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ABSTRACT Pelvic landmark detection is a significant pre-task to measure the clinical measurement in
pelvic abnormality analysis. Accurate pelvic landmark detection could provide reliable clinical parameter
measurement results, which are helpful for doctors to diagnose and treat pelvic diseases. However, the multi-
scale characteristics, temporal diversity, and pathological abnormalities of different pelvic X-rays bring
enormous challenges to the landmark detection task. In order to retain strong robustness in irregular pelvic
X-rays, we propose a novel, flexible two-stage framework. In the initial stage, a single neural network is
employed to estimate the locations of every landmark simultaneously, enabling the identification of potential
landmark regions. Then, the receptive field of candidate region proposals is expanded by 4 times through the
receptive field amplification module. In the second stage, the landmark detection module fuses semantically
rich features at different scales through amulti-scale semantic fusionmodule. So that the framework can fully
learn the strongly relevant semantic information around the landmark at high resolution. We collected a data
set of 430 pelvic X-rays, including a large number of irregular pelvic X-rays, to evaluate our framework. The
experimental results demonstrate that our framework achieves a state-of-the-art detection mean radial error
of 3.724 ± 4.247-mm. The experimental results show that the proposed method can help doctors quickly
and accurately find the characteristic points of the pelvis and could be applied to clinical diagnosis.

INDEX TERMS Landmark detection, irregular pelvic X-ray, receptive field amplification, multi-scale
semantic fusion.

I. INTRODUCTION
Accurate and reliable detection of anatomical landmarks is
a crucial preprocessing step for therapy planning and inter-
vention in various medical scenarios [1], including knee joint
surgery [2], bone age estimation [3], carotid artery bifurcation
[4], and vertebral trauma surgery [5]. Also, it plays an impor-
tant role in medical image analysis, such as the initialization
of registration [6] or segmentation algorithms [7]. However,
up to now, far too little practice of machine learning has
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been carried out on the pelvis. Accurate measurement of
clinical measurements of the pelvis are help reveal pelvic
abnormalities.

In clinical practice, pelvic abnormality analysis is usually
done manually. Pelvic landmark detection is the pre-task of
pelvic abnormality analysis, and accurate landmark detection
is the premise of reliable clinical measurements. Figure 1
illustrates the spatial arrangement of the 17 anatomical land-
marks alongside the corresponding clinical measurements of
the pelvis. Four clinically measured angle values, denoted as
A1 to A4, are commonly employed to assess the degree of
pelvic anteversion and tilting, while six clinically measured
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FIGURE 1. Pelvic landmarks and pelvic clinical measurements in a pelycogram.

distance values, designated as D1 to D6, are typically used
to measure parameters such as iliac wing width. The manual
tracing of pelvic landmarks on radiographs is a tedious and
time-consuming process.

Even experienced clinicians may require 20-30 minutes
to perform a single pelvic X-ray analysis [8]. Additionally,
there is a significant risk of inter- and intra-observer variabil-
ities, as the accuracy of landmark identification depends on
the expertise and experience of the clinician performing the
analysis [9]. So clinical pelvic evaluations and resulting treat-
ment decisions are susceptible to the precise estimation of
landmark locations.Meanwhile, failure to detect pelvic defor-
mities, and injuries, or to provide timely treatment can result
in serious adverse outcomes and costly treatment expenses
in the future [5]. Therefore, it is imperative to develop an
automatic pelvic landmark detection system that can identify
pelvic landmarks accurately, reliably, and rapidly.

Over the past few decades, numerous automatic anatomical
landmark detection methods based on machine learning have
been proposed, including rule-based methods [10], template-
matching methods [11], and active appearance model meth-
ods [12]. Thesemethodswere designed to identify anatomical
landmarks. Subsequently, neural networks, support vector
machines, and random forests have been used for landmark
localization [13]. However, these methods can’t achieve the
high precision of detection demanded by clinical practice.

In recent years, deep learning has gained widespread use
in medical image analysis, including anatomical landmark
detection [14], [15], [16], [17]. The published deep learning
landmark detection frameworks can be broadly divided into
two categories: one is the end-to-end framework [16], [18],
[19], [20]. This direct regression method is limited by the

image size that the framework can handle. The image often
needs to be reduced to 3-4 times the original for repro-
cessing. However, this practice compromises the intrinsic
high-resolution attributes of medical images, thereby imped-
ing the model’s ability to comprehensively capture contextual
semantic information. The other is the multi-stage framework
[21], [22], [23], scholarly reviews have established that the
multi-stage framework generally outperforms the end-to-end
framework in terms of overall detection accuracy [24], [25].
For these frameworks, firstly, the coarse positions of all land-
marks are estimated, identifying potential candidate regions
likely to contain the target landmarks. In the second stage, the
candidate regions are extracted and subsequently employed
for training to enhance the precision of the landmarks roughly
detected in the initial stage. However, the first stage of these
methods is fixed structure and only rough detection of land-
marks to extract candidate region proposals from a small
receptive field. Most importantly, these methods simply train
the candidate region proposals of a small receptive field in the
second stage, which will lead to an inability to fully learn the
strongly relevant semantic information around landmarks and
the individual and anatomical differences of the pelvis at mul-
tiple scales. Which is not suitable for the clinical pelvic X-ray
with time diversity and pathological diversity. The ground
truth may suffer from issues regarding generalizability and
reliability. Owing to disparities between the imaging process
and the sampled data, the resultant candidate region pro-
posals exhibit variations in their respective receptive fields.
This phenomenon is illustrated through the highlighted red
boxes in Figure 2. As depicted in the figure, pelvic marker
detection encounters a significant challenge arising from the
temporal misalignment between pelvic X-ray images and
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FIGURE 2. The first line shows the challenge of time diversity, at different stages of bone calcification, the morphology of the markers showed diversity.
The second line is the challenge of pathological physical distortion, different degrees of deformation lead to different signs of wear and deformity.

pathological abnormalities. Temporal variation is evident in
the morphological characteristics of these markers, which
exhibit diversity during various stages of bone calcification.
This diversity is observable through the blurring of calcified
regions and the emergence of bone spurs in proximity to the
ischial tubercle nodes.

Furthermore, pathological diversity introduces variations
in pelvic structure, resulting in varying degrees of defor-
mation and displacement. These factors collectively pose
obstacles for computer models seeking to learn from these
data. Thus, pelvic landmark detection is a complex and crit-
ical challenge for computers, requiring time and experience-
sensitive.

In order to solve the appeal problem, we propose a novel,
flexible two-stage framework. Our framework offers the flex-
ibility to use various network architectures as a backbone
without any constraints. Most importantly, in order to bridge
the semantic gap between features extracted from complex
candidate region proposals, we adopt a multi-scale semantic
fusion module (MSFM), which integrates features with high
resolution and weak semantics with features with low res-
olution and strong semantics. MSFM extracts features with
different resolutions from candidate region proposals and
re-weights them so that the model pays more attention to the
information near landmarks after fusing multi-scale features.
Not by modifying the backbone network [26] or federated
learning [27].Moreover, we introduce a receptive field ampli-
fication module (RFAM), designed to expand the receptive
field of the landmark detection module by approximately
fourfold. This augmentation enables the model to compre-
hensively assimilate pertinent semantic information in the

vicinity of landmarks. Notably, this enables the framework
to learn more about global and local semantic information.
Furthermore, beyond the assessment of detection accuracy,
we have undertaken an evaluation of clinical measurements
pertinent to pelvic analysis for the first time.

The contributions of this paper are as follows:

• We have introduced a novel flexible two-stage frame-
work that, for the first time, addresses the challenge
of landmark detection in irregular pelvic X-rays while
simultaneously evaluating the pertinent clinical mea-
surements of the pelvis.

• We introduce a MSFM, designed to generate seman-
tically enriched features through the amalgamation of
multi-scale candidate region proposal feature mappings.
Additionally, we present the RFAM, which expands the
receptive field of candidate region proposals by a factor
of nearly four, facilitating the comprehensive acquisition
of strongly correlated semantic information in the vicin-
ity of landmarks within our framework.

• Experiments proved the superiority of our framework
when compared to state-of-the-art methods. Our frame-
work could be an efficient and accurate landmark
detection method for doctors to do pelvic abnormality
analysis.

The structure of the remainder of this paper is as fol-
lows: Section II reviews related work in the field. Section III
outlines the construction method of the proposed model, fol-
lowed by the experiments and results presented in Section IV.
Section V discusses the observations and findings derived
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from the experiments. Finally, Section VI provides conclud-
ing remarks and suggestions for future work.

II. RELATED WORK
A. PELVIC CLINICAL MEASUREMENTS ANALYSIS
As far as we know, most of the published literature [28], [29]
mainly focuses on the development of infant hip bones. The
datasets used in these studies predominantly consist of stan-
dardized X-ray images of the infant’s pelvis, and the scope of
landmark detection is limited to a few points around the hip
bone. Consequently, the inherent simplicity of this task is evi-
dent. Limited research endeavors have been directed towards
the detection of a substantial quantity of landmarks across the
pelvis. Statchen et al. [30] trained aU-net [31] with 902 pelvic
X-rays. The objective was to detect 22 distinct landmarks
on these X-ray images and investigate the potential utility of
these automated measurements for predicting femoral frac-
tures within a machine learning framework. Bier et al. [5]
present a method to automatically detect anatomical land-
marks in X-ray images independent of the viewing direction.
This method successfully detected 23 landmarks and realized
X-ray pose estimation together with preoperative CT. The
achieved detection accuracy was 5.6± 4.5mm. Zhu et al. [32]
developed a universal anatomical landmark detection model
that learned once from multiple data sets corresponding to
different anatomical regions. The model consists of a local
network and a global network, which capture local features
and global features, respectively. It achieved a mean radial
error of 6.183 ± 19.711mm on the internal pelvic data set.
Lu et al. [33] proposed a deep neural network system with
prior knowledge of the active shapemodel (ASM), which was
used to automatically detect the landmarks on the pelvis. The
pelvic contour was extracted through the ASM, enabling a
rough detection of landmarks. Subsequently, leveraging the
acquired prior knowledge, the deep neural network facilitated
precise landmark detection. The efficacy of the system was
empirically assessed, revealing amean radial error of 4.159±

5.015 mm.
Unfortunately, these aforementioned investigations failed

to undertake an analysis of pelvic clinical measure-
ments. Furthermore, each study independently employed
distinct internal datasets, thereby impeding the compari-
son of methodologies. In our subsequent experimentation,
we adopted the approach in the aforementioned study to
train and evaluate our irregular datasets. The outcomes of
these experiments indicate that the accuracy achieved by the
methods discussed above is less than desirable. In contrast,
the framework we present in this paper shows the highest
accuracy.

B. LANDMARK DETECTION IN MEDICAL IMAGE
The integration of artificial intelligence brought about a
paradigm shift in the healthcare industry. In response,
researchers have turned to the cutting-edge capabilities of
deep learning to propel landmark detection research and prac-

tice to new heights. Qian et al. [34] introduced CephaNet, the
first faster RCNN-based method, which utilizes a multitask
loss to reduce intra-class variations and a two-stage repair
strategy to eliminate superfluous or undetected landmarks.
Similarly, Lee et al. [35] proposed a two-stage approach that
initially extracts potential regions of interest (ROI) for every
landmark and subsequently employs a set of Bayesian Con-
volutional Neural Networks (CNN) to estimate the precise
landmark location within the extracted region. Lee et al. [36]
proposed a single-channel convolutional neural network to
perform accurate landmark detection hierarchically, and the
proposed patch-wise method significantly enhanced the local
feature encoder, thus further improving the final accuracy.
Zeng et al. [37] treated cephalometric landmark detection as
a multi-stage regression problem and designed a cascaded
three-stage CNN structure with a coarse-to-fine detection
strategy. Kwon et al. [38] developed a multi-stage proba-
bilistic approach that simultaneously used local appearances
and global features. The method involves the use of a single
network for the initial detection of all landmarks, followed by
individual refinement of each landmark using high-resolution
cropped images, with each refinement step performed by a
separate CNN model dedicated to that landmark. Ao et al.
[39] proposed a feature aggregation and refinement network
(FARNet), which includes a multi-scale feature aggregation
module for multi-scale feature fusion and a feature refine-
ment module for high-resolution heat map regression. It was
evaluated on three public anatomical landmark detection data
sets and achieved the most advanced performance.

The strides made by deep learning-based approaches in
medical image landmark detection are commendable. How-
ever, so far, in the task of automatic landmark detection,
no framework has been proposed for irregular images.
In addition, the most advanced methods, whether end-to-end
or multi-stage frameworks, still have significant limitations
that hinder their application in clinical settings. One of the
main limitations is that, whilemaintaining the high-resolution
features of complex medical images, it is difficult to learn
features of different scales as much as possible with a large
receptive field. Therefore, demand arises for a framework that
can handle irregular medical images. This framework should
be equipped not only with an expansive receptive field to
facilitate comprehensive learning of pertinent semantic infor-
mation but also with the capability to integrate multi-scale
semantic information.

III. METHOD
A. PELVIC CLINICAL MEASUREMENTS ANALYSIS
Define X as the X-ray sample space and Y as the
landmark coordinate space. The data set is defined as
D = {(x1, y1) , . . . , (xn, yn)} ⊆ X × Y. Our task is to train a
detector fd(·) onD tomake y =fd(x).Where x represents sam-
ple images, y represents landmark coordinates of samples,
n represents the number of samples, and fd(·) represents the
landmark detector.
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FIGURE 3. Schematic representation of the proposed framework for landmark detection in pelvic X-rays. Initially, the samples get the first rough
prediction through the backbone candidate region proposal extractor. Subsequently, the receptive field is augmented through the RFAM. The results of
RFAM are input to the landmark detection module for detailed training, and the final prediction is obtained. In which each 3 × 3 convolution in the
landmark detection module is replaced by MSFM. Which can fuse semantic information on different scales and make maximum use of limited image
resources to learn strongly relevant semantic information.

Note that variations in size and complexity of X-ray
samples from different patients lead to deviations in
the marginal distribution P(x) of the data, which means
P(x1) ̸=P(x2) ̸= . . . ̸=P(xn).
In our method, we use a multi-scale semantic fusion

module ϕ(·) to map x1, x2, . . . ,xn into the high dimensional
feature subspace. Q. Make q1 = ϕ(x1),q2 = ϕ(x2), . . . ,qn =

ϕ(xn) to get P(q1) ≈P(zq2) ≈ . . . ≈P(qn). Further to obtain
P(y1|q1) ≈P(y2|q2) ≈ . . . ≈P(yn|qn). Through this process,
we could get a better detector fd (·) to make y =fd (x). Among
them, the architecture behind the backbone network is used
to refine the location of the detected landmarks.

B. FRAMEWORK ARCHITECTURE
As shown in Figure 3, the framework proposed in this paper
mainly includes the backbone candidate region proposal
extractor, RFAM, landmark detection module, and MSFM.

1) BACKBONE CANDIDATE REGION PROPOSAL EXTRACTOR
The proposed framework uses a convolutional neural network
f (·) as candidate a region proposal extractor to convert the
input X-ray image into a heatmap hk of landmarks. Our
framework provides the flexibility to use various network
architectures as the backbone without any restrictions, such
as Resnet50, HRNet, U-net, and so on. This will be explained
in detail in the ablation experiment section. Specifically, after
the sample image is resized to 512 × 512, the thermal map
of the real landmark can be returned through the backbone
network, and the predicted rough coordinates can be obtained.
We define the backbone candidate region proposal extractor

as:

f : X → h1, h2, . . . , hk (1)

The value at a certain point in the heatmap is

h (x, y) = e−
(x−µx )2+(y−µy)2

2σ2 (2)

where x and y are the coordinate values of the point, µx and
µy are the real marks of the point, and σ is the adjustment
parameter.

In this process, in order to get the candidate region pro-
posals in RFAM, we need to ensure that the actual error
(converted into actual size) of each landmark in each picture
is less than s/2 px as much as possible.

2) RECEPTIVE FIELD AMPLIFICATION MODULE
To fully learn the strongly relevant semantic information of
landmarks in the original high-resolution image within an
expansive receptive field, we propose RFAM. Our primary
concept posits that the correlation between a landmark and its
corresponding anatomical structure increases proportionally
with the landmark’s proximity (Euclidean distance) to said
structure. While the entirety of the image’s semantic infor-
mation contributes to landmark detection, the diminished
weight of semantic information distal from the point neces-
sitates our strategy of directing the model’s learning efforts
towards strongly pertinent semantic information proximate
to the landmark. Nonetheless, the traditional receptive field
for learning local semantic information is too small to fully
learn useful features. Therefore, we propose RFAM to fully
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learn the strongly relevant semantic information within a
large receptive field.

The main workflow of RFAM is shown in Figure 3. First,
it is suggested to generate a candidate region of strongly
correlated semantic information according to the coordinates
predicted by the backbone candidate region proposal extrac-
tor, and the method is as follows:

bx1 = L(x)
f − s;by1 = L(y)

f − s

bx2 = L(x)
f + s;by2 = L(y)

f + s (3)

Here, L(x)
f and L(y)

f represent the predicted landmark coor-
dinates along the x and y axes, respectively, bx1 , by1 , bx2 ,
and by2 represent the four edges of the candidate region
proposal, while s denotes the size of the region proposal. This
expansive region proposal encapsulates what we perceive as
a region of strongly pertinent semantic information pertain-
ing to the landmark. However, the pixel dimensions of this
proposed region remain relatively large. Consequently, within
this extended regional proposal, n candidate region proposals
are randomly generated for utilization during the landmark
detection phase. The generation method is as follows:

rx1 = L(x)
f + s1; rx2 = L(x)

f + s1 +
( s
2

)
ry1 = L(y)

f + s2; ry2 = L(y)
f + s2 +

( s
2

) s1, s2 ∈ R (4)

Among them, rx1 , ry1 , rx2 , and ry2 respectively represent
the four edges of the candidate region proposals, while s1
and s2 denote the size of the random disturbance values of
width and height, respectively. Attention, s1, s2∈ (−s/2,s/2).
Through this approach, we extract a set of n candidate region
proposals for each landmark. Concurrently, the resultant theo-
retical receptive field expands to approximately four times its
original size, thus enabling amore comprehensive acquisition
of strongly pertinent information within the vicinity of the
landmark. We designate the upper left corner of the image as
the origin point. To guarantee the availability of ample can-
didate region proposals, we pad the periphery of landmarks
situated along edges and corners with pixels having a value
of 0. The resulting coordinates for the processed landmarks
are as follows:

L(x)
f =


s if L(x)

f < s

2L(x)
f + s−W if W − L(x)

f < s

L(x)
f else

(5)

L(y)
f =


s if L(y)

f < s

2L(y)
f + s− H if H − L(y)

f < s

L(y)
f else

(6)

where W and H represent the image resolution. After the
module outputs the candidate area proposals, during the
landmark detection module, the actual landmark positions
within these proposals, which are output together, are used
as labels. For each landmark, the coverage area of all the
candidate areas we obtained is about four times that of the
original candidate area, so the receptive field of the landmark

detection module is expanded by about four times. Based on
prior empirical findings, we establish s as 512 and n as 300.
It is imperative to underscore that this segment solely pertains
to the training process, with the testing phase necessitating
only one candidate region proposal for precise detection.

3) LANDMARK DETECTION MODULE
The landmark detection module is a crucial component of our
framework and is designed to detect all anatomical landmarks
in an input X-ray image simultaneously. By considering
each landmark separately, the module effectively captures
the strong relevant semantic information around the land-
mark and deeply learns the anatomical structure knowledge
and semantic information of the landmark. To achieve this,
we use candidate region proposals rk from the kth landmark
of RFAM as the input of its landmark detection network
gk (·). Among them, the backbone network of the landmark
detection module is also unlimited. Our framework provides
the flexibility to use various network architectures as the
backbone without any restrictions, such as Resnet50, HRNet,
U-net, and so on. The output of gk (·) is a vector Lgk∈R2,
which represents the predicted x- and y- coordinates of the
landmark. The overall module is as follows:

Lgk = gk (rk) = [x̂k , ŷk ] (7)

Here, x̂k and ŷk represent the predicted x- and y- coordinates
of the kth landmark, respectively. It is of significance to
highlight that within the backbone network of the landmark
detection module, each instance of 3 × 3 convolution is sub-
stituted with the MSFM. The coordinates of each landmark
are finally output.

4) MULTI-SCALE SEMANTIC FUSION MODULE
Due to the difference in original sample size and human
anatomical structure, although the candidate region proposals
obtained in RFAM are the same size, the local receptive field
is still different. Candidate region proposals from different
local receptive fields may have different levels of semantic
information. In order to bridge the semantic gap between
these candidate region proposals, we introduceMSFM,which
uses feature maps from multiple scales and fuses them
to produce semantically rich features. It can effectively
extract spatial information from different scales, thus merg-
ing adjacent scales of context features more accurately and
establishing long-range channel dependence. This approach
ensures rich semantic information at all levels and can be
efficiently implemented with a single input image scale.

To achieve this, we adopt a multi-branch approach to
extract spatial information from the input feature map, with
each branch having a channel dimension of C . We process
tensors of multiple scales in parallel, allowing us to acquire
richer positional information with varying spatial resolutions
and depths. Specifically, the input of this part is the charac-
teristic diagram after the convolution layer, each feature map
with different scales, denoted as Fi, shares a common channel
dimensionC ′

= C/S, where i= 0, 1, · · ·,S−1. It is important
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to note that C should be divisible by S. The generating
function of the multi-scale feature map is expressed as:

Fi = Conv
(
ki × ki,Gi = 2

ki−1
2

)
(X) i = 0, 1, 2, · · · , S − 1

(8)

The feature map with different scales, denoted as
Fi∈RC

′
×H×W , is obtained using the ith kernel size

ki= 2 × (i+1) + 1. After processing tensors of multiple
scales in parallel, we obtain the final combined feature map,
which is as follows:

F = Cat ([F0,F1, · · · ,FS−1]) (9)

The method for weighting the obtained multi-scale combined
feature map is as follows, namely GAP + extraction

Zc = σ (W1δ(W0(
1

H ×W

∑H

i=1

∑W

j=1
Fc (i, j)))) (10)

Here, Zc is the weight vector, and the symbol δ represents
the rectified linear unit (ReLU) activation function. And c =

0, 1, 2, · · · , S − 1.The matrices W0∈RC×
C
r and W1∈R

C
r ×C

represent the fully-connected (FC) layers. The symbol σ

stands for the sigmoid activation function.H andW represent
the height and width dimensions, respectively, and Fc repre-
sents the feature map of different channels. To achieve the
interaction of attention information, the multi-scale channel
attention vectors are computed and combined to obtain the
overall multi-scale weight vector Z . Then the right of appeal
is re-assigned by softmax as:

Z̄c =
exp (Zc)∑S−1
i=0 exp (Zc)

(11)

Similarly, the new weight vector, denoted as Z̄ , is obtained
through a series of connections of the multi-scale channel
attention vectors. Then, we perform element-wise multipli-
cation between the newly calibrated weight vector Z̄ and the
feature map F of the corresponding scale to obtain its feature
map Y . The final output Ȳ is obtained by concatenating the
feature maps Yi from each MSFM. Specifically, all the depth
channels of the output featuremaps are stacked together along
the channel direction to obtain the final depth convolution
result Ȳ . By combining information frommultiple blocks, the
MSFM can capture both fine-grained, local feature semantics
from high-resolution feature maps and coarse, global fea-
ture semantics from low-resolution feature maps. This helps
refine the landmark localization and produce more accurate
results.

C. LOSS FUNCTION
The adaptive wing loss (AWL) [40] is used to train the frame-
work. During the training period, AWL gradually reduces the
influence of pelvic foreground pixels, that is, weakly related
semantic information until the error becomes very small.
So as to pay more attention to the strongly related semantic

information around landmarks and make the model converge
faster. The AWL is presented below:

L =

 ωln
(
1+ |

y− ŷ
ϵ

|
α−y

)
if |

(
y− ŷ

)
|< θ

A | y− ŷ | −C otherwise
(12)

Among them, y and ŷ respectively ground truth and predicted
heatmap. Here,

A = ω(1/(1 + (
θ

ϵ
)(α−y)))(α − y)((

θ

ϵ
)(α−y−1))(

1
ϵ
) (13)

C = (θA− ωln(1 + (θ/ϵ)α−y)) (14)

Here, ω= 14, θ= 0.5, ϵ = 1, and α= 2.1 are positive num-
bers.

IV. EXPERIMENTS AND RESULTS
A. DATASET
To our knowledge, there is no public and available
pelvic landmark dataset on X-rays. In order to conduct
this study, we collected 430 pelvic X-ray images from
the Shandong Provincial Hospital of Traditional Chinese
Medicine. The collection consists of pelycograms obtained
from 430 patients with resolutions ranging from 1670 ×

2010 pixels to 3200 × 3200 pixels, with a spatial resolution
of 0.139 mm/pixel in both directions. The patients included
in this dataset span a wide age range, from 10 to 80 years
old. The data set was manually marked with 17 landmarks
on the X-ray image by two professional doctors with Make
Sense software, and the average value of the two professional
doctors was taken as the label. In our experiments, we divided
the dataset into three sets, i.e. training set, validation set, and
testing set in the ratio of 300, 30, and 100, respectively.

B. DATA AUGMENTATION
Unlike other areas of computer vision, the datasets for med-
ical image analysis are often limited in size, as the process
of obtaining ground-truth labels from clinical experts is
resource-intensive and time-consuming. Consequently, train-
ing deep learning models on such a small amount of data
can lead to overfitting and result in poor performance in clin-
ical applications. To mitigate this issue, data augmentation
has emerged as a powerful method [41]. Given that pelvic
radiographs hold rich and complex morphometric informa-
tion, it is important to use specialized data augmentation
techniques, as demonstrated by Maini et al. [42], to ensure
that the synthetic data remains clinically relevant and useful
for training robust models. In our research, we focus on
the pelvic X-ray anatomical structure and the time diversity.
The following special image transformations are adopted,
as elaborated below.

1) REFLECTION
Radiographs are subjected to a randomflip, and subsequently,
the corresponding landmarks are translated as:

L(i)
x = W − L(i)

x
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L(i)
y = H − L(i)

y (15)

2) UNSHARP MASKING
Considering the time diversity of samples, to enhance con-
trast and sharpness, we utilized a linear filter that selectively
amplifies the high-frequency content of radiographs. The
applied method can be represented by

Isharp = Iorig + α ∗
(
Iorig − Iorig ∗ F

)
(16)

where F is a linear filter and α is the sharpness amount.

3) SOLARIZATION
Considering the complexity of the anatomical structure of
the sample, we utilized the solarization method to mitigate
tone overexposure in radiographs and enhance the visibility
of complex pelvic structures.

C. IMPLEMENTATION DETAILS
Training in this study was executed utilizing a TITAN
RTX 24G GPU. The experimentation process was facilitated
using the deep learning framework PyTorch. The images
were resized to dimensions of 512 × 512 pixels within
the backbone candidate region proposal extractor. The orig-
inal dimensions were retained within the receptive field
amplification module, while the candidate region proposals
were resized to dimensions of 256 × 256 pixels within the
landmark detection module. We set the data augmentation
probability to 0.1. The backbone candidate region proposal
extractor and landmark detection module are trained sepa-
rately. For training these two modules, we both employed
the Adam optimizer. Similarly, in a total of 100 cycles of
training, the initial learning rate was set at 0.001, with sub-
sequent reduction by a factor of 0.80 every 10 cycles. The
loss functions are all AWL.

D. EVALUATION INDICES
In this paper, we evaluate the detection performance using
these evaluation indices as recommended by the 2015 ISBI
challenges on cephalometric landmark detection [43].
We evaluate landmark detection performance using the mean
radial error (MRE). The smaller the MRE, the higher the
detection accuracy. The MRE is calculated using

MRE =

∑k
i=1

√
1x2 + 1y2i
k

(17)

1x and1y are the absolute differences between the estimated
and ground-truth coordinates of the x- and y-axes. Similarly,
Di is defined as the difference between the real distance
and the predicted distance and n is the number of images,
the mean distance error (MDE) for clinical measurements is
defined as:

MDE =

∑n
i=1Di

n
(18)

To account for the differences between predicted results
and the ground truth, we define a certain range within which a

prediction is considered correct. Specifically, we evaluate the
range of z mm (where z = 4, 4.5, 5, and 6) in our experiment.
For instance, if the radial error is 3.5 mm, we consider it a
success within the 4 mm range. The successful detection rate
(SDR) is defined as the percentage of landmarks detected
successfully within the specified range. The larger the SDR,
the better the performance of the proof model. Equation 18
provides a formal definition of SDR:

SDR =
Na

N
×100% (19)

where Na indicates the number of accurate detections, and N
indicates the total number of detections.

In addition, we further evaluate the effect of the model
landmark predictions on pelvic angle clinical measurement.
Symmetric mean absolute percentage (SMAPE) evaluates
overall performance on angle measurement. The SMAPE
metric is defined as:

SMAPE =
1
n

∑n

i=1

SUM |Xi − Yi |

SUM (Xi + Yi)
× 100% (20)

where Xi means the predicted angles and Yi means the ground
truth. A smaller value of SMAPE means more accurate angle
predictions.

E. RESULTS
We evaluated the performance of our proposed pelvic land-
mark detection framework on our test datasets, which consist
of 100 pelvic images. Table 1 summarizes the results in terms
of MRE with standard deviation (STD) for all 17 landmarks
on the test set, as well as the SDR within four clinical
ranges (i.e. 4.0mm, 4.5mm, 5.0mm, and 6.0mm) for each
landmark. The ∗ denotes outcomes achieved by retraining our
dataset through the process of replicating the original paper’s
methodology. The remaining results are drawn directly from
the original paper, offering a comprehensive foundation for
comparative analysis. To maintain consistency, all measure-
ments have been converted to millimeters (mm), with a
spatial resolution of 0.139 mm/pixel employed as the default
for experiments lacking explicit spatial resolution specifi-
cations. The average MRE with STD across all landmarks
for 100 test images is evaluated to be 3.724 ± 4.247mm,
which falls within the clinically accepted precision range of
4.0mm. These results indicate that our framework is capable
of locating cephalometric landmarks accurately and consis-
tently, as evidenced by the smaller MRE and STD values.
In the test set, the MRE varies from 1.737mm (L15) to
7.140mm (L2), while the SDR ranges from 47% to 96%
within a 4.0mm neighborhood. On average, all landmarks
exhibit SDRs of 74.176%, 78.117%, 80.588%, and 84.706%
for neighborhoods of 4.0mm, 4.5mm, 5.0mm, and 6.0mm,
respectively. Moreover, our proposed framework exhibits
robust and effective performance in detecting most land-
marks. Notably, landmarks L3, L4, L5, L10, L12, L13, L14,
and L15 yield high SDR values, further attesting to the relia-
bility of our approach.
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FIGURE 4. Examples of predictions from different methods. Automatically located (red) and manually annotated pelvic landmarks (blue) in the five
subjects. The yellow boxes denote significant disparities in the experimental results. Furthermore, the MRE for each sample is indicated in the upper
left corner of its respective image.

At the same time, as shown in Table 2, compared with
the most advanced methods, our proposed framework shows

the most advanced performance. Our framework achieves the
best MRE of 3.724mm and the best STD of 4.247mm among
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TABLE 1. The final detection result of each landmark. The results are
presented in terms of MRE, STD, and SDR within 4.0, 4.5, 5.0, and 6.0 mm
neighborhoods for all 17 landmarks. MRE is reported in millimeters (mm),
and SDR values are reported as a percentage (%).

TABLE 2. Comparison of our proposed framework with state-of-the-art
methods in terms of MRE, STD, MDE, and SMAPE. On our dataset, the best
results are highlighted in bold, and the second runner-up is underlined.
The table clearly shows that our proposed framework outperformed the
state-of-the-art in MRE, STD, MDE, and SMAPE on the test set.

all methods in our test set. In addition, our framework also
achieved the best MDE of 5.262mm and the best SMAPE
of 27.864%. When scrutinizing the experimental outcomes
of these state-of-the-art methods across both their proprietary
datasets and our dataset, it becomes evident that theMRE and
STD obtained by these methods on our dataset have notably
increased.

It becomes evident that our method not only demonstrates
commendable accuracy but also exhibits robustness on the
intricate dataset presented in this paper. Despite the fact
that our pelvis sample size surpasses that of Zhu et al.
[32], the MRE has experienced an increase of 1.75mm, and
the STD has similarly risen by 7.947mm. This once again
underscores the challenge of effectively learning complex
pelvic X-ray data in real clinical scenarios. Additionally,
it’s noteworthy that the existing methods primarily focus
on grasping the global semantic context of pelvic X-ray
images, whereas our approach specifically focuses on acquir-
ing strongly related local semantic information surrounding

landmarks. As hypothesized, our supposition holds true: that
when it comes to detecting landmarks within intricate pelvic
X-ray samples, the presence of strongly related semantic
information within an expansive receptive field enhances the
model’s convergence performance.

To facilitate a more intuitive comparison of the detection
outcomes across various methods, we present visualizations
of the detection results on several samples from this dataset.
Illustrated in Figure 4, each column represents an identical
sample, and each row corresponds to the outcome produced
by a specific method. Obviously, our method has achieved
satisfactory prediction results in both irregular and regu-
lar pelvises. Especially in the areas marked in the yellow
box, our method is obviously improved compared with other
advanced methods. Most of the landmarks in these locations
are typical representatives of time diversity and pathological
abnormalities. Obviously, our method has better robustness
when detecting these landmarks. Fig. 5 shows the box-and-
whisker plots of point to point error for each method. The
range of distance error for each point in our method is more
concentrated. Although our method gets small errors on most
points, it performs poorly on landmark 2. We can also see
that the detection ability of other methods has been greatly
affected by the variety of data.

In conclusion, our proposed framework demonstrates the
potential to be employed in real-world applications for accu-
rate pelvic landmark detection. Compared with the most
advancedmethods, the overallMRE and STD obtained by our
method in landmark detection are satisfactory, especially on
samples with time diversity and pathological abnormalities.
In addition, the evaluation results of clinical measurements
in pelvic abnormality examinations verified the effectiveness
of our method once again.

V. DISCUSSION
The accurate localization of anatomical landmarks in pelvic
images is essential for the examination, treatment, and
prognosis of pelvic abnormalities. However, the X-ray
of the pelvis in clinical practice is multi-scale, with
time diversity and pathological deformity. The intricate
relationship between image features and landmark posi-
tions makes it difficult to achieve precise and reliable
results, which makes it a challenging task to detect pelvic
landmarks.

We conducted extensive experiments to evaluate the per-
formance of our proposed framework against state-of-the-art
methods on our irregular dataset. Our results demonstrate
significant improvements over existing approaches, show-
casing the effectiveness of our solution. Specifically, our
framework achieves an MRE of 3.714 ± 4.247mm and the
highest SDRs of 74.176%, 78.117%, 80.588%, and 84.706%
in clinical precision ranges of 4.0mm, 4.5mm, 5.0mm, and
6.0mm, respectively. At the same time, in the evaluation of
clinical measurement values, the detection results obtained
by our framework can achieve an MDE of 5.262mm and a
SMAPE of 27.846%.
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FIGURE 5. The Box-and-whisker plots of Euclidean distance distribution between predicted landmarks and ground truths.

A. ABLATION STUDIES
In this section, we conduct a comprehensive analysis of the
proposed framework, exploring its performance and effec-
tiveness from various perspectives. We first aim to evaluate
the impact of different backbone networks on the frame-
work’s detection capabilities. Specifically, we validate the
performance of our framework using a range of backbone
architectures, including SHG [44], HRNet [45], CE-net [46],
Resnet50 [47], and U-net. Table 3 provides a comprehensive
comparison of different backbone networks in the backbone
candidate region proposal extractor and landmark detec-
tion module. The results highlight that U-net outperforms
other backbone networks in the backbone candidate region
proposal extractor, exhibiting the lowest MRE of 5.963 ±

8.311mm. That is, the actual average error value is 42.899px,
and the actual theoretical maximum error value is 102.69px,
which meets the requirement of less than s/2 mentioned
in Section III-B1. Similarly, within the landmark detection
module, Resnet50 emerges as the optimal choice. Here,
the experiments related to the landmark detection mod-

ule are all carried out on the basis that the backbone of
the backbone candidate region proposal extractor is U-net.
However, in the absence of RFAM and MSFM, the perfor-
mance of diverse backbone architectures even falls short of
that of the backbone candidate region proposal extractor.
Subsequently, we added RFAM and MSFM to Resnet50
sequentially, and the MRE decreased to 5.210 ± 6.307mm
and 3.724 ± 4.247mm, respectively. Clearly, when con-
fronted with the intricate pelvic dataset in this study, both the
conventional end-to-end and two-stage frameworks struggle
to attain high-precision detection. The conducted ablation
experiment corroborates the effectiveness of our RFAM and
MSFM. This affirms the validity of our concept concerning
the expansion of the receptive field and the integration of
multi-scale semantic fusion.

Key point detection differs significantly from target detec-
tion. Common techniques used in target detection, such as
R-CNN [48], [49] and YOLO [50], [51], follow a top-down
approach, where the category is initially determined before
detection. Some studies have attempted to apply YOLOv3
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FIGURE 6. The landmark with significant detection failure is marked with a yellow dotted box, and below it is a local enlarged view of the
surrounding area.

TABLE 3. Performance comparison of different backbone networks in the
backbone candidate region proposal extractor and landmark detection
module. Notably, our proposed RFAM and MSFM both performed well,
reducing MRE by 6.492mm and 1.486mm, respectively.

[52] to key point detection, but the results have been only
moderately successful. In the context of key point detection,
the top-down method may not always be suitable for various
tasks. Instead, a bottom-up approach is often more appropri-
ate, involving the direct identification of key points [45]. That
is, the landmark detection stage after we get the candidate
area.

B. FAILURE ANALYSIS
In our proposed framework, challenges beyond the
multi-scale characteristics, time diversity, and pathological
irregularities of pelvic X-rays include occlusions and mis-
alignments of edge landmarks. These factors significantly
impede the performance of our framework. To delve into
this matter, we conducted an analysis of instances where
landmarks were predicted with substantial errors.

In addition, the labeling of landmarks in data sets is vari-
able and subjective. In fact, the difference between the two

experts’ labels on landmarks reached 2.14 ± 1.57 mm, and
our first evaluation range was 4 mm. This leads to a higher
degree of uncertainty in the real landmarks on the ground, and
ultimately affects the performance of our proposed frame-
work.

Figure 6 illustrates five examples featuring predicted land-
marks with a high MRE, exceeding the clinically acceptable
range. As shown in Figure 6.a, the adjacent bones below L5
have extremely similar anatomical structures, which disturbs
the convergence of the model and leads to a suboptimal result.
In Figure 6.b, the image itself is too blurred, which leads to
a large detection error. Figure 6.c shows a few incomplete
shots, while Figure 6.d demonstrates that the bone edge point
shares a shape resemblance with the soft tissue edge point,
further contributing to inaccuracies. Lastly, Figure 6.e show-
cases the unclear actual position of L15. All these scenarios
contribute to no-table final detection errors. To address this
issue, we may explore the integration of additional pelvic
features or image augmentation techniques to improve the
robustness of our framework to handle these complicated
situations.

C. CURRENT CHALLENGES AND FUTURE DIRECTIONS
The results presented in sections IV and V clearly demon-
strate the significant contribution made by our proposed
framework towards automated pelvic analysis, achieving
state-of-the-art level results on our dataset. However, despite
this achievement, there remain several challenges that require
further attention.

One of the primary challenges in developing an accurate
pelvic landmark detection model is the limited size of the
available training dataset. In our dataset, the training data
consists of only 300 pelvic images ranging in age from 10 to
80 years old. This limited sample size and diverse patient
pool can make it difficult for an AI algorithm to effec-
tively generalize and may lead to overfitting. In addition, as
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mentioned earlier, the labeling of landmarks is subjective,
and the labeling gap between the two experts is obvious.
Therefore, there is a need for new state-of-the-art datasets that
can help overcome these challenges.

Similarly, the trend toward constructing single-training
models for multimodal data has gained momentum. Our
method can’t solve double branch attention drivenmulti-scale
learning for MRI for the time being, which is not only
a challenge but also the direction of our follow-up work.
Nonetheless, the preservation of high performance for such
extensive models when confronted with medical images, par-
ticularly within the intricate dataset outlined in this paper,
remains a formidable obstacle. Addressing this challenge
necessitates researchers to delve further into the latent infor-
mation existing both between and within modes, thereby
unlocking the full potential embedded within these complex-
ities.

VI. CONCLUSION
This research addresses the crucial need for accurate pelvic
landmark detection in abnormal pelvic examinations, offer-
ing a promising solution to automate the tracing process
and enhance clinical efficiency. By introducing a two-stage
regression framework with RFAM and MSFM, we have sig-
nificantly overcome the limitations of existing approaches,
which can’t fully learn the strong related semantic infor-
mation of the large receptive field at high resolution.
By combining multi-scale and semantically rich features, our
framework makes full use of the strongly relevant semantic
information around landmarks and provides a comprehensive
understanding of pelvic abnormalities. The results obtained
from our framework showcase its potential to revolution-
ize pelvic analysis by reducing subjectivity and the time
required for manual landmark identification. We anticipate
that our proposed framework will assist in improving patient
outcomes, advancing treatment strategies, and facilitating a
comprehensive assessment of pelvic abnormalities.

Of course, our method can be used to realize clinical
computer-aided diagnosis (CAD) and support the activities
of clinicians, but it needs to strengthen the constraints on
security and service availability [53]. In the clinical environ-
ment, the continuity of service is a mandatory requirement,
and the use of service-oriented networks (SONs) can improve
the continuity. Benefiting from [54], we can realize son-based
services in clinical scenarios.

Our future work will not only improve the efficiency of this
method but also extend it to a multimodal general large model
that only needs one training. In addition, we will continue to
collect data sets, and the first publicly available pelvic X-ray
landmark detection data set will be established later.
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