high blood pressure,
high cholesterol, obesity, chronic inactivity, and a family
history of the disease.

Early detection of CVDs has been done by utilizing
advances in the field of biotechnology. Major developments
in the biosensors domain, such as the advent of lab-on-a-chip
technology, have demonstrated the ability to detect cardiac
markers [2]. Advances in microfluidics technology have
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helped reduce application time and integrate multiple clinical
assays into a single device [3]. Protein chip development has
also significantly contributed to early CVD detection [4].

The past two decades have witnessed a remarkable advent
of Artificial Intelligence (AI), Natural Language Processing
(NLP), Computer Vision (CV), and other areas and domains
such as healthcare, and cybersecurity. Machine learning
algorithms have achieved unprecedented accomplishments
due to the availability of vast data aggregates. AI research
for CVDs can be broadly summarised into Machine Learning
(ML), Deep Learning (DL), unsupervised learning, Artificial
Neural Networks (ANNs), and Convolutional Neural Net-
works (CNNs) [5].

A comparison of computational intelligence approaches
for the classification of cardiac diseases has been provided
by [6]. The paper presents seven approaches, namely,
Decision Trees (DT), K-Nearest Neighbors (KNN), Support
Vector Machines (SVM), Deep Neural Networks (DNN),
Random Forests (RF), Logistic Regression (LR), and Naive
Bayes (NB). The effectiveness of each strategy is assessed
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using standard datasets. Their research has shown that the
DNN achieves 98.15% accuracy, which is comparatively
superior to the other methods.

The high cost of computation is the primary disadvantage
of AI techniques [7]. The advantage of Quantum Computing
(QC) methods, on the other hand, is that they can accel-
erate computation by applying the principles of quantum
mechanics. Quantum computers are structured on proba-
bilistic results dependent on intrinsically coupled quantum
systems [8]. This results in a massive increase in parallel
computations due to the superposition of quantum states.
Thus, by procedural utilization of fundamental quantum
effects such as superposition, interference, and quantum
entanglement, quantum algorithms can efficiently circumvent
the drawbacks faced in classical AI techniques [9]. Differ-
ences between classical ML and QML have been reviewed
in [10].

QC has been explored in solving complex sampling
tasks that require expensive computations on classical
computing systems to establish quantum supremacy in the
near-term [11]. An essential task in QC involves finding
appropriate use cases and applications where a quantum com-
puter or a quantum computational mechanism can dispense
a substantial speedup. Various QC approaches have been
employed in the domains of healthcare [10], financial risk
analysis [11], portfolio management and optimization [12],
and trading algorithms development [13] to solve real-world
problems.

The Noisy Intermediate-Scale Quantum (NISQ) period,
the current QC era, explains the present state of QC technol-
ogy. Quantum computers are becoming increasingly powerful
and effective. However, they are still susceptible to errors
such as noise, hardware shortcomings, and decoherence [14].
Nonetheless, significant advancements in the field prospects
do look promising.

A. PRELIMINARIES AND NOTATIONS
This section aims to introduce some mathematical notations
useful in quantum computing. The Ket notation |ψ⟩ repre-
sents an object as a column vector. The complex conjugate
of a ket is called the bra. Hence it is collectively termed the
‘‘Braket’’ notation.

A single qubit represents a two-level quantum system
in a two-dimensional Hilbert space C2 with orthonor-
mal bases. It can be described using the superposition
principle:

|ψ⟩ = α|0⟩ + β|1⟩

Here, |ψ⟩ is a linear combination of the quantum states of
two basis states |0⟩ and |1⟩ that expresses the quantum state
of a qubit, α and β are complex coefficients that represent the
probability amplitudes of the two states, respectively. Table 1
summarizes the common quantum operations performed on
qubits.

B. MOTIVATION AND CONTRIBUTIONS
The Quantum Machine Learning (QML) models presented
in this paper use supervised multiclass classification and are
employed to detect various CVDs using Electrocardiogram
(ECG) images. Hyperparameters of themodels used are tuned
to get the most optimal results, and the final results procured
from each model are described.

The motivation behind our work follows along with the
advent of machine learning coupled with quantum computing
to explore the growing field of QML and establish better
results in the field of medical image classification. Owing
to resource constraints in image processing, the progression
in performance, albeit notable, isn’t fully optimal yet.
Our research aims to benchmark QML models for CVD
classification using ECG images, which, to the best of
our knowledge, has not been done thus far. We aim to
explore Support Vector Classifier (SVC) based and DL-based
techniques to improve the performance measured against the
classical counterpart. We also intend to facilitate multi-class
classification with Pegasos Quantum SVC (QSVC) using a
mathematical combination of its binary classificationmodels.

The main contributions of our study can be summarized in
the following points.

1) Cardiovascular disease classification problem on ECG
images has been explored using three Quantum
Machine Learning models.

2) The QSVC model has significantly outperformed its
classical counterpart, the SVC model, by +10.76%
accuracy,+9.73%precision,+10.76% recall,+10.79%
F1 score, and +3.73% specificity.

3) The Pegasos QSVC, a quantum-enhanced SVM algo-
rithm, presently supports binary classification. A novel
workflow has been established to extend its binary clas-
sification abilities to perform multiclass classification
for four classes.

4) A new architecture for the implementation of Quanvo-
lutional Neural Network (QNN) is proposed.

The remaining sections in the paper have been described
here. Section II provides a literature review on QML
approaches on medical image classification and QML
approaches on cardiac datasets. Section III focuses on the
experiment, describing the experimental setup and the dataset
used. Furthermore, pre-processing done on the dataset is
described here. Subsequently, Section IV explains the three
models implemented and the architecture used. Section V
focuses on results and discussion of the proposed models.
Section VI comprises the conclusion and future scope.

II. LITERATURE REVIEW
Since Feynman first suggested using quantum systems
to perform computation in 1982, the field has advanced
significantly. The utilization of various quantum systems
by multiple organizations, such as superconducting qubits
(used by IBM, Google, and USTC), trapped ions (IonQ),
and Rydberg atoms (QuEra), acts as the base for promising
quantum computers ( [15]).
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TABLE 1. Common quantum gates and their operations.

A. APPLICATION OF QML ON MEDICAL DATASETS
Works [16] and [17] compared pertinent quantum neural
network architectures, explained their designs, outlined their
features, and offered background information. The bench-
marked quantum neural Network on the MedMNIST dataset
for medical images, specifically the PneumoniaMNIST and
RetinaMNIST is given in [18]. The work [19] described
generative models using QML techniques. They proved
that their algorithm can represent probability distributions
better than classical generative models. The development of
Variational Quantum Eigensolver (VQE) [20] proliferated
advancements in near-term algorithmic systems, further
enhancing variational quantum algorithms. The paper notes
that the model probability distributions are comparable with
classical generative models and that there is an exponential
speedup in learning and inference.

The application of QML in radiological image classi-
fication is explained in [21]. The authors compared their
implementation of the Quantum Classical Convolutional
Neural Networks (QCCNN) with the Classical CNN. The
results obtained during classification were similar for both
cases. The datasets selected were the BreastMNIST and
the OrganAMNIST. The paper showed that their QCCNN
had overfit. Using two approaches, [22] employed QML
techniques for breast cancer detection. The first involved
using the quantum genetic algorithm. The second approach
consisted of training SVMs on simulated pictures to aid it in
recognizing breast cancer edges.

The QML approach introduced by [23] proved to be
promising in classifying COVID-19 traits. The quantum

neural network was applied to the X-ray scans of Indian
COVID-19 patients. The improvement in accuracy compared
to a 2D CNN model was observed to be +2.92%. The
training time was significantly reduced with quantum-
optimized hardware. This further shows the effectiveness
of the whole system to scale classification models. The
work in [24] developed the QML method to categorize
and identify COVID-19 patients. They used the data and
the VQC algorithm on several popular QC systems. Their
results showed that the classical computers achieved an
accuracy of 90%, whereas the quantum computers outper-
formed their classical counterparts with an accuracy ranging
from 94-100%.

The authors in [25] implemented an exploratory data
analysis (EDA), a pre-processing approach for data scaling,
and the VQC, Root Mean Squared Propagation (RMSprop),
and DL models for classification using the PIMA diabetic
dataset. In the study, they evaluated RMSprop using the
VQC technique and back-propagation and beat the state-of-
the-art performance. The research work in [26] extensively
summarized the applications of QML in the biomedical
domain. The work in [27] has conducted an exhaustive study
on the applications of QML in medical imaging.

B. APPLICATION OF QML ON CARDIAC DATASETS
The QML approaches have been employed on multiple
standard datasets of cardiac diseases. They include Quantum
Random Forest Classifier (QRFC), Quantum K-Nearest
Neighbors (QKNN), Quantum SVM (QSVM), Bagging-
QSVC, QNN, instance-based QML, Quantum K-means
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(Q K-means), and Hybrid Quantum Machine Learning
Perceptron (HQMLP). Techniques implemented on the UCI
repository are described in [28], [29], [30], [31], and [32]. The
researchers in [28] use a QRFC using the Euclidean distance
metric. The work in [29] employed a QKNN-based approach
after performing standard data preprocessing techniques,
including Principal component analysis (PCA), min-max
scaling, and outlier rejection. The authors in [30] observed
that the Bagging QSVC outperformed QSVC, QNN, and
QVC. In [31] compared an SVM and a QSVM on the dataset
and observed that the QSVM showed better accuracy with
lower time complexity. Themethod uses an optimizedQSVM
and a hybrid quantum multi-layer perceptron. The quantum
K-means clustering approach has been described in [29] with
distance calculation performed using the swap test circuit.
The QNN proposed in [32] achieved a high accuracy on the
Cleveland dataset. The authors in [33] developed an HQMLP
model to predict ischemic heart disease by considering
10 features.

III. EXPERIMENTAL SETUP
On a computer having the following specifications: x86-
64 architecture with 4 CPU cores and 2 threads per core,
featuring an Intel(R) Xeon(R) CPU@2.20GHz and equipped
with 30GB of RAM, the experiments were carried out.

A. ECG IMAGES DATASET OF CARDIAC PATIENTS
For this research, 928 ECG images of cardiac patients from
a dataset by the Ch. Pervaiz Elahi Institute of Cardiology
in Multan, Pakistan [34] was considered. The dataset under
consideration consists of four classes, namely,Normal Person
(NP), Abnormal Heartbeat (AH),Myocardial Infarction (MI),
and History of Myocardial Infarction (H. MI). The data split
is 284, 233, 240, and 172 images, respectively.

The class represented as NP illustrates people having no
cardiac abnormalities. AH class refers to patients suffering
from Cardiac Arrhythmia. This indicates a deviation from
the regular heartbeat’s rhythm or pace [35]. The condition
arises when the electrical impulses controlling the heart-
beats are coordinated improperly. This results in the heart
beating quickly (tachycardia), too slowly (bradycardia), or
irregularly.

The MI, also known as a heart attack [36], is a medical
emergency that occurs when blood supply to a portion of the
heart muscle is cut off, typically due to an accumulation of
fatty deposits in the coronary arteries. The chest discomfort,
loss of breath, and other symptoms may result from this,
harming or killing the heart muscle. If not treated quickly and
efficiently, this can result in significant consequences such as
heart failure, arrhythmia, and sudden cardiac death. The H.
MI refers to individuals who have just experienced recovery
from a myocardial infarction.

In the proposed approaches to the classification task, the
dataset has been split into train and test sets in the ratio
of 80:20. The Fig. 1 represents sample images from each class
of the dataset.

B. DATA PREPROCESSING
The edges of all the images in the dataset are cropped
out to retain only the portion occupied by the region
of interest, specifically the ECG graph. The background
removal was performed by thresholding pixel values resulting
in a binary image. The ECG wave readings in the foreground
were represented in black, and the background in white.
Vertical lines, common to all images indicating the separation
between the lead readings, were also removed. These
pre-processed images are further used for all the experiments.
Fig. 2 showcases an ECG image from class NP after the pre-
processing stages.

IV. METHODOLOGY
A. QUANTUM SUPPORT VECTOR CLASSIFIER (QSVC)
A QSVC [37] is the quantum equivalent of the classical
SVC [38] or SVM. The SVC is a supervisedmachine learning
model that solves classification problems and requires
high computational resources due to operations in a high
dimensional space. It functions by identifying a line or a
hyperplane to separate two groups or classes and applies
one vs. one or one vs. rest methods to handle multi-class
classification tasks. The classical SVC applies kernels, which
are complex mappings that add new dimensions to the data,
hence constructing higher-dimensional feature spaces. These
mappings ease boundary identification, thus separating the
classes. One the other hand, the QSVC employs a quantum
kernel to capture more complex similarities between data
points that cannot be efficiently computed with normal
kernels. Additionally, it can reduce the number of classical
computations required for SVC, leading to faster and more
efficient classification.

1) FEATURE EXTRACTION
Pre-trained DNNs support transfer learning and facilitate
efficient feature extraction from images. These neural
networks have been trained onmassive datasets comprising of
more than a million images belonging to hundreds of classes.

In the proposed implementation, the images have been
resized to 340 × 340 to handle computational capacity
limitations and speed up processing. A ResNet50 model [39]
has been employed to the dataset in order to extract the
features. The model weights have been initialized with
pre-trained weights on the Imagenet dataset [40]. The image
features are extracted from the pool1_pool layer. This layer
is a max-pooling layer that takes the maximum of a set of
values within a kernel window and outputs it as the new value
for the corresponding location. This is a shallow-level layer
containing more low-level features. The extracted features of
all images are flattened into a one dimensional feature vector
and subsequently stacked together to form a feature matrix.
Dimensionality of the obtained feature matrix is reduced
using Truncated Singular Value Decomposition (SVD) [41].
This technique is applied such that it yields the top 9 most
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FIGURE 1. Sample images from the dataset (a) NP (b) AH (c) MI (d) H. MI.

FIGURE 2. Preprocessed version of Fig. 1(a).

relevant features from the images. Furthermore, the feature
matrix is scaled to a range of 0 to 1, thus enforcing uniformity.

2) ALGORITHM
The QSVC algorithm as outlined in Fig. 3 can be summarized
into four significant steps:

1) Encoding of data: The input classical data x⃗ in quantum
states is encoded using a quantum feature map φ(x⃗).
In a complex Hilbert space, the encoded data can be
represented by a unit vector.

2) Quantum Kernel Computation: A quantum circuit is
used to compute a mathematical function known as
a quantum kernel that assesses the similarity or inner
product between two encoded data points in the feature
space.

3) Quantum Optimization: To determine the hyperplane’s
ideal weights, an optimization procedure is used.

4) Measurement and Interpretation: Measurement of the
output of the quantum state and interpretation of the
final decision plane is carried out.

The optimization problem in QSVC is identical to that
of a classical SVC, but it utilizes a quantum kernel.
The expression representing the general SVC optimization
problem is given by (1).

min
w,b
||w||2 such that yi (wxi + b) ≥ 1, i = 1, . . . ,N (1)

where xi is a data point and yi is the corresponding
label 1 or −1. w and b denote the weights and biases used
respectively.

To allow for some data points to be misclassified or to
account for the data not being linearly separable, a slack
variable ξ is first introduced with a weight C that controls
the trade-off between maximisation of the margin and
minimization of the classification error for each training
instance as shown in (2).

min
w,b,ξi>0

||w||2 + C
N∑
i=1

ξi

such that yi (wxi + b) ≥ 1− ξi, i = 1, . . . ,N (2)

The term C
∑N

i=1 ξi denotes the overall penalty for misclas-
sification by the SVC.

Combining ξ ≥ 0 and yi (wxi + b) ≥ 1 − ξi, the
optimization problem can be rewritten as (3).

min
w,b,ξi>0

||w||2 + C
N∑
i=1

max (0, 1− yi (wxi + b)) (3)

In (3), the hinge loss is represented by the second term, which
is a measurement of the distance between the actual and
predicted values. If the predicted value matches the actual
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FIGURE 3. A general pipeline for QSVC.

value, the term tends to zero. If the value is non-zero, the
difference between the actual and expected values and the loss
are inversely related.

In optimization theory, a dual formulation is defined
as an alternative representation of a given optimization
problem that is equivalent to its primal formulation. The
dual formulation is generally easier to solve than the primal
formulation. The dual formulation of (3) is shown in (4).

max
αi

∑
i

−
1
2

∑
j,k

αjαkyjyk
(
xTj xk

)
where 0 ≤ αi ≤ C and

∑
i

αiyi = 0 (4)

This expression deals with calculating scalar products xTj xk
between pairs of vectors. In order to maximize it, the data has
to be linearly separable. Linear separability can be enforced
by embedding the data in a higher dimensional space using a
feature map. The scalar products can then be computed in the
higher dimension.

Based on the feature map used, a kernel can calculate the
scalar products without having to embed the data points,
making the optimization process more efficient and less
computationally intensive. Given two input vectors, it outputs
their inner product in the transformed space. The kernel
function which solves the optimization problem in QSVC is
mathematically represented in (5),

K (x⃗, z⃗) = |⟨φ (x⃗) |φ (z⃗)⟩| (5)

where K is the quantum kernel function and φ (x) is the
quantum feature map.

Quantum feature maps are quantum circuits that trans-
form classical data into quantum states. Types offered
by Qiskit [42] include ZFeatureMap, ZZFeatureMap, and
PauliFeatureMap, among others. The quantum feature map
employed in this work is a ZZFeatureMap using two qubits
and two repeated circuits, as illustrated in Fig. 4. It exploits
ZZ interactions between qubits to produce entanglement and
effectively encode classical data.

Finally, the loss function minimized by QSVC by optimiz-
ing the parameters α⃗ is represented in (6).

L(W ) =
∑
i

αi −
1
2

∑
i,j

yiyjαiαjK
(
x⃗i, x⃗j

)
(6)

The experiment was carried out using a quantum kernel
instantiated with the Aer simulator statevector backend
provided by Qiskit. A one-vs-rest scheme was employed

implicitly by scikit-learn [43] SVC to facilitate themulti-class
classification.

B. MULTICLASS PEGASOS QUANTUM SUPPORT VECTOR
CLASSIFIER
Primarily derived from [44], the Pegasos algorithm is an
effective and scalable technique for solving the quadratic
SVM problem. The Pegasos algorithm fundamentally
employs a sub-gradient descent method for optimization.
The objective of the algorithm is to identify a hyperplane
that separates the two classes under consideration until the
cost function described in Eq. (1) is minimized. The hybrid
quantum model evolved from the above for classification
tasks is known as the Pegasos QSVC.

The Pegasos algorithm is initialized with a solution that is
iteratively improved by moving in the opposite direction of
the objective function’s negative gradient. Each iteration is
responsible for the updation of the weight vector ẃánd the
bias b́ón a mini-batch of data. To ensure convergence to the
ideal value, the approach uses a step size that is inversely
proportional to the number of repetitions.

The technique then uses the kernel approach to solve
the quadratic optimization problem to determine the best
boundary in this higher dimensional space [45]. The Pegasos
QSVC implements the kernel equation represented in (5), and
runs in a time complexity independent of the training set size.

The scope of the Pegasos QSVC is currently limited to
binary classification tasks.Work has been done to incorporate
multiclass classification on SVMs by using combinations of
binary classification algorithms. In [46], the authors employ
an Adaptive Binary Tree (ABT). The proposed solution
concentrates on locally choosing the minimal number of
Support Vectors(SVs) per classification. The authors in [47]
propose an implementation by limiting the number of
hyperplanes used in the standard one-against-one technique.

The proposed implementation applies combinatoric math-
ematics. The number of combinations possible for four
classes taken two at a time is six. Feature extraction is carried
out as mentioned in Section IV-A1.

The next step before training the proposed model is
separating data into groups of classes:NP, AH,MI, andH.MI
for features and labels separately. After which, each feature
and label group is split into train and test sets in the ratio
of 80:20. Consequently, the train and test sets for each pair
of classes is generated by merging the corresponding train
and test sets. Once combined, the features and labels of the
train set for each pair of classes are shuffled to allow for
homogeneity across all the combinations.
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FIGURE 4. Circuit representing the ZZFeatureMap with two qubits and two circuit repetitions as employed in this work.

FIGURE 5. Pipeline followed for Multiclass Pegasos QSVC.

An individual Pegasos QSVC model in the proposed
approach consists of three integral hyperparameters, specif-
ically, the number of features which is considered as 9, the
positive regularization parameter C, which is used to monitor
the loss incurred and avoid underfitting as well as overfitting,
and the number of steps τ , taken during the training process.
Since one model does not suffice for all 4 classes, 6 binary

models are trained using corresponding pairs of train sets
and hyperparameters. The quantum kernel employed for the
model generation is as mentioned in Section IV-A2.

Algorithm 1 represents the multiclass approach applied
to the binary Pegasos QSVC. In the algorithm, modelxy
represents a Pegasos model trained on classes x and y. The
test() represents a function that takes a model and a test image
as arguments and returns the result of testing the model with
the given image.

To classify a test image in the proposed framework, it is
first passed through two of the models. Depending on the
classes predicted by the two models, the test image is then
passed through a third model which is trained on the two
predicted classes. The prediction from the third model is
taken as the final prediction for the test image. Thus the
proposed approach achieves multi-class classification with
Pegasos QSVC.

To illustrate the approach, consider an image of class H.
MI as seen in Fig. 5. To begin with, it is passed through two

Algorithm 1Multiclass Pegasos QSVC Algorithm
Input: test_image
Output: predfinal
pred01← test(model01, test_image)
pred23← test(model23, test_image)
if pred01 == 0 then
if pred23 == 2 then
predfinal ← test(model02, test_image)

else
predfinal ← test(model03, test_image)

end if
else
if pred23 == 2 then
predfinal ← test(model12, test_image)

else
predfinal ← test(model13, test_image)

end if
end if
return predfinal

models trained on different pairs of classes, namely,MI& AH
and H. MI & NP. Using the figure as a reference, the outputs
of the models are MI and H.MI respectively. Consequently,
the test image is then passed through the model trained on

136128 VOLUME 11, 2023



S. Prabhu et al.: QuCardio: Application of QML for Detection of Cardiovascular Diseases

FIGURE 6. Circuit employed for the quantum layer of QNN.

FIGURE 7. Proposed QNN architecture.

theMI and H. MI classes. This model then produces the final
prediction as H. MI.

C. QUANVOLUTIONAL NEURAL NETWORK (QNN)
The motivation to integrate CNNs [48] with quantum layers
arises from an effort to enhance the capabilities of these
networks. CNNs are able to process and classify visual
data owing to their ability to extract hierarchical features.
Introducing quantum layers [49], is an innovative step in
enhancing a CNN as it represents a new kind of transfor-
mational layer that integrates quantum computing in the
traditional architecture. Thus the network can perform local
transformations on the data using quantum circuits. These
quantum circuits offer new avenues for feature extraction.

The work in [49] described the Quanvolutional model’s
ability to leverage random nonlinear features, modify training
time, and model complex relationships using computational
resources at polynomial time complexity. This combination
makes the Quanvolutional model an excellent choice to
consider for image classification problems.

1) DESIGN OF QUANTUM FILTER
In the quanvolutional approach, the input data is transformed
using quantum circuits instead of the classical matrix
operations. The specific quantum circuit, as depicted in
Fig. 6, is composed of a series of quantum gates, including

Rx , Ry, Rz (which are rotation gates acting on different axes
of the Bloch sphere), CNOT, and Pauli-Z measurement gates.
The quantum gates employed, their notation, and operations
are expanded upon in Table 1.

2) IMPLEMENTATION
Images were resized to dimensions of 64 × 64 pixels.
Subsequently, the imageswere divided into square subregions
of dimension 2 × 2, which were passed to the quantum
circuit iteratively. Quantum operations are performed on the
input according to the circuit. Four values are returned which
are then stacked as individual pixels on different channels,
thereby transforming the input to a dimension of 32× 32x4.
The proposed QNN architecture is shown in Fig.7.

After applying the quantum convolutional layer, the result-
ing features are then fed into the proposed CNN architecture.
The proposed 8-layered CNN architecture comprises of three
2D convolutional layers employed with the ReLU activation
function, a max pooling layer, a flatten layer, and 3 fully
connected layers. The first convolutional layer contains
8 filters which are doubled across each of the next two layers.
The filter size chosen is 2× 2, with a stride of 1.
Subsequently, a max pooling layer is employed with a pool

size of 2 × 2. The features are flattened and further passed
to three fully connected layers. The 1024 nodes make up
the first completely connected layer, which is followed by
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TABLE 2. Model parameters QNN.

TABLE 3. Evaluation metrics.

a layer of 128 nodes. The final layer comprises of 4 nodes
with softmax activation function, thus making it suitable
for multi-class classification of four classes. This has been
summarized in Table 2.

V. RESULTS AND DISCUSSION
Model performances have been evaluated using the metrics
listed in Table 3.

Proceeding to the QNN, the number of layers for the
quantum circuit was chosen to be four after comparing results
with other values. The results of the simulations are illustrated
in Fig. 9.

A. HYPERPARAMETER TUNING
Appropriate tuning of hyperparameters can lead to significant
enhancement in the model performance. The number of
features fed into the QSVC model, also corresponding to
the number of qubits used by the model, is a critical point
of discussion. The corresponding accuracies obtained by
varying it within a range of 2 to 18 are depicted in Fig. 8.
The graph followed an increasing trend till n= 7, post which
minor variations are observed until n= 13. Subsequently, the
graph stabilized to a constant value. The maximum accuracy
of 94.09% is observed at n = 9, hence the optimal choice for
the model.

FIGURE 8. Experimental results for number of features vs accuracy
for QSVC.

FIGURE 9. Experimental results for number of random layers vs K-fold
accuracy for QNN.

To maintain uniformity, the Pegasos QSVC models’
feature input was set at 9 features. The regularization
parameter (C) and number of repetitions (τ ) were tuned
for each of the 6 binary models. The model evaluation
parameters and the hyperparameters for each model are
displayed in Table 4.

B. COMPARATIVE ANALYSIS AND DISCUSSION
We highlight significant results from the experiments in this
section. The SVC plays a crucial role in machine learning
research owing to its high accuracy in classification tasks,
flexibility, robustness, interpretability, and efficiency. These
characteristics enable it to function as a good baseline
algorithm in machine learning research, where the goal is to
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FIGURE 10. Confusion matrices of individual Multiclass Pegasos QSVC models (a) MI vs
AH (b) H. MI vs NP (c) MI vs H. MI (d) MI vs NP (e) AH vs H. MI (f) AH vs NP.

TABLE 4. Performance measures of individual binary classifiers in Multiclass Pegasos QSVC.

develop techniques that can outperform it. The performance
measures of SVC are shown in Table 6.

Table 6 shows that the QSVC outperformed the SVC
by +10.76% accuracy, +9.73% precision, +10.76% recall,
+10.79% F1 score, and +3.73% specificity respectively.

The results of the binary Pegasos QSVC models
are summarized in Table 4. Fig. 10 demonstrates the
confusion matrices for each model. The proposed imple-
mentation enabling multiclass Pegasos classification per-
formed comparably to QSVC as per the results depicted
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FIGURE 11. Fold-wise confusion matrices of QNN (a) Fold 1 (b) Fold 2 (c) Fold 3 (d) Fold 4 (e) Fold 5.

TABLE 5. Fold-wise performance of QNN.

in Table 6 and the final confusion matrices displayed
in Fig. 12.

The proposed QNN implementation obtained an accuracy
of 97.31%, precision of 97.41%, recall value of 97.31%, F1
score of 97.30%, and specificity of 99.10%, as represented
in Table 6. Moreover, the table also shows that the QNN

outperformed its classical CNN counterpart by +3.88%
accuracy, +3.73% precision, +3.88% recall, +3.97% F1
score, and +1.29% specificity, with the CNN derived by
removing the quantum layer from the QNN architecture
given in 7. The results were validated using 5-fold cross-
validation. Detailed fold-wise metrics are displayed in
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FIGURE 12. Final confusion matrices of the models presented (a) QSVC (b) QNN (c) Multiclass
Pegasos QSVC .

TABLE 6. Performance measures of SVC, QSVC, Pegasos QSVC, CNN, and QNN.

TABLE 7. General Comparison of QPSO-SVM and QNN.

Table 5. Fig. 11 displays the confusion matrices for each
fold. The results from the table show that the performance
of each fold is comparable to the other folds and they
display a minimal standard deviation. The confusion matrix
obtained by summing up those of the folds is displayed in
Fig. 12. Compared to the QSVCmodel, the QNN exhibited an
increase in accuracy of+3.22%, precision of+3.25%, recall
score of +3.22%, F1 score of +3.26%, and specificity of
+1.12%. In comparison to the proposed Multiclass Pegasos
QSVC model, the QNN exhibited an increase in accuracy
of +4.26%, precision of +3.67%, recall score of +4.26%,
F1 score of +4.29%, and specificity of +1.44%. Hence, the
QNN is the best-performing model.

We draw a few conclusions from the confusion matrices in
Fig. 10, Fig. 11, and Fig. 12. The trend in misclassification
of a particular class as another class is consistent across all
the models. Images of the MI class are never misclassified,
indicating they are easily distinguishable. Whenever an NP
class image gets miscategorized, it is with theAH class. AnH.
MI class image is never misclassified as an MI class image.
An AH class image is more likely to get misclassified as that
of H. MI or NP than that ofMI.
In general, we have compared our proposed QNN method
with cardiovascular disease classification using quantum
particle swarm optimization and support vector machine
(QPSO-SVM) [50] in Table 7. Our method performs better
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in terms of Accuracy, Precision, Recall, F1 Score and
Specificity.

The QNN takes a streamlined approach, employing
a simple state simulator of qubit-based quantum circuit
architecture via Pennylane in a four-qubit configuration.
The QSVC and Pegasos QSVC, on the other hand, use the
Aer simulator within the experimental setup, providing a
computational foundation for their quantum processing.

This distinction highlights the tradeoff inherent in the
quantum architectures used between computational com-
plexity and quantum technology used. The QNN prioritizes
simplicity with its minimalistic quantum circuit configu-
ration, potentially facilitating ease of implementation and
interpretation. The QSVC and Pegasos QSVC, on the other
hand, may offer enhanced computational capabilities at the
cost of increased complexity by utilizing the Aer simulator.

VI. CONCLUSION AND FUTURE SCOPE
In this work, we have successfully presented the application
of QML for the multi-class classification of CVDs using
ECG images. The paper demonstrated the potential of QML
models to outperform classical models. The work proved the
ability to perform multi-class classification by illustrating
the same with the application of combinatoric mathematics
on the Pegasos QSVC model. The proposed QNN imple-
mentation presented in this study performed exceptionally
well. Post the NISQ era, quantum algorithms are bound to
be significantly more powerful. Thus, future prospects in the
field are promising. Advancement in this field could comprise
of integrating QML models with quantum hardware and
incorporating the same within existing medical systems can
help improve diagnostics. The development of QML models
can aid in the early detection and prediction of more medical
ailments and thus help save lives.
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