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ABSTRACT In air combat, target intent recognition is the premise and foundation of battlefield situation
awareness and intelligent decision-making. Aiming at the problem that traditional intention recognition
methods cannot deal with a large amount of continuous target data, an air target combat intention recognition
model based on one-dimensional convolutional neural networks and bidirectional long short-term memory
(1DCNN-BiLSTM) is proposed. First, the target data is divided into fixed-size continuous subsequences
by time sliding window on the basis of determining the target feature space and intention space. Second,
the convolution operation is performed on the target sequence through the 1DCNN module as a means
of extracting the features of the target attributes in the time dimension, and at the same time reducing
the dimensionality of the target sequence, so as to facilitate the subsequent processing of the target data.
Then, the BiLSTM module is utilized to capture the dependencies on the longer distance of the target
sequence from both forward and reverse directions simultaneously. Finally, the optimal model structure and
hyperparameters of 1DCNN-BiLSTM are not only determined through experiments, but also the validity of
each part of the model is verified. Compared with the traditional methods, the model proposed in this paper
effectively improves the accuracy of combat intention recognition of air targets, and provides the essential
basis and auxiliary support for the decision-making of the commanders.

INDEX TERMS Battlefield situation awareness, air targets, intention recognition, one-dimensional convo-
lutional neural networks, bidirectional long short-term memory.

I. INTRODUCTION
In recent years, with the rapid development of science
and technology and military doctrine, the performance of
weapons and equipment in the air battlefield has increased
dramatically, and the combat styles are complex and diverse,
leading to rapid changes in the air battlefield situation. The
intention of an air target refers to the task to be completed
or the purpose to be achieved by the air target. Typically,
target intention cannot be directly observed, but is obtained by
observing the behavior and state of the target and analyzing it.
Air targets combat intention recognition refers to the process
of analyzing and speculating the air target data obtained
from various information sources and combining them with
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a priori knowledge to finally get the target’s operational plan,
operational scenario, and so on. As a key step in battlefield
situation assessment, target combat intention recognition can
provide decision information for commanders.

In modern air warfare, intricate sensor systems provide
comprehensive tracking and surveillance of targets, resulting
in the acquisition of a vast amount of data. In addition, the
rapidly evolving air battlefield situation is also generating
information from moment to moment. In the face of massive
air target data, merely relying on the commander’s combat
experience to recognize the target’s intention can no longer
meet the high-intensity, fast-paced operational requirements
of modern air warfare. Therefore, how to efficiently and
accurately utilize a large amount of battlefield situational data
to identify the intention of an air target has become an urgent
problem in battlefield situational assessment.
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In the existing research on target intention recognition,
scholars at the beginning mainly used expert systems [1],
template matching [2] and other methods, but such methods
have to convert expert knowledge into intention recognition
rules and construct recognition models, which rely heavily
on a priori knowledge and cannot meet the requirements of
high efficiency and high accuracy of the current air battlefield
situation. In order to apply the air battlefield situation data
more efficiently, the intention recognition methods based
on Dempster-Shafer (D-S) Evidence Theory [3], [4] and
Bayesian networks [5], [6] begin to receive attention from
scholars. These two types of methods introduce probabilistic
reasoning to reduce the impact of a priori knowledge on
the recognition effect. The rapid development of machine
learning provides a new path for the efficient recognition of
target intention. After inputting the air battlefield situation
data into the machine learning model, the model is trained to
obtain the model. However, the existing recognition models
mainly recognize the target intention through machine learn-
ing algorithms such as RNN [7], DNN [8], etc., which cannot
perform effective feature extraction on long sequences of
target data. In summary, in order to avoid relying too much on
subjective factors, and at the same time to be able to deal with
a large number of long sequences of target data and effec-
tively extract the feature information, this paper proposes
an air target combat intention recognition model based on
1DCNN-BiLSTM. The main contributions are summarized
below.

(1) Aiming at the problem that traditional intention recog-
nition methods cannot deal with long sequential target data,
a target data segmentation method is proposed, which divides
the air target data into multiple sub-sequences through a
temporal sliding window, so as to facilitate the processing of
the data by the subsequent model.

(2) In order to better extract the target features in the data,
the 1DCNN module is introduced which not only accurately
captures the features of the target attributes in the time dimen-
sion while maintaining the temporal structure of the target
sequence, but also reduces the training overhead of BiLSTM
by lowering the dimension of the input target data.

(3) Aiming at the problems of gradient explosion and
gradient vanishing that tend to occur when training the
target sequence data, the model better captures the depen-
dencies of the target data over longer distances in the time
dimension through BiLSTM in both forward and reverse
directions to improve the model’s intention recognition
capability.

The rest of the paper is organized as follows. Section II
analyzes and summarizes related work. Section III analyzes
and discusses the problem of air target intent recognition, fea-
ture space, and intention space. Section IV builds an combat
intention recognition model of air targets based on 1DCNN-
BiLSTM. Section V conducts experimental validation of the
proposed model and compares it with other classical algo-
rithms. Section VI summarizes the work of this paper.

II. RELATED WORKS
Currently, many scholars have conducted research on target
intention recognition, and the main methods include expert
systems [1], template matching [2], D-S Evidence Theory
[3], [4], Bayesian Networks [5], [9], neural networks [10],
[11], and so on. In the case of less target data, it mainly
relies on experience and knowledge to define the rules in
advance, and then matches the input target data with the rules
so as to realize the recognition of the target intention. Based
on this idea, He et al. [1] proposed an air targets intention
recognition method based on a confidence rule database,
abstracting expert knowledge and related information into
rules to form a confidence rule database, and then using
Differential Evolution to optimize the initial confidence rule
database, so as to reason and recognize the combat inten-
tion of air targets. However, this method relies heavily on
manual experience and knowledge, and cannot recognize the
types of intentions beyond the range of empirical knowledge.
Moreover, when the requirements change, it needs to rely
on manual modification and updating of the rule database,
which increases the workload. Aiming at the problems of
rule matching, the multi-layer blackboard model can not
only deal with more complex problems through multi-level
reasoning, but also can be extended and adjusted relatively
easily. Li et al. [2] proposed a target intention recognition
method based on the improvedmulti-layer blackboardmodel,
which introduces the target threat degree into the classical
multi-layer blackboard model to realize online recognition
of target intention. This method splits the target intention
recognition into multiple sub-problems, which can simplify
the problem, but each sub-problem is independent of the
other and lacks the mechanism of global information sharing
and mutual collaboration, which may lead to the failure of
obtaining the global optimal solution.

In addition, both rule matching and multi-layer black-
board models rely on manual experience and knowledge
and are weak in dealing with uncertainty reasoning prob-
lems, whereas D-S Evidence Theory and Bayesian Networks,
as mathematical models based on probabilistic theory, are
more applicable to complex and changing air battlefield sit-
uation. Wang et al. [3] and Cao et al. [4] utilized the D-S
Evidence Theory to construct an intent prediction model to
achieve the recognition of target intention. In order to exclude
the influence of subjective factors in determining the basic
probability assignment (BPA), Zhang et al. [12] combined
a deep learning network with the D-S evidence theory to
determine the BPA through an LSTM network and a GAN
network. this approach still fails to solve the problem of
possible conflicting evidence in the D-S theory. Zhang et al.
[13] combined Evidence Network (EN) and Belief Decision
Trees and Random Forests (BDT-RF) to recognize the target
intention individually before fusing the results. Although this
method can solve the uncertainty existing in intent recog-
nition to some extent, EN and BDT-RF introduce a large
number of nodes and relationships in a complex problem.
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Yang et al. [9] proposed a hierarchical recognition method of
target intention based on Bayesian reasoning in accordance
with the commander’s decision logic, by decomposing the
intention recognition into two layers, the first layer identifies
two major types of air target intention, and the second layer
specifically identifies the target intention on the basis of the
previous layer. In order to adapt to the dynamically changing
battlefield situation, Chai and Wang [5] proposed a dynamic
Bayesian-based tactical situation estimation method, which
constructs a dynamic Bayesian inference network by unfold-
ing a static Bayesian network in the time dimension, so as
to realize the dynamic recognition of the intention in the
target’s tactical situation. D-S Evidence Theory and Bayesian
Network, as two types of probabilistic reasoning-based meth-
ods, need to determine the basic probability assignment and
prior probability when recognizing target intention, which is
more dependent on subjective assumptions. With the gradual
quantization and high-dimensionalization of air target data,
the above methods can no longer adapt to the realistic needs
of intention recognition. Neural networks, as a method capa-
ble of handling nonlinear and high-dimensional air target
data, have been continuously applied to the field of intention
recognition. Xue et al. [14] In order to avoid over-reliance
on a priori knowledge, they first predicted the destination
of target movement by AGADESN (Deep Echo State Net-
work Optimized by Adaptive Genetic Algorithm) model, and
then utilized DBSCAN ( Density-Based Spatial Clustering
of Applications with Noise) algorithm for target behavior
determination. Ahmed and Mohammed [10] proposed an
intention recognition method using fuzzy min-max neural
networks to classify attacks based on their characteristics,
identify the motivation of an attack, and predict its inten-
tion through similarity metrics. Zhou et al. [11] designed a
deep neural network-based target combat intention recogni-
tion model for the lack of expert knowledge by introducing
the ReLU activation function and the Adam optimization
algorithm to improve the effect of recognition. However, this
method cannot effectively deal with a large number of target
sequences.

III. PROBLEM ANALYSIS
A. ANALYSIS OF COMBAT INTENTION RECOGNITION OF
AIR TARGETS
Air targets intention recognition is an important part of air
battlefield situation assessment. By processing and analyzing
air battlefield situation data and combining relevant laws and
principles, we can infer and identify the combat purpose, plan
and intention of the target, so as to help develop coping strate-
gies and measures. In air combat, each sensor can obtain the
data of the air target within its own detection range, and then
the data fusion of the same target data obtained by different
sensors can realize the continuous dynamic monitoring of the
target within the range of the detection network [15]. Since
the target will hide its own intention as much as possible
during combat, it is impossible to accurately judge its combat

intention only from the state of the target at a single moment
or a few moments. However, the target will execute a series
of tactical maneuvers when performing combat missions, and
different tactical maneuvers can change the target’s state.
To summarize, the target’s combat intention can be deduced
from the target’s successive moments of state data, that is,
there is a mapping relationship between the target’s combat
intention and the target’s battlefield situation data.

Assume that at time t , the battlefield situation data of an air
target is x(t) = (x(t)1 , x(t)2 , . . . , x(t)n ), where x(t)n refers to the n-
th attribute feature of the target at time t . Then the battlefield
situation data of the air target form consecutive moments can
be expressed as a matrix

X =


x(t1)1 x(t1)2 · · · x(t1)n

x(t2)1 x(t2)2 · · · x(t2)n
...

...
. . .

...

x(tm)1 x(tm)2 · · · x(tm)n

 (1)

where x(tm)n denotes the n-th attribute feature of the air target
at time t .
Assume that the target intention is I = {i1, i2, . . . , ip},

where ip denotes the p-th intention. Then the relationship
between air target battlefield situation dataX and target intent
I is

I = f (X) = f
((

x(t1), x(t2), . . . , x(tm)
)T)

(2)

where f denotes the mapping relationship between air target
battlefield situation data and target intention.

Obviously, recognizing the combat intention of air targets
through battlefield situation data requires an in-depth analysis
of the data’s distribution pattern, change pattern, etc., and
extracting features from it. In this process, identifying air
target characteristics and combat intention is the primary task.

B. FEATURE SPACE
Targets display different states when performing different
tasks, and the description of the target state is generally por-
trayed from different angles by different target features. The
target battlefield situation data after the fusion of different
information sources contains rich and diverse target features,
from which the features with high correlation and greater
differentiation are selected to construct the feature space of air
targets. Constructing feature space is the key step to recognize
the combat intention of air targets, and it is also the process
of dimensionality reduction of multi-source data, which can
not only effectively remove redundant or noisy features to
improve the stability and reliability of themodel, but also help
to reduce the likelihood of model overfitting. By selecting
appropriate target features to construct the feature space, the
key attributes and states of the target can be better captured,
thus realizing more accurate intention recognition of air tar-
get.

The recognizition of air targets intention is mainly based
on the motion state of target, sensor state, self-performance
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and other characteristics. Among them, the motion state is
the description of the position, speed, height, direction and
other attributes related to the movement of the target during
the flight. The sensor state is the working state of the sensor
itself when the target performs the task. Self-performance is
an inherent property of the target itself and does not usu-
ally change over time. There are certain differences in the
characteristics of targets when they perform different combat
tasks. For example, the target’s flight height, flight speed
and route shape will be different when executing the tasks
of attack, early warning and transportation. The sensor state
of the target is also different in the task of reconnaissance
and penetration. The types of targets are also different when
carrying out patrol, bombing and other tasks. To sum up,
we construct the feature space of air targets intention recogni-
tion from the aspects of motion state, sensor state and its own
attributes.

FIGURE 1. Feature space.

The target motion state refers to the motion state of the
target in space, generally including its longitude, latitude,
azimuth, heading Angle, distance, speed and height and other
physical quantities [16]. Through the analysis of the motion
state of the target, the motion law of the target in different
tasks can be mined, so as to provide useful information for
the recognition of the target intention. The sensor state mainly
refers to the working state of air-to-air radar and air-to-sea
radar. Air-to-air radar is mainly used to search, track and
attack enemy aircraft, while air-to-sea radar is mainly used
to search and track maritime targets. However, in order to
reduce the possibility of detection by the other side’s radar,
the target will turn off the radar when carrying out low-
altitude raid, electronic jamming and other tasks. The target’s
own attributes are mainly its own inherent characteristics,
such as the length of the target, the maximum takeoff weight,
the maximum flight speed, the maximum combat radius, the
thrust-to-weight ratio and the amount of ammunition car-
ried. Since some of these attributes are not directly related
to the task performed, we choose the type of target as the
feature of target intention recognition. Target types include
large aircraft, small aircraft, helicopters and missiles, with
small aircraft generally deployed for missions requiring high
mobility and large aircraft deployed for transport, refueling
and early warning. Therefore, the type of target is also one
of the key elements to recognize the combat intention. The
feature space of air target combat intention recognition is
shown in Figure 1.

C. INTENTION SPACE
In essence, target intention recognition is a typical pattern
recognition problem [6]. In order to recognize more accu-
rately, it is necessary to define and describe the recognition
framework completely and clearly, that is, to construct the
intention space of the target. Different operational back-
grounds, operational modes and operational objectives, the
corresponding intention space is different. Therefore, when
determining the combat intention space of air target, it is nec-
essary to consider the operational background, operational
mode and operational entity.

First of all, the enemy’s objectives and actions will be dif-
ferent for different combat contexts. For example, in offensive
air warfare, the targets of air attacks are usually fighters,
bombers or other air targets, and the intention of the operation
may be to shoot down the target, destroy the effectiveness
of the other side, or prevent the other side from attacking;
The main combat intention of defensive air warfare is to
protect one’s own base, military facilities, or personnel from
air attacks. In electronic warfare, the goal of an air attack
may be to interfere with the other side’s communications
equipment, radar or other electronic equipment, and the inten-
tion of the operation is primarily to interfere with the other
side’s communications and radar systems so that they cannot
function properly. Secondly, for different combat styles, the
main tasks performed by the target are different. For example,
in a surprise attack, the enemy will usually use a quick attack
to hit our targets; In defensive warfare, it is necessary to pay
more attention to the ability to defend and counter enemy
attacks. Therefore, it is necessary to identify the intention
according to different characteristics in different styles of
operations. Finally, the objectives and actions of the enemy
will be different for different target entities. For example,
for fighter aircraft, its main task is to strike air targets; For
reconnaissance aircraft, it is necessary to pay more attention
to the search and defense capabilities of the target. To sum up,
according to different operational backgrounds, operational
styles and operational entities, the combat intention space
defined for air targets includes seven types of intentions,
including attack, bombing, refueling, patrol, early warning,
transport and scout, as shown in Figure 2.

The attack mainly relies on a variety of weapon systems,
such as missiles, rockets, aircraft guns, etc., to carry out direct
precision strikes on the other’s targets, such as destroying
enemy fighters, ground defense facilities and military bases.
Bombing is primarily the dropping of bombs, missiles or
other explosives on opposing targets to cause damage to
their strategic and tactical objectives. Refueling is primar-
ily used to extend the operational time and range of other
warplanes through air tankers so that they can carry out
missions or return to base for longer. Patrol is fighter aircraft,
attack helicopters and other air targets through advanced
electronic equipment and guided weapons in the easy to
search, find, strike the target of the location of the guard
patrol. Early warning is through the early warning aircraft
equipped with advanced radar and surveillance equipment,
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FIGURE 2. Intention space.

search, monitor each other’s air or sea targets, to provide
real-time intelligence and battlefield command support for
their own side. Transportation is the provision of support or
evacuation of equipment, material or personnel by means of
transport planes or helicopters. Scout means that reconnais-
sance aircrafts collect information about the other side’s troop
deployment, position, key facilities, and terrain through radio
sensors, optical sensors and other devices.

IV. AIR TARGET INTENTION RECOGNITION MODEL
BASED ON 1DCNN-BiLSTM
A. DATA SEGMENTATION
Air target data is a collection of samples arranged in chrono-
logical order, where each sample represents the target state
of the target at a certain point in time. The state of a tar-
get is generally portrayed by some attributes, which usually
have specific distribution patterns in the time dimension
and correlations between target samples at neighboring time
points. In order to extract the features in the target time-series
data and provide more key information for target intention
recognition, the air target data is usually divided into mul-
tiple subsequences when recognizing the target intention by
1DCNN-BiLSTM.

Convolutional Neural Network (CNN) performs well on
image processing tasks [17] because it exploits the spatial
structure of relationships between pixels in an image. Sim-
ilarly, the relationship between neighboring time points in
time series data can be considered as a spatial structure.
Therefore, CNN can be used to extract local features in time
series. However, CNN models have a problem in processing
time series data, that is, the length of the input data is fixed.
Therefore, if the complete time series is directly used as input,
it may lead to the problem of dimensionmismatch.Moreover,
the air target data is a kind of data with a relatively long
time series, and the traditional CNN model may not be able
to adequately capture the timing information of the whole
target sequence. To solve this problem, this paper adopts time
sliding window to divide the air target data into multiple sub-
sequences. Time sliding window is a method to partition the

air target data into consecutive subsequences of fixed size.
With this division, the long sequence of air target data is sliced
into multiple shorter subsequences, each of which contains a
continuous segment of timing information from the original
air target data.

Assuming that there are m target samples, the length of
the sliding window is l, and the moving step of the sliding
window is s, the total number of target subsequences can be
divided into

[m−l
s + 1

]
, where [·] denotes the largest integer

that does not exceed no more than itself. Then all the target
sub-sequences are pooled to form a three-dimensional data
structure of size

[m−l
s + 1

]
×l×n, where n denotes the dimen-

sion of a target sample. The process is shown in Figure 3.
Dividing air target data into multiple subsequences can not

only reduce the computational overhead but also improve the
model performance. First, target feature extraction can be
performed on the divided target subsequence for localized
regions, which helps to better capture the target temporal pat-
terns in the sequence. Applying 1DCNNon each subsequence
can extract localized features that may be locally relevant in
the whole air target data. In this way, the 1DCNN-BiLSTM
model can better capture the target features at different time
points and learn amoremeaningful representation from them.
Second, segmenting the air target data into multiple subse-
quences can effectively reduce the number of parameters in
the model. Long target sequences may require a larger model
to handle, but by dividing into multiple sub-sequences, the
target sequence length can be reduced, thus reducing the
complexity and computational cost of the model. In addition,
the temporal sliding window can help the model learn local
and global patterns in the airborne target data. By extracting
the local features of subsequences using 1DCNN, and then
inputting these target feature sequences into BiLSTM for
temporal modeling, the long-term dependencies and global
patterns in the whole air target data can be captured. BiLSTM
is able to memorize and utilize past information to better rec-
ognize the combat intention of air targets. In summary, the use
of temporal sliding windows to divide the air target data into
multiple sub-sequences is designed to better utilize temporal
information, extract local features, and fully capture temporal
patterns in the sequences. This segmentation method can
improve the performance of the 1DCNN-BiLSTM model
in recognizing the combat intention of air targets, and it
improves the accuracy and generalization ability of the recog-
nition while reducing the complexity of the model.

FIGURE 3. Segmentation of target subsequences.
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B. 1DCNN LAYER
CNNs are a common class of deep learning neural networks
that are widely used in computer vision [18], signal pro-
cessing [19] and natural language processing [20]. There is
correlation between neighboring moments in the air target
data, and the one-dimensional convolution slides only in
one dimension, which can not only maintain the temporal
structure of the target sequence and more accurately capture
the features of the target attributes in the temporal dimension,
but also reduce the number of parameters of the model while
maintaining the validity, thus reducing the computational
cost. Therefore, we use One-dimensional Convolution Neural
Network (1DCNN) to extract the target sequence features,
and its operational formula is

Z′ = fr

(∑
w∈M

w · Z+ b

)
(3)

where Z′ denotes the output of 1DCNN layer; fr denotes the
activation function; w denotes the convolutional kernel; M
denotes the set of convolutional kernels; Z denotes the input
of 1DCNN layer; and b denotes the bias.

Compared to the traditional two-dimensional convolution,
one-dimensional convolution slides the convolution kernel in
only one direction, so it is computationally more efficient.
One-dimensional convolution is to multiply the input target
sequence with the convolution kernel element by element and
then sum, and slide the convolution kernel in a certain direc-
tion to loop the above operation, so as to obtain a new output
sequence, as shown in Figure 4. The convolution kernel size
and step size are two important hyperparameters when per-
forming one-dimensional convolution operations [21]. The
convolution kernel of 1DCNN is considered as a vector, and
its size is the number of elements in the vector. The more
elements in the convolution kernel, the more input sequence
elements can be calculated at the same time, that is, the larger
convolution kernel can extract the feature of the target in a
larger field of view, while the smaller convolution kernel can
extract the finer feature of the target. The step size is the
displacement of the convolution kernel relative to the input
target sequence during two adjacent convolution operations.
If the step size of each move of the convolution kernel is
too large, some target features cannot be extracted. On the
contrary, if the step size is too small, the calculation amount
of the model will be increased. Therefore, the size and step
size of the convolution kernel affect the extraction of target
features to a certain extent.

C. BiLSTM LAYER
Air target data is a kind of data arranged in chronological
order. In order to capture the temporal dependency in it,
Recurrent Neural Network (RNN) can be used to process it.
Longer target sequences are usually input to provide more
target information when recognizing the combat intention
of air targets, which improves the accuracy and general-
ization ability of the model. However, RNNs are prone to

FIGURE 4. One-dimensional convolutional operation.

gradient explosion or disappearance when processing longer
time-series data [22] making the training process of the deep
network converge slowly and unstable. In addition, since the
past target information can hardly affect the current gradient
update after many iterations, it also leads to the inability of
the RNN to effectively learn long-distance dependencies. The
Long Short-TermMemory (LSTM) network controls the flow
of target information by introducing a gatingmechanism [23],
filters and retains important target information, and avoids
unnecessary information transmission, thus effectively solv-
ing the problem of long-term dependence. Its structure is
shown in Figure 5.

FIGURE 5. LSTM structure.

The forget gate is used to determine which target informa-
tion in the cell state C t−1 of the previous moment needs to be
discarded. The sigmoid function is utilized to map the output
ht−1 of the previous moment and the input xt of the current
moment to the interval (0, 1), and the value indicates how
much information is abandoned. The formula for the forget
gate is

f t = σ
(
W f xt + U f ht−1 + bf

)
(4)

where f t denotes the output of the forget gate; σ denotes
the sigmoid function;W f denotes the recurrent weight of the
forget gate; U f denotes the input weight of the forget gate;
and bf denotes the bias of the forget gate.
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The input gate is used to determine what new informa-
tion to add to the cell state, that is, what information in
the candidate cell state C̃ t needs to be saved. The sigmoid
function is used to determine the information to be updated.
The expression is

it = σ (W ixt + U iht−1 + bi) (5)

where it denotes the output of the input gate,W i denotes the
recurrent weight of the input gate;U i denotes the input weight
of the input gate; and bi denotes the bias of the input gate.

The candidate cell state C̃ t is obtained through the tanh
function, and the expression is

C̃ t = tanh (W cxt + Ucht−1 + bc) (6)

where W c denotes the recurrent weight of the layer; Uc
denotes the input weight of the layer; and bc is the bias of
the layer.

The forget gate f t is used to discard the cell state C t−1
at the previous moment, and the input gate it is used to
determine the state of the candidate cells C̃ t for preservation,
and the cell state C t at the current moment is obtained. The
expression is

C t = f t ⊙ C t−1 + it ⊙ C̃ t (7)

where ⊙ denotes point-wise multiplication.
The output gate is used to determine the output at the

current time, and its expression is

ot = σ (Woxt + Uoht−1 + bo) (8)

where ot denotes the output of the output gate, Wo denotes
the recurrent weight of the output gate, Uo denotes the input
weight of the output gate; and bo denotes the bias of the output
gate.

The final output is obtained through the output gate ot and
the cell state C t at the current moment with the expression

ht = ot ⊙ tanh (C t) (9)

Through the above analysis, LSTM processes the target
sequence in chronological order. However, in the battlefield,
the state change of the target is a continuous process, and
the target state at the current moment is not only related to
the state at the previous moment, but also the target state
at the moment afterward is a continuation of the state at
the current moment. Therefore, the target intention is not
only related to the data of the previous moment, but also
correlated with the data of the subsequent moments, and
unidirectional LSTM cannot accurately capture the feature
information in the target sequence. To address this problem,
we adopt Bidirectional Long Short-TermMemory (BiLSTM)
to learn the dependencies between the attributes in the target
sequence at the previous and subsequent moments, so as to
extract the target features more comprehensively to recognize
its combat intention. BiLSTM contains two LSTM layers for
forward and reverse passes of the target sequence [24], and
its structure is shown in Figure 6.

BiLSTM consists of forward LSTM and reverse LSTM.
For any moment t , whose input target sequence is xt , the
update formula for the forward hidden state h⃗t and the reverse
hidden state

←

ht is

h⃗t = g
(
W (f )
xh xt +W

(f )
hh h⃗t−1 + b

(f )
h

)
(10)

←

ht = g
(
W (b)
xh xt +W

(b)
hh

←

ht−1 + b
(b)
h

)
(11)

where g denotes the activation function;W (f )
xh andW (b)

xh denote
the weights from the input layer to the forward and reverse
LSTM hidden layers, respectively;W (f )

hh andW (b)
hh denote the

weights from the forward LSTM layer to the forward LSTM
layer and from the reverse LSTM layer to the reverse LSTM
layer, respectively; and b(f )h and b(b)h denote the bias of each
part.

By connecting the forward hidden state h⃗t and the reverse
hidden state

←

ht , the hidden state ht is obtained, and then it is
input to the output layer to calculate the output yt of BiLSTM,
the formula is

yt = Whoht + bo (12)

whereWho and bo denote theweights and bias of the BiLSTM
output layer, respectively.

FIGURE 6. BiLSTM structure.

D. PROPOSED MODEL
Air target intention recognition (ATIR) is a process of analyz-
ing target state data in order to identify the combat mission
performed by the target. Among them, target state data
are multi-dimensional data arranged in chronological order.
In order to be able to extract the features in the target data
more efficiently and to realize end-to-end intention recogni-
tion, we propose a combat intention recognition model of air
targets based on 1DCNN-BiLSTM, whose flow is shown in
Figure 7. Firstly, the target data is preprocessed, including
coding, denoising and normalization. Secondly, the target
data is divided into sub-sequences by sliding window, and
based on this, the target sequences are divided into training
set, validation set and test set respectively in the ratio of
6:2:2. Thirdly, the training and validation sets are input into
the 1DCNN module, and the local features of the air target
data can be extracted by convolution operation, and then
the multi-dimensional target data is one-dimensionalized by
Flatten layer, and the Repeeat Vector layer is to connect
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FIGURE 7. Air target intention recognition process based on 1DCNN-BiLSTM.

the 1DCNN and BiLSTM by repeatedly inputting the target
sequences, where BiLSTM is able to capture the dependen-
cies in the target data in both forward and reverse directions,
followed by randomly deleting neurons through the Dropout
layer to prevent overfitting of the model, using the Dense
layer as the output. Finally, the test set is fed into the trained
model to recognize the combat intention of air targets.

V. EXPERIMENTAL ANALYSIS
A. EXPERIMENTAL DATA AND ENVIRONMENT
The experimental data come from the air battlefield pos-
ture simulation system. Against the background of airborne
multi-service joint operations between the two warring par-
ties, various types of air targets, such as fighter planes,
transport planes, early warning planes and reconnaissance
planes, are simulated to carry out the seven types of combat
missions identified in Section III in an air battle, so as to
obtain the state of each target. The target dataset constructed
is a two-dimensional time series data, where each row is
a sample and each column contains 10 attributes such as
heading angle, azimuth, altitude, speed, etc., and the dataset
has a total of 23,530 samples. Among all the target data, the
proportion of operational intent is attack is 14.72%, bombing
is 14.68%, refueling is 13.20%, patrol is 14.23%, early warn-
ing is 14.45%, transport is 14.39%, and scout is 14.33%. The
data was divided into training set, validation set and test set
in the ratio of 6:2:2.

We programmed in Python 3.8 on a 64-bit Windows
10 computer with the Keras 2.3.1 deep learning framework,
an 11th Gen Intel(R) Core(TM) i7-1165G7@ 2.80 GHz pro-
cessor, and 16.0 GB of RAM, and the specific experimental
environment is shown in Table 1.

B. DETERMINING THE MODEL STRUCTURE
The 1DCNN-BiLSTMmodel is mainly composed of 1DCNN
module and BiLSTM module, in order to completely build
the structure of the model, it is necessary to determine the
structure of the model, mainly including the number of layers

TABLE 1. Experimental environment.

of 1DCNN and its number of convolution kernels, the number
of layers of BiLSTM and its number of neurons.

Firstly, the number of 1DCNN layers is determined, and the
layers of 1DCNN are set as 1, 2, 3, 4 and 5 respectively on the
basis of one BiLSTM layer. As shown in Figure 8(a), the com-
plex patterns and features in the time series are not adequately
captured when there is only one 1DCNN layer, which leads to
the lowest accuracy in the test set; when the layers of 1DCNN
are 2, 3 and 5 respectively, the accuracy is the same, and the
model performance is enhanced in comparison to the onewith
only one 1DCNN layer; however, the over-fitting problem
may occur when there are too many layers. The performance
of the model is best when there are 4 1DCNN layers, so the
number of 1DCNN layers is determined to be 4. Secondly,
the number of convolutional kernels in each 1DCNN layer is
determined, and 8, 16, 32, 64 and 128 convolutional kernels
are set in each layer based on setting four 1DCNN layers,
and the results are shown in Fig. 8(b), when the number of
convolutional kernels is 8 and 16 the accuracy of the test
set is comparable, and the model’s performance is optimal
when the number of convolutional kernels is 32. This is due to
the fact that as the number of convolutional kernels increases
the model is able to learn richer and more complex features,
but then continue to increase the number of convolutional
kernels is prone to overfitting phenomenon leading to a grad-
ual decline in performance, so the number of convolutional
kernels for each 1DCNN layer is determined to be 32. Thirdly,
the number of BiLSTM layers is determined. On the basis
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FIGURE 8. Performance of different model structures. (a) Performance of different 1DCNN layer numbers. (b) Performance of different number of
convolutional kernels. (c) Performance of different BiLSTM layer numbers. (d) Performance of different numbers of LSTM neurons.

of setting four 1DCNN layers and 32 convolution kernels in
each layer, 1, 2, 3, 4 and 5 BiLSTM layers are set respectively.
The results are shown in Figure 8(c), themodel’s performance
is the worst when there is only one BiLSTM layer, and the
accuracy of the test set is the highest when there is a set up
of four BiLSTM layers, so the number of BiLSTM layers is
determined to be 4. Finally, the number of LSTM neurons
in each layer of BiLSTM is determined, and the number of
LSTM neurons in each layer is set as 8, 16, 32, 64 and 128 on
the basis of the aforementioned hyperparameters. The results
are shown in Figure 8(d).When the number of LSTMneurons
is 32, 64 and 128, the performance of the model is the best
and equivalent. Considering the operation cost, the number of
LSTM neurons in each BiLSTM layer is determined to be 32.
This is due to the fact that increasing the number of BiLSTM
layers and the number of neurons in the LSTM can enhance
the expressive ability of the model to learn the long-term
dependencies in the target data, but when the number of layers
and neurons is too high, it may lead to the disappearance
of the gradient thus affecting the recognition performance

of the model. In addition, the batch size is determined to
be 32 according to the size of the dataset; in the above
experiments when epoch is 60, the accuracy and loss value
have converged, so epoch is determined to be 60; considering
that recognizing the target’s combat intention is a multi-label
classification problem, categorical crossentropy is selected as
the loss function, and softmax as the activation function of
the output layer; in order to improve the convergence speed
of the model, Adam is selected as the optimizer, Relu as
the activation function of the 1DCNN layer, and the learning
rate is 0.001; in order to avoid overfitting of the model, the
Dropout layer is introduced and the probability is 0.5. The
hyperparameter settings of the model were determined as
shown in Table 2.

C. EVALUATION METRICS
In order to evaluate the intention recognition performance of
the model, in addition to the Accuracy, we also adopt the
Precision, Recall and F1-Score to measure the performance
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TABLE 2. Model hyperparameter settings.

of the 1DCNN-BiLSTM model in recognizing the combat
intention of air targets.

Accuracy is the proportion of all target samples for which
the combat intention is correctly recognized, and is calculated
as follows

Accuracy =
a
A
× 100% (13)

where a denotes the number of target samples that are cor-
rectly identified with combat intention; A denotes the number
of all target samples.

For target intention recognition, the target data can be
divided into True Positive (TP), False Positive (FP), True
Negative (TN), and False Negative (FN) based on its true
combat intention and combat intention obtained from the
recognition [25], and the confusion matrix is shown in
Table 3.

TABLE 3. Confusion matrix.

Precision [26] represents the proportion of the target sam-
ples identified as an intention whose true intention is indeed
the intention, and is calculated as

Precision =
TP

TP+ FP
(14)

Recall [26] represents the proportion of samples in which
an intention is correctly identified in all the intention samples.
The formula is

Recall =
TP

TP+ FN
(15)

Generally, Precision and Recall are conflicting metrics
with some negative correlation between them. However, it is
necessary to accurately recognize each combat intention in
air combat to reduce misjudgment. Therefore, F1-Score is

introduced, which integrates the factors of both Precision and
Recall [26], and is calculated as

F1-Score =
2× Precision× Recall
Precision+ Recall

(16)

In addition, the intention space contains 7 types of combat
intentions, and in order to more accurately evaluate the recog-
nition performance of the model for all combat intentions,
macro-Precision, macro-Recall and macro-F1 are introduced
[27]. The calculation formulas are respectively

macro-Precision =
1
I

I∑
i=1

Precisioni (17)

macro-Recall =
1
I

I∑
i=1

Recalli (18)

macro-F1 =
2×macro-Precision×macro-Recall
macro-Precision+macro-Recall

(19)

where I denotes the number of combat intentions.

D. COMPARATIVE EXPERIMENT
In order to verify the performance of the 1DCNN-BiLSTM
model in recognizing the combat intention of air targets,
a comparative experiment is designed. The radial basis
function (RBF) neural network target intention recognition
method proposed by Wei and Wang [28], the fully connected
neural network (FCNN) intention recognition method pro-
posed by Zhou et al. [8], [11], the RNN intention recognition
method proposed byWang [7], and its related variant models,
one-dimensional convolutional neural network and recur-
rent neural network (1DCNN-RNN), bidirectional recurrent
neural network (BiRNN), and 1DCNN-BiRNN, are com-
pared with the methods proposed in this paper. The data set
constructed in section V- subsection A is utilized to con-
duct comparative experiments on the above methods and the
results are shown in Table 4.

TABLE 4. Results of comparative experiment.

As can be seen from Table 4, since RBF consists of only
one layer of radial basis function and one output layer, its
feature extraction capability is weak, so the performance of
airborne target intent recognition based on RBF model is the
worst among all the models, and its accuracy is only 63%.
The performance for target intention recognition of the RNN
model is higher than that of the RBF but lower than the
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TABLE 5. Results of ablation experiment.

TABLE 6. Air target combat intention recognition results.

performance of the FCNN, which is due to the fact that the
RNN suffers from gradient vanishing or gradient explosion
when processing the target time-series data, which results in
poorer performance. However, BiRNN, an improved model
of RNN, is able to process two forward and reverse target
information at the same time, so as to mitigate the effects of
gradient disappearance and gradient explosion, and its perfor-
mance is improved by about 14.03% on average compared
to RNN in recognizing the operational intent of air targets.
Another improved model of RNN, 1DCNN-RNN, extracts
the features in the target sequence through convolution oper-
ation to reduce the processing difficulty of RNN, and can
also improve the model’s intention recognition performance
by about 5.40% compared with BiRNN. Combining the two,
the performance of the 1DCNN-BiRNN model is compara-
ble to that of the 1DCNN-RNN. Combining 1DCNN-RNN
and BiRNN, the performance of 1DCNN-BiRNN model is
comparable to that of 1DCNN-RNN. Our proposed 1DCNN-
BiLSTM model all outperforms the above models, with an
average improvement of about 17.77% for Accuracy, 17.30%
for Macro-Precision, 17.38% for Macro-Recall, and 20.22%
for Macro-F1.

E. ABLATION EXPERIMENT
The 1DCNN-BiLSTM model proposed in this paper is com-
pared with RBF, FCNN, RNN, 1DCNN-RNN, BiRNN, and
1DCNN-BiRNN in the above, and the result fully proves that
the model has high performance in recognizing the combat
intention of the air targets. In order to verify the effectiveness
of each part of the model, ablation experiments are con-

FIGURE 9. Changes in accuracy and loss values during training.
(a) Variation curve of accuracy. (b) Loss curve of accuracy.

ducted here and the results are shown in Table 5. As can be
seen from the table, the Accuracy of the 1DCNN-BiLSTM
model proposed in this paper is 22.37%, 12.05%, 9.41%
and 6.90% higher than that of CNN, LSTM, BiLSTM and
1DCNN-LSTM respectively. Macro-Precision is improved
by 25.68%, 14.81%, 6.90% and 5.68%, and Macro-Recall
is improved by 26.03%, 13.58%, 9.52% and 5.75%, respec-
tively. Macro-F1 is 27.40%, 14.81%, 10.71% and 6.90%
better than the above models. Although the CNN model can
continuously reduce the length of the processed sequence
by extracting the features of the target sequence through
convolutional operations, it still cannot handle the forward
and backward dependencies in the target sequence well,
while LSTM has better performance in processing long target
sequences, so its performance is worse than that of the LSTM
model in recognizing the target intention. However, com-
pared to LSTM, BiLSTM is able to capture the dependencies
of the target sequence in both forward and reverse direc-
tions, and its performance is improved by 4.31% on average.
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Combining 1DCNN with LSTM, 1DCNN-LSTM effectively
extracts the target data features as well as captures the tar-
get sequence dependencies in both forward and backward
directions, improving the performance of LSTM by 7.07% on
average. The 1DCNN-BiLSTMmodel proposed in this paper
combines 1DCNN and bi-directional structure with LSTM at
the same time, and is able to capture more target sequence
context information on top of 1DCNN-LSTM, which makes
the model able to capture more complex target sequence
features, and improves the performance of the model by an
average of 13.81% over the traditional LSTM model.

FIGURE 10. Confusion matrix for air target combat intention recognition
results.

The variation of accuracy and loss value of the above
models with Epoch during training is shown in Figure 9, from
which it can be seen that the 1DCNN-BiLSTM model pro-
posed in this paper has the optimal convergence value of both
accuracy and loss value with Epoch, followed by 1DCNN-
LSTM, BiLSTM and LSTM, and the CNN performs the
worst. In addition, in terms of convergence speed, 1DCNN-
BiLSTM starts to converge around Epoch of 15, which is
faster than the other models.

F. COMBAT INTENTION RECOGNITION OF AIR TARGETS
The 1DCNN-BiLSTM model is used to recognize the com-
bat intent of air targets, and the confusion matrix of the
recognition results is shown in Figure 10. From the figure,
it can be seen that it is easy to confuse when recognizing the
two combat intentions of bombing and transportation, and
the model is easy to misjudge as attack when the air target
performs the patrol mission, which is mainly due to the fact
that the aerial target’s state is relatively close to that of the
two when it performs the relevant combat mission.

VI. CONCLUSION
Air target combat intention identification is a key part of
air battlefield situation assessment. We analyze the air tar-
get intent recognition problem in detail and construct its

mathematical model. On this basis, combined with the actual
situation of intention recognition and the characteristics of
air target data analysis, the 10-dimensional feature space is
determined and the intention space is encoded and packaged.
In order to solve the current problem that long sequence
target data can not be processed efficiently, for the air target
data with the characteristics of long time series, trend and
regularity, this paper proposes an end-to-end model based
on 1DCNN-BiLSTM for the recognition of combat intention
of air targets. Among them, the 1DCNN module captures
the features of target attributes in the time dimension, while
reducing the number of parameters of the model to lower the
computational cost; BiLSTM is able to learn the dependen-
cies between attributes in the target sequence in the previous
and subsequent moments, so as to extract the target features
more comprehensively. The ablation experiments also verify
the performance of each module in the model. In the compar-
ative experiments, the 1DCNN-BiLSTMmodel shows a great
improvement in the recognition performance compared to
other common models, and at the same time, the convergence
speed is faster. Therefore, the air target combat intention
recognition model we proposed is not only able to handle
high-dimensional target data, but also has the advantages
of good recognition performance, fast convergence and high
reliability. However, due to the limitation of the architecture
of the model proposed in this paper, this paper only aims
at recognizing the intention of a single target, and cannot
recognize the operational intention of a group of targets. The
research of this paper can provide effective support for air
battlefield situation assessment and auxiliary information for
command and decision-making. In the next step, we will
improve the model architecture based on the single-target
intention recognized in this paper and combine it with other
situational information to complete the recognition of air
group targets.
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