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ABSTRACT To improve power system operation and management and accomplish modern power system
requirements, a new algorithm named two-archive harris hawk optimization (TwoArchHHO) is proposed to
solve many-objective optimal power flow (MaOOPF) problems in this work. For modern power systems,
only single-objective and multiobjective (2-3 objectives) optimal power flow problems (MOOPF) are
inadequate. So, the problems become many-objective (more than 3 objectives) optimal power flow problem
which is more complicated to be solved. Although several metaheuristic algorithms have been proposed
to solve MOOPF problems, very few algorithms have been introduced to solve MaOOPF problems and
high-performance algorithms are still required to solve MaOOPF problems which are more complicated.
To solve the complicatedMaOOPF problems, TwoArchHHO is proposed by adding the two-archive concepts
of the improved two-archive algorithm into the harris hawk optimization (HHO) in order to enhance the
searchability and eventually provide superior solutions. The objective functions considered to be minimized
include fuel cost, emission, transmission line loss, and voltage deviation to improve power systems in the
economic, environmental, and secure aspects. Several sizes of IEEE standard systems, which are IEEE
30-, 57-, and 118-bus systems, are tested to evaluate the performance of the proposed TwoArchHHO.
The simulation results comprise Pareto fronts, best-compromised solutions, and hypervolume analysis are
generated and compared with results from several algorithms in the literature. The data provided by the
experimental trials and the hypervolume performancemetric were examined using statistical testingmethods.
The results indicate that the TwoArchHHO obtained better optimal solutions than those of the compared
algorithms including its traditional algorithms, especially in large systems. Based on the best-compromised
solutions, the TwoArchHHO provided one best objective aspect among the compared algorithm for most
cases. Based on the hypervolume, the TwoArchHHO generated better hypervolume values than those of the
compared algorithms around 33.96% to 99.59% in the tested systems.

INDEX TERMS Harris Hawk optimization, metaheuristic algorithms, many-objective optimal power flow,
two-archive algorithm.

I. INTRODUCTION
The introduction of the optimal power flow (OPF) problem
has emerged as an essential instrument for the planning
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and management of power system operations [1], [2]. The
OPF efficiently achieves the improvement of power system
operation by optimallyminimizing ormaximizing considered
objective functions and fulfilling system constraints [3]. In a
power system, a large number of generating units are gener-
ally required to appropriately generate electricity at minimum
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operation costs and transmission loss in order to reach a max-
imum benefit for power companies [4], [5], [6]. Moreover,
with the huge increase in environmental awareness, thermal
plants are also required to operate at the minimum emission
[7]. In addition, voltage deviation enhancement is required
to enhance the voltage profile as well as system security [8],
[9], [10]. From the stated problems, single-objective OPF and
multiobjective OPF (MOOPF), which consider 2-3 objec-
tives, are insufficient for present power system operation
and management as it can optimize only few objectives at
a time. Many-objective functions (more than three objective
functions) will then be considered to be optimized in the
OPF problem referred to as many-objective OPF (MaOOPF)
problems in order to simultaneously improve power systems
in all terms of the stated problems. So, four objective func-
tions including fuel cost, emission, transmission line loss, and
voltage deviation will be considered to be optimized in the
MaOOPF problem in this work.

With many successful proposed algorithms for solving
MOOPF problems; however, very few algorithms have been
proposed to solve MaOOPF problems, and high-performance
algorithms are still needed to solve MaOOPF problems as
they are more difficult to provide superior tradeoff solutions
when more than 3 objectives are considered. Moreover, the
‘‘No Free Lunch’’ theorem states that a single algorithm
cannot be the most suitable for solving every optimization
problem in every field [11], the improvement of optimiza-
tion algorithms is still necessary to more efficiently solve
optimization problems. Harris hawk optimization (HHO) is
a recent optimization algorithm proposed by Ali Asghar Hei-
dari, et.al [12]. HHO has been effectively utilized to address a
variety of optimization challenges across various fields [13],
[14], [15], [16], [17], and its performance is greater than
many algorithms in the literature. However, the traditional
HHO cannot solve more than one objective problem. The
improved two-archive algorithm (Two_Arch2) is an efficient
algorithm that can solve more than one objective function
problem proposed by Wang, Handing, et al. [18], and it has
been adopted to provide optimal solutions in several aspects
[19], [20]. Thus, this research aims to propose a new robust
algorithm to enhance the performance of the HHO by adopt-
ing the method from the Two_Arch2 algorithm to efficiently
solve the MaOOPF problem. The contributions of this study
are presented below.

1) A new algorithm named TwoArchHHO is proposed by
adding the two-archive concept of the Two_Arch2 algorithm
into the HHO algorithm in order to improve the searchability
of the original algorithms.

2) The proposed TwoArchHHO is applied to solve
MOOPF and MaOOPF problems by considering four objec-
tive functions comprising cost, emission, transmission loss,
and voltage deviation in the IEEE 30-, 57-, and 118-bus
systems.

3) The Pareto fronts of the TwoArchHHO are generated
and compared with other algorithms in terms of hypervolume
values, and the best-compromised solutions are found and

compared with those of several algorithms in the literature.
The performance of the TwoArchHHO is confirmed by sta-
tistical analysis.

The remainder of the paper is as follows: The formu-
lations of the MaOOPF problem are given in section II.
Section III presents the formulations of the related optimiza-
tion algorithms. The concept of the proposed TwoArchHHO
for solving the MaOOPF problem is explained in section IV.
Section V provides the simulation results and discussions of
this work. Finally, the conclusion of this work is concluded
in section VI.

II. RELATED STUDIES
To solve the OPF problems, various traditional algorithms
[21], [22], [23] have been proposed; however, the nonlinear
characteristics of the traditional algorithms lead the system
solutions to be stuck in the local searching area, and extensive
computational resources and time are needed. Thus, several
metaheuristic algorithms presented in [24], [25], [26], and
[27] and the following algorithms have been proposed to cope
with these weaknesses;
[28] ant colony optimization (ACO)
[29] grey wolf optimizer (GWO)
[30] shuffle frog leaping algorithm (SFLA)
[31] moth swarm algorithm (MSA)
[32] harmony search algorithm (HSA)
[33] teaching-learning-based optimization (TLBO)
[34] improved colliding bodies optimization (ICBO)
[35] adaptive lightning attachment procedure optimizer
(ALAPO)
[36] modified RUNge kutta optimizer (MRUN) [34]

The above listed metaheuristic algorithms have been intro-
duced to solve single-objective OPF problems with different
objectives such as fuel cost, emission, transmission loss,
voltage stability index, and voltage deviation. However, with
various improvement needs of power system operation and
management, solving single-objective OPF problems does
not meet a modern power system requirement.

To meet the requirement of modern power systems, many
metaheuristic algorithms have been introduced to effectively
provide solutions for multiobjective (2-3 objective functions)
and many-objective (more than 3 objective functions) OPF
problems.
In [37], hybrid modified particle swarm
optimization-shuffle frog leaping algorithm (HMPSO-
SFLA) was proposed to solve MOOPF problem by using
cost and emission as the objectives in the three system
sizes.
Modified sine-cosine optimization algorithm (MSCA)
was introduced to solve MOOPF problem by selecting
cost, active power loss and voltage deviation to be objec-
tives in two IEEE systems [38].
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In [39], multiobjective harmony search algorithm
(MHSA) was presented to generate solutions for
MOOPF problem which considered cost and L-index to
be the objectives in the IEEE 30-bus system.
Multiobjective modified imperialist competitive
algorithm (MOMICA) was shown in [40] to solve
MOOPF problem with cost, emission, voltage deviation
and active power losses as the objective functions in the
IEEE 30- and 57-bus systems.
In [41], K. Abaci and V. Yamacli applied DSA on solving
MOOPF problem in the IEEE 9-, 30-, and 57-bus test
system by considering cost, power loss, emission, and
L-index as the objective functions.
Multiobjective quasi-oppositional teaching
learning-based optimization (QOTLBO) was proposed
to solve MOOPF problem with four different objectives
including cost, emission, power loss, and L-index as the
objectives in the IEEE 30-, 62-, and 118-bus systems
[42].
In [43], improved strength Pareto evolutionary algorithm
(ISPEA2) was introduced to solve MOOPF problem by
using cost and emission objectives in the two system
sizes.

In addition, various other algorithms have been proposed
to solve MOOPF problems with different 2-3 objective func-
tions in several IEEE system sizes [44], [45], [46], [47]. For
the MaOOPF problems, some algorithms were proposed by
considering different objective functions including fuel cost,
emission, transmission loss, L-index, and voltage deviation,
and a few algorithms were also used to solve real-world
problems as follows;

In [48], an enhanced genetic algorithm integrated with
adaptive elimination strategy (NSGA-III) was intro-
duced to solve MaOOPF problems by considering fuel
cost, emissions, voltage deviation and line loss as the
objective functions in the IEEE 30-, 57-, and 118-bus
systems.
A novel hybrid salp swarm optimization and parti-
cle swarm optimization (SSOPSO) was proposed to
solveMaOOPF problems by selecting cost minimization,
emission reduction, transmission loss reduction, voltage
profile improvement, and voltage stability enhancement
as part of the objective functions in the IEEE 30-, 57-,
and 118-bus systems [49].
J. Zhang, X. Zhu, and P. Li presented multiobjective evo-
lutionary algorithm based on decomposition (MOEA/D)
with many-stage dynamical resource allocation strategy
to solve MaOOPF problems by using fuel cost, emission,
voltage deviations, line losses and voltage stability index
as part of the objective functions in the IEEE 30-, 57-,
and 118-bus systems [50].

In [51], many-objective marine predators algorithm was
introduced to solve MaOOPF problems by considering
cost, emission, transmission loss, and voltage stability
index as part of the objective functions in the IEEE 30-
and 118-bus systems.
Multi-objective grasshopper optimization algorithm
(MOGOA) was proposed to solve MaOOPF problems
including voltage source converter-based multi-terminal
high-voltage direct current systems and renewable
energy sources by considering cost, cost with the
valve-point effect and cost with emission and carbon tax,
voltage deviation, and power loss as part of the objective
functions [52].
S. Duman, M. Akbel, and H. T. Kahraman presented
multiobjective adaptive guided differential evolution
algorithm for real-world problem: multiobjective-
alternating current OPF problem involvingwind/PV/tidal
energy sources by considering cost, power loss, voltage
stability index, and voltage deviation as the objective
functions in the IEEE 30-bus system [53].
In [54], a unified space approach-based dynamic
switched crowding (DSC) was introduced to solve
multimodal multiobjecitve optimization problems and
real-world engineering problems incorporating both
alternating current optimal power flow (AC-OPF) and
alternating current/direct current optimal power flow
(AC/DC-OPF) by selecting cost, power losses, voltage
stability index, voltage deviation, and emission as part of
the objective functions in modified IEEE 30-bys system.

III. MANY-OBJECTIVE OPTIMAL POWER FLOW
(MAOOPF) PROBLEM
OPF was first proposed by Carpentier for optimizing power
system operation and management [55]. With the devel-
opment of OPF in the years after, single-objective OPF
and MOOPF problems have been introduced. In the single-
objective OPF problems, the objective function is normally
an economic purpose such as fuel cost or transmission line
loss whereas MOOPF problems simultaneously aim two
or three objectives such as a pair of fuel cost and emis-
sion or transmission line loss or three of them [56], [57],
[58], [59]. However, power system reliability and security
have also been considered necessary awareness in modern
power systems. So, MOOPF problems consisting of eco-
nomic and environmental objectives are insufficient for the
modern power system operation and management, and the
problems become MaOOPF which considers more than three
objective functions including objective functions for security.
The many-objective optimization problem can be generally
formulated as presented below [44].

min f =
{
f1(x, u), f2(x, u), . . . , fNobj(x, u)

}
(1)

subject to g(x, u) = 0 (2)
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h(x, u) ≤ 0 (3)

where f is an objective function vector to be optimized,
g(x, u) is the equality constraints, h(x, u) is the inequality
constraints, x is a vector of state variables, and u is a vector
of control variables.

Many-objective optimization is aimed to provide optimal
variables in order to optimize more than three objective func-
tions where each objective conflicts with each other. The
best feasible solutions from all objective functions cannot
be provided at the same time, and the optimal solutions are
a tradeoff between each objective. Hence, more than one
optimal solution called Pareto fronts is obtained. The objec-
tive functions and constraints of the MaOOPF problems are
described in this section.

A. OBJECTIVE FUNCTIONS
In this research, four objective functions are aimed in the
MaOOPF problems for economic, environmental, and secure
developments.

1) FUEL COST
To maximize benefits for power companies, total fuel cost is
mainly aimed to be minimized in the MaOOPF problem. It is
calculated as the equation below.

fCost (x, u) =

Ngen∑
i=1

(ci + biPgi + aiP2gi) (4)

where fCost is the total fuel cost function ($/h), Ngen is the
generator number, Pgi is the real power generation of the
ith generators (MW), and ai, bi, and ci are the fuel cost
coefficients of the ith generators.

2) EMISSION
To respond to environmental awareness, the emission objec-
tive is considered to be minimized and can be found in the
following equation.

fEmission(x, u) =

Ngen∑
i=1

(γiP2gi + βiPgi + αi + ξi exp(λiPgi))

(5)

where fEmission is the total emission function (ton/h),
γi, βi, αi, ξi and λi are the emission coefficients of the ith

generators.

3) TRANSMISSION LINE LOSS
A large number of generating units are generally required to
appropriately generate electricity at minimum transmission
loss in order to reduce generation cost. It can be found in the
equation below.

fLoss(x, u) =

NL∑
L=1

gL
(
V 2
i + V 2

j − 2ViVj cos(θij)
)

(6)

where fLoss is the total transmission loss function (MW), NL
is the number of branches, gL is the conductance of the L th

branch, Vi and Vj are the voltage at the ith and jth buses, and
θij is the voltage phase angle difference between the ith and
jth buses.

4) VOLTAGE DEVIATION
Voltage deviation is aimed to be minimized in order to
improve the voltage profile of a power system and assure the
security of devices. The voltage deviation is computed as the
provided equation.

fVD(x, u) =

Npq∑
i=1

|Vi − Vr | (7)

where fVD is the voltage deviation function,Npq is the number
of PQ buses, Vr is the reference voltage magnitude which is
1.0 p.u.

B. CONSTRAINTS
In the MaOOPF problem, the objective functions are aimed
to be optimized while satisfying the following equality and
inequality constraints.

1) EQUALITY CONSTRAINTS
The active and reactive power balance equations expressed
below constitute the equality constraints in the MaOOPF
problem.

Pgi − Pdi − Vi

Nbus∑
j=1

Vj(Gij cos(θij) + Bij sin(θij)) = 0 (8)

Qgi − Qdi − Vi

Nbus∑
j=1

Vj(Gij sin(θij) − Bij cos(θij)) = 0 (9)

where Pdi is the active load demand at the ith bus, Nbus is the
number of buses, Gij and Bij are the transfer conductance and
susceptance between buses i and j, respectively, andQdi is the
reactive load demand at the ith bus.

2) EQUALITY CONSTRAINTS
To assure the security of system devices in power systems,
the inequality constraints are set as follows:

Pgimin ≤ Pgi ≤ Pgimax; i = 1, 2, . . . ,Ng (10)

Qgimin ≤ Qgi ≤ Qgimax; i = 1, 2, . . . ,Ng (11)

Vgimin ≤ Vgi ≤ Vgimax; i = 1, 2, . . . ,Ng (12)

Qcimin ≤ Qci ≤ Qcimax; i = 1, 2, . . . ,Nc (13)

Timin ≤ Ti ≤ Timax; i = 1, 2, . . . ,Nt (14)

VLimin ≤ VLi ≤ VLimax; i = 1, 2, . . . ,NL (15)

|SLi| ≤ SLimax; i = 1, 2, . . . ,NL (16)

where subscripts min and max are minimum and maximum
values, respectively, Vgi is the generator voltages at the ith

bus, Qci is the shunt compensation capacitor at the ith bus, Ti
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is the tap-ratio of transformers at the ith bus,VLi is the load bus
voltages at the ith bus, SLi is the complex power flow at the ith

branch, Nc is the number of shunt compensation capacitors,
and Nt is the number of transformer tap-ratios.

3) CONSTRAINT HANDLING
A penalty function technique is used as the constraint han-
dling for the MaOOPF problem as formulated in the equation
below. The objective function value will be penalized if the
solution is infeasible.

F(x, u)

= f (x, u) + Kp(Pgslack − Plimgslack )
2
+ KQ

Ng∑
i=1

(Qgi − Qlim
gi )

2

+ KV
NL∑
i=1

(VLi − V lim
Li )2 + KS

Nbr∑
i=1

(Sbri − S limbri )
2 (17)

where F(x, u) is the penalized function, Kp, KQ, KV , and Ks
are the penalty factors, and x lim is the state variable limit,
which is defined as follows:

x lim =


x if xmin < x < xmax

xmax if x > xmax

xmin if x < xmin
(18)

where xmax and xmin are the maximum and minimum limits
of the state variable, respectively.

C. MAOOPF PROBLEM
In order to solve the MaOOPF problem, which involves
considering four independent objective functions and finding
solutions that are a trade-off between these objectives, the
approach applied is the Pareto dominance method. The objec-
tive of thismethod is to identify a non-dominated solution that
represents the trade-off and store it in an archive commonly
referred to as Pareto optimal fronts. The formulation of the
Pareto dominance method is presented below [60].

∀i =
{
1, 2, . . . ,Nobj

}
, Fi(X1) ≤ Fi(X2)

∃j =
{
1, 2, . . . ,Nobj

}
, Fj(X1) < Fj(X2) (19)

where the vector X1 dominates X2 when satisfying both con-
ditions.

When dealing with MaOOPF problems that involve more
than three objective dimensions, generating an accurate graph
of Pareto fronts becomes challenging. In such cases, an alter-
native approach is to utilize the fuzzy decision method to
determine a best-compromised solution that considers opti-
mal trade-offs across all objectives. This method assists
system operators in selecting the most suitable choice from
several available solutions. To implement the fuzzy decision
method, fuzzy membership functions are initially computed
for each dimension of all non-dominated solutions. The cal-

culation process is given below:

µ
j
i =


1, f ji ≤ f jmin

f jmax − f ji
f jmax − f jmin

, f jmin ≤ f ji ≤ f jmax

0, f ji ≥ f jmax

(20)

where µ is the fuzzy membership function, 1 ≤ i≤ NS , 1
≤ j≤ Nobj, NS is the number of non-dominated solutions,
f jminand f

j
max are the minimum and maximum values of the

jth objective, respectively.
Then, the calculation of the combined fuzzy membership

function values across each dimension is performed, followed
by normalization using the following equation:

µ
j
i =

m∑
i=1

µ
j
i

NF∑
j=1

m∑
i=1

µ
j
i

(21)

where the non-dominated solution with the greatest total
normalized function value is recognized as the best-
compromised solution.

IV. RELATED OPTIMIZATION ALGORITHMS
The concept of the proposed TwoArchHHO algorithm is
improved from the concepts of HHO and Two_Arch2 meth-
ods. So, the brief description of the original HHO and
Two_Arch2 methods are described in this section.

A. HARRIS HARK OPTIMIZATION
Harris hawk optimization (HHO) algorithm is a population-
based optimization technique proposed by Ali Asghar Hei-
dari, et.al, based on the hunting behaviors consisting of
exploring prey, surprising pounce, and different attacking
strategies of Harris hawks [12]. The HHO process comprises
3 main phases including exploration phase, transition from
exploration to exploitation, and exploitation phase with dif-
ferent strategies as follows:

In the exploration phase, the hawks (candidate solutions)
detect and track the prey (best solution) with their eyes.
However, because of the hard detected prey (rabbit for the
HHO), the hawks must first observe for the prey for a while
by perching on the random locations based on two strategies
having an equal chance (q). The hawks perch at random loca-
tions around their group (for q≥ 0.5), or perch by referring to
the rabbit together with their group (for q < 0.5) as the given
equation below [12].

X (t + 1)

=

{
Xrand (t) − r1 |Xrand (t)−2r2X (t)| q≥0.5

(Xrabbit (t) − Xa(t))−r3 (LB+r4(UB− LB)) q < 0.5

(22)

In Eq. (22), the hawks consist of N -individuals with
the position (X ) at iteration t and t+1, the best position
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(Xrabbit(t)), the randomly chosen candidate (Xrand(t)), and the
average position of the hawks (Xa(t)). r1, r2, r3, r4, and q are
randomly generated numbers between 0 and 1 changed every
iteration, LB and UB are lower and upper limits of variables.
The average position of the hawks can be calculated by the
following equation.

Xa(t) =
1
N

N∑
i=1

Xi(t) (23)

After the exploration phase, HHO goes to the phase of tran-
sition from the exploration phase to the exploitation phase.
It is assumed to refer to the rest energy of the prey to escape
that is sharply reduced according to the escaping duration
(iteration). The energy of the prey to escape (E) can be
formulated according to the maximum iteration (Itermax) as
follows [12]:

E = 2E0(1 −
t

Itermax
) (24)

In Eq. (24), E0 is the initial energy of the prey randomly
generated between [0,1] and changed every iteration. The
exploration phase proceeds if the energy to escape |E| ≥ 1.
If the energy to escape |E| < 1, it is then the exploitation
phase.

In the exploitation phase, hunting strategies are different
according to the escaping styles of the prey. In this regard,
four operations are modeled based on the hunting duration.

Parameter r is assumed to be the chance of the prey to
escape where r < 0.5 represents the success to escape and
r ≥ 0.5 shows the failure to escape before getting snatched.
In both cases, the hawks will perform a hard or soft besiege
to catch the prey depending on the remaining energy (E) of
the prey.

Soft besiege: The condition is r ≥ 0.5 and |E| ≥ 0.5. The
position can be mathematically calculated as expressed [12].

X (t + 1) = 1X (t) − E |JXrabbit (t) − X (t)| (25)

1X (t) = Xrabbit (t) − X (t) (26)

In Eq. (25), 1X (t) is the distance between the rabbit and
hawk positions, J = 2(1-r5) is the random jump power of the
rabbit when it tries to escape, and r5 is randomly generated
between 0 and 1.

Hard besiege: If the rabbit has low energy and is tried, i.e.,
r ≥ 0.5 and |E| < 0.5. The following equation represents the
updated hawk positions of this situation [12].

X (t + 1) = Xrabbit (t) − E |1X (t)| (27)

Soft besiege with progressive rapid dives: If the rabbit
contains adequate energy and it can successfully dodge, i.e.,
r< 0.5 and |E| ≥ 0.5, the hawks operate a soft besiege by the
equation presented below [12].

Y = Xrabbit (t) − E |JXrabbit (t) − X (t)| (28)

Then, the hawks will rapidly dive to the rabbit if the previ-
ous dive was unhelpful based on the Levy flight as presented

below [12].

Z = Y + S × LF(D) (29)

where D is the number of problem variables, S is a random
vector by size 1 x D, and LF is the Levy flight function
computed by the given equation [12].

LF(x) = 0.01 ×
u× σ

|v|1/β
, σ =

 0(1 + β) × sin
(

πβ
2

)
0

(
1+β
2

)
× β × 2

(
β−1
2

)


1
β

(30)

where u and v are randomly generated between 0 and 1, β is
equal to 1.5 in this work and 0(x) = (x − 1)!.
So, in this situation, the position of hawks can be updated

as follows [12]:

X (t + 1) =

{
Y ifF(Y ) < F(X (t))
Z ifF(Z ) < F(X (t))

(31)

where Y and Z are computed by (28) and (29).
Hard besiege with progressive rapid dives: If the energy

of the rabbit is inadequate to escape, but it can successfully
escape, i.e., r< 0.5 and |E| < 0.5. The hawks’ position is
mathematically formulated as follows [12]:

X (t + 1) =

{
Y ifF(Y ) < F(X (t))
Z ifF(Z ) < F(X (t))

(32)

where Y and Z are calculated by (33) and (34) as presented
below [12].

Y = Xrabbit (t) − E |JXrabbit (t) − Xa(t)| (33)

Z = Y + S × LF(D) (34)

B. IMPROVED TWO-ARCHIVE ALGORITHM (TWO_ARCH2)
The Two_Arch2 algorithm was introduced by Wang, Hand-
ing, et al. [18] inspired by the concept of the two-archive
algorithm (Two_Arch) utilizing two types of archives [61].
In the traditional Two_Arch, one archive is used for improv-
ing the exploitation phase while the other is used for
enhancing the exploration phase. The first archive is the
Pareto archive, which can be called a convergence archive
(CA). The other archive is generated to improve the diversity
of the solutions, so it is called a diversity archive (DA). The
concept of the two-archive method is that the non-dominated
solutions which can dominate any solution in CA or DA are
stored in the CA while the non-dominated solutions which
cannot dominate any solution in CA and DA are kept in
the DA. Then, the dominated solutions in CA and DA are
removed. The total size of CA and DA is fixed while the sizes
of CA and DA are flexible. When the DA is full, the extra
solutions are deleted from DA according to their distances to
CA.

In Two_Arch2, the concept of the original Two_Arch
is used; however, CA and DA are independently updated,
and the sizes of CA and DA are individually fixed. The
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indicator-based and Pareto-based principles are applied to
the two archives, and a Lp-norm-based (p< 1) is proposed
to maintain the diversity for the many-objective optimization
problems. The quality indicator Iε+ in IBEA [62] is adopted
as the selection principle for CA. This indicator can indicate
the minimum distance required for one solution to dominate
another solution in the objective space which can be mathe-
matically formulated in the following equation [18].

Iε+(x1, x2) = min
ε
(fi(x1) − ε ≤ fi(x2), 1 ≤ i ≤ Nobj) (35)

The fitness is assigned to individuals as presented in (36)
which is a determination of Iε+ if x1 is removed from the
population [18].

F(x1) =

∑
x2∈P\{x1}

−e−Iε+(x2,x1)/0.05 (36)

To update the CA, the population is added to CA, and
the extra solutions are removed according to the fitness. The
solution with the least value of Iε+ is deleted from CA in each
iteration, and the Iε+ values of the rest population in CA are
then updated.

V. TWO-ARCHIVE HARRIS HAWK OPTIMIZATION
(TWOARCHHHO) FOR SOLVING MAOOPF PROBLEM
The traditional HHO cannot solve MOOPF or MaOOPF
problems by itself. Instead of only applying the Pareto
method to the traditional HHO in order to solve MaOOPF
problems, the performance of the HHO is also enhanced in
this work. To enhance the effectiveness of the HHO, a new
algorithm called TwoArchHHO is proposed by applying the
concept of the two-archive method from Two_Arch2 into the
traditional HHO, and a probability parameter is computed
to improve the selection process of the Two_Arch2. In the
proposed TwoArchHHO, the position of the rabbit (the prey
or the near global position) in each iteration is alternatively
selected from CA or DA to increase the diversity of the
stored solutions and avoid being trapped in the local area
of solutions. To alternatively randomly choose the rabbit
position from CA or DA, the probability operation is used.
As stated, CA focuses on the exploitation phase whereas DA
focuses on the exploration phase. The probability parameter
Sp(t) which has a lower value at the initial iteration and gets
higher according to the higher iterations is adopted to proceed
with the two-archive method [63]. So that the algorithm will
emphasize the exploration phase at the lower values of the
iteration, and the exploitation phase will be more emphasized
according to the higher iterations. The Sp(t) can be calculated
as given below.

Sp(t) = C1eC2t (37)

where

C2 =
ln(Sp,f ) − ln(Sp,s)

Itermax − 1
(38)

C1 =
Sp,s

exp(C2)
(39)

where Sp,s and Sp,f are the starting and ending values of Sp
which are equal to 0.15 and 0.8 in this work, respectively.

The implementation of the TwoArchHHO for solving the
MaOOPF problem is explained in the following steps.

Step 1. Initialize system data consisting of the number of
populations, maximum iteration and Pareto archive size;

Step 2. Initialize data of HHO comprising location and
energy of the rabbit and location of hawks;

Step 3. Evaluate the fitness of each initialized hawk;
Step 4. Find non-dominated solutions by Pareto dominance

concept from (19) and keep in the initial CA and DA;
Step 5. Calculate Sp by (38);
Step 6. Uniformly randomly generate number between

[0,1];
Step 7. If the generated number is more than the calculated

Sp, select Xrabbit from CA. Then go to Step 9;
Step 8. If the generated number is less than the calculated

Sp, select Xrabbit from DA. Then go to Step 9;
Step 9. Update the initial energy (E0) and jump strength

(J );
Step 10. Update the energy of the prey (E) by (24);
Step 11. If the energy of the prey is more than 1, update the

position of hawks by (22). Then go to Step 16;
Step 12. If E is between 0.5 and 1 and r is more than 0.5,

update the position of hawks by (25). Then go to Step 16;
Step 13. If E is less than 0.5 and r is more than 0.5, update

the position of hawks by (27). Then go to Step 16;
Step 14. If E is between 0.5 and 1 and r is less than 0.5,

update the position of hawks by (31). Then go to Step 16;
Step 15. If E and r are both less than 0.5, update the

position of hawks by (32). Then go to Step 16;
Step16. Update CAby using (19) where the non-dominated

solutions which can dominate any solution in CA or DA are
stored in the CA and, the dominated solutions are removed.
If the CA is full, Iε+ is calculated by (35) and the fitness is
found by (36). The extra solutions are removed according to
the fitness where the solution with the least value of Iε+ is
deleted from CA in each iteration, and the Iε+ values of the
rest population in CA are then updated;

Step 17. UpdateDAby using (19)where the non-dominated
solutions which cannot dominate any solution in CA and DA
are kept in the DA and the dominated solutions are removed.
If the DA is full, the extra solutions are deleted from DA
according to their distances to CA.

Step 18. If the maximum iteration is reached, go to step 19;
otherwise, go to step 5;

Step 19. Find the best-compromised solutions.
The flowchart of the proposed TwoArchHHO for solving

the MaOOPF problem is presented in Fig 1.

VI. SIMULATION RESULTS AND DISCUSSIONS
The performance of the proposed TwoArchHHO was inves-
tigated in solving the MOOPF and MaOOPF problems in
the IEEE 30-, 57-, and 118-bus systems where the objec-
tive functions include cost, emission, transmission loss,
and voltage deviation (VD). Several case studies as in
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FIGURE 1. The implementation of the Two-Archive Harris Hawk
Optimization (TwoArchHHO).

Table 1 were evaluated for each problem. Various algorithms
consisting of multiobjective HHO (MOHHO), evolution-
ary algorithm for large-scale manyobjective optimization
(LMEA) [64], NSGA-III, SPEA2, and TwoArch2 were sim-
ulated to compare with the proposed TwoArchHHO on
solving the MOOPF and MaOOPF problems. The proposed
TwoArchHHO and the compared algorithms were operated
for 30 independent runs for each case study. The Pareto solu-
tions and the best-compromised solutions of all algorithms
are presented for the MOOPF and MaOOPF, respectively.
The hypervolume values of all algorithms were then gener-
ated to compare the Pareto fronts of each algorithm.

A. IEEE 30-BUS SYSTEM
The performance of the proposed TwoArchHHO was eval-
uated on solving the MOOPF and MaOOPF problems in
the IEEE 30-bus system as in cases 1-7. This system com-

TABLE 1. Illustrative cases examined within this work.

prised 6 generators, 4 transformers, and 41 transmission
lines. The total demands of the system were 283.4 MW and
126.6 MVAR, and the data of this system can be found in
[65]. The number of populations, maximum iteration, and the
Pareto archive size of the TwoArchHHO and the compared
algorithms were all set at 100.

1) MULTIOBJECTIVE OPTIMAL POWER FLOW (MOOPF)
PROBLEMS
In the IEEE 30-bus system, the proposed TwoArchHHO was
first applied to solve the 2-objective problems which include
cases 1-4 and 3-objective problems consisting of cases 5-6.
The Pareto optimal fronts generated by the TwoArchHHO
algorithm, and the compared algorithms are presented in
Figs 2 and 3 for the 2-objective problems and 3-objective
problems, respectively.

For the 2-objective problems, it can be noticed that the
Pareto fronts of the TwoArchHHO are better than those of
its traditional algorithms which are MOHHO and TwoArch2;
however, they are very close to those of the other compared
algorithms. The proposed TwoArchHHO also well provided
3-objective Pareto fronts with good diversity compared with
the other algorithms.

2) MANY-OBJECTIVE OPTIMAL POWER FLOW (MAOOPF)
PROBLEM
The TwoArchHHO was used to solve the MaOOPF problem
in the IEEE 30-bus system which is case 7. The Pareto
optimal fronts were obtained; however, they could not be
presented in a proper plot. Instead, the best-compromised
solutions were found compared to the other algorithms as
shown in Table 2.
From Table 2, it is observed that all considered algorithms

gave very close values to each other in all aspects of the
objective values. The proposed TwoArchHHO generated the
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FIGURE 2. The comparison of Pareto optimal fronts for a) case 1, b) case 2, c) case 3, d) case 4.

FIGURE 3. The comparison of Pareto optimal fronts for a) case 5, b) case 6.

best cost whereas SPEA2 provided the best emission and
loss, and NSGA-III obtained the best VD. However, from
the best-compromised solutions, it could not be concluded
which algorithm has the highest performance in solving the
MaOOPF because these solutions are one of the generated
Pareto fronts. So, the hypervolume was calculated to exactly
compare the algorithm performance as in the next subsection.

3) PERFORMANCE COMPARISON
To obviously compare the performance of the generated
Pareto optimal fronts from all considered algorithms, the
hypervolume values for cases 1-7 of the IEEE 30-bus sys-
tem were calculated as expressed in Table 3 where the
more hypervolume value means the greater Pareto optimal
fronts.
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TABLE 2. Best-compromised solutions for case 7.

TABLE 3. Hypervolume comparison in the IEEE 30-bus system.

From Table 3, it is observed that the proposed TwoArch-
HHO gave the best hypervolume values for all cases when
compared to its traditional algorithms and also the other
considered algorithms in this system. The best hypervolume
values of the TwoArchHHO in this system were better than
the compared algorithms around 0.32% to 33.96%.

The best-compromised solutions provided by the TwoArch-
HHO for cases 1-7 were compared with many other
algorithms in the literature as presented in Tables 4 and 5.
It is seen that no algorithm achieved dominance across all

the objective functions employed in the test cases; instead,
dominance was only achieved on a single objective function.
The proposed TwoArchHHOobtained the dominant solutions
in the cost objective for cases 1, 2, 5 and 6 and in the emission
objective for case 4.

B. IEEE 57-BUS SYSTEM
The efficacy of the TwoArchHHO approach in addressing
the MOOPF and MaOOPF problems in larger systems, as in
cases 8-14, was assessed using the IEEE 57-bus system.
This system encompasses 7 generators, 15 transformers, and
80 transmission lines, with power demand of 1250.8MW and
336.4 MVAR. Bus and branch data were sourced from [66].
Both the TwoArchHHO and the compared algorithms were
configured with uniform settings, including a population size,
maximum iterations, and archive size of 100.

1) MOOPF PROBLEMS
The proposed TwoArchHHO was applied to solve the
MOOPF problems in the IEEE 57-bus system consisting of 2-
objective problems as in cases 8-11 and 3-objective problems
as in cases 12-13. The Pareto optimal fronts of the proposed
algorithm and those of the compared algorithms are presented
in Fig 4 for cases 8-11 and Fig 5 for cases 12-13.

It is noticeable from Fig 4 that the traditional algorithms of
the proposed algorithm comprising MOHHO and TwoArch2
generated very low-quality Pareto fronts. However, the pro-
posed TwoArchHHO algorithm could successfully provide

high-quality Pareto fronts which were obviously better than
those of the compared algorithms, especially for cases 9-11.
It could also be observed from Fig 5 that the Pareto fronts
provided by the TwoArchHHO of the 3-objective problems
possessed high diversity.

2) MAOOPF PROBLEMS
For solving the MaOOPF problem, the best-compromised
solutions obtained from the proposed algorithm were com-
pared to those of the other considered algorithms as presented
in Table 6.
From Table 6, it is noticeable that the best-compromised

solutions of the proposed algorithm could not reach the best
value in any objective value; however, the proposed algorithm
provided good values in all objectives compared to the other
algorithms. Although NSGA-III provided the best objective
values in three aspects, the obtained cost value was also
very high. So, the hypervolume will be computed in the next
subsection to accurately investigate the performance of the
proposed algorithm.

3) PERFORMANCE COMPARISON
The hypervolume values of the TwoArchHHO and the com-
pared algorithms were calculated as presented in Table 7 to
compare the quality of the Pareto optimal fronts generated by
each algorithm.

It is evident in Table 7 that the proposed TwoArchHHO
generated the best hypervolume values for all cases in the
IEEE 57-bus system that are around 0.46% - 78.49% bet-
ter than the compared algorithm. The hypervolume values
obtained by TwoArchHHO are also much better than those of
the compared algorithms especially cases 9-13. For case 14,
although the proposed TwoArchHHO could not reach the
best value in any objective aspect, it could give the best
hypervolume value which means its compromised solutions
are good in all aspects.

The obtained best compromised solutions by the TwoArch-
HHO of cases 8-14 were compared with those of various
competitors in the literature as shown in Tables 8-9.

It is observed that the TwoArchHHO generated dominant
solutions in the cost aspect for case 8, in the emission aspect
for case 14, and in the VD aspect for case 13. It is also noticed
that the TwoArchHHO obtained the dominant solutions in
two aspects for cases 9, 11 and 12. However, the comparison
results for case 10 could not be found in the literature.

C. IEEE 118-BUS SYSTEM
The TwoArchHHO was lastly tested in the IEEE 118-bus
system to verify its performance in solving the MOOPF
and MaOOPF problems in the large system as in cases
15-19. The total demands of this system were 4242 MW
and 1439 MVAR, and detailed data was provided in [74].
The population number and the Pareto archive size were
100, and the maximum iteration number was 500 for all
algorithms.
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TABLE 4. Best-compromised solutions for case 14.

TABLE 5. Comparison of best-compromised solutions for cases 1, 2, 3, and 4.

TABLE 6. Comparison of best-compromised solutions for cases 5,6, and 7.

1) MOOPF PROBLEMS
By solving the MOOPF problems in this system, the gener-
ated Pareto fronts for 2-objective problems which are cases
15-16 and 3-objective problems which are cases 17-18 are
plotted in Figs 6 and 7, respectively. It can be noticed that
MOHHO provided very low-quality Pareto fronts for cases
15 and 17, and MOHHO could not even converge to the
optimal solution within the given maximum iteration number
for cases 16 and 18. In contrast, the proposed TwoArchHHO
obtained very high-quality Pareto optimal fronts compared
to the other algorithms, especially in case 16. TwoArchHHO
also found 3-dimensional Pareto fronts with high diversity
compared to the other algorithms especially for case 18 as
in Fig 7(b).
For the 2-objective problems in this large system, it is

observed from Fig 6 that the traditional MOHHO generated

very low-quality Pareto fronts for case 15, and it could
not converge to the solution within the given iteration for
case 16 whereas the TwoArchHHO generated high-quality
fronts which were better than those of the compared algo-
rithms including the traditional TwoArch2, especially in
case 16. In Fig 7, cases 17 and 18, it can be noticed
that the TwoArchHHO obtained high-quality Pareto fronts
with high diversity for the 3-objective problems compared
to those of the other algorithms including its traditional
algorithms.

2) MAOOPF PROBLEMS
For the MaOOPF problems in the IEEE 118-bus sys-
tem, the proposed TwoArchHHO successfully provided the
best-compromised solutions whereas its traditional algorithm
which is MOHHO could not converge to the optimal solu-
tion by the given iterations. The best-compromised solutions
generated by TwoArchHHO compared to those of the other
algorithms are expressed in Table 10.

It is seen that TwoArchHHO achieved the best objective
in only the VD aspect; however, hypervolume comparison
needs to be investigated to compare the optimal solutions of
the MaOOPF problems as presented in the next subsection.

3) PERFORMANCE COMPARISON
To compare the effectiveness of the generated Pareto optimal
fronts, hypervolume values of all algorithms were calculated
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FIGURE 4. The comparison of Pareto optimal fronts for a) case 8, b) case 9, c) case 10, d) case 11.

FIGURE 5. The comparison of Pareto optimal fronts for a) case 12, b) case 13.

for cases 15-19 in the IEEE 118-bus system as presented in
Table 11.

It is observed that TwoArchHHO generated Pareto
fronts with the best hypervolume for all cases except for
case 17 where TwoArchHHO had slightly less hypervol-
ume than that of LMEA. It can be seen that the traditional
MOHHO found very low hypervolume values in cases 15 and
17, and it could not converge to the optimal solutions in cases

16, 18, and 19. It is also noticeable that TwoArchHHO pro-
vided a very high hypervolume value compared to those of the
other algorithms for the MaOOPF problem as in case 19. The
hypervolume values of the TwoArchHHO are around 0.17%
to 99.59% better than those of the compared algorithms in
this system.

To verify the superiority of the TwoArchHHO over other
algorithms in this system, its best-compromised solutions of
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TABLE 7. Hypervolume comparison in the IEEE 57-bus system.

TABLE 8. Comparison of best-compromised solutions for cases 8, 9, 10, and 11.

TABLE 9. Comparison of best-compromised solutions for cases 12, 13, and 14.

TABLE 10. Best-compromised solutions for case 19.

cases 15-17 were compared with those of several algorithms
in the literature as expressed in Table 12.

From Table 12, it can be noticeable that the TwoArchHHO
obtained dominant solutions in the cost objective for case 15.

TABLE 11. Hypervolume comparison in the IEEE 118-bus system.

In addition, the TwoArchHHO provided the dominant solu-
tions in all objective functions for cases 16-17. Unfortunately,
the comparison of the best-compromised solutions for cases
18 and 19 cannot be found in the literature.
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FIGURE 6. The comparison of Pareto optimal fronts for a) case 15, b) case 16.

FIGURE 7. The comparison of Pareto optimal fronts for a) case 17, b) case 18.

TABLE 12. Comparison of best-compromised solutions for cases 15, 16, and 17.

D. STATISTICAL ANALYSIS RESULTS
To further analyze the performance of the proposed TwoArch-
HHO, the Friedman test rankings obtained by the proposed
algorithm and competitors according to one over hypervol-
ume (1/hypervolume)metric values are presented in Table 13.

It can be observed that the proposed TwoArchHHO abso-
lutely performed better than all of the compared algorithms
followed by LMEA, NSGA-III, and SPEA2, respectively,
while its traditional TwoArch2 andMOHHO algorithmswere
at the last two ranks.

To evaluate the quality of the solutions generated by the
algorithms and their convergence quality, box-plot graphs
were plotted to present the hypervolume metric values of
the first three algorithms including TwoArchHHO, LMEA,
and NSGA-III with competitive performance according to
Friedman scores. Approximation graphs for 6 cases (2 cases
per system) consisting of cases 1, 6, 9, 13, 16, and 17 are
demonstrated in Fig 8.

It can be noticed from Fig 8 that the convergence qualities
of each considered algorithm in the considered cases are
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FIGURE 8. Performance of algorithms for hypervolume values for a) case 1, b) case 6, c) case 9, d) case 13, e) case 16, f) case 17.

very competitive. It can also be observed that the proposed
TwoArchHHO provided significantly better hypervolume
values than the considered compared algorithms for all con-

sidered cases except case 17 which LMEA obtained slightly
better hypervolume value. However, LMEA could not con-
verge to the solutions for 2 runs of the 30 runs for both
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TABLE 13. Friedman test rankings obtained by algorithms according to 1/
hypervolume metric values.

cases 16 and 17 of the IEEE 118-bus system, and NSGA-III
could not converge to the solutions for 4 and 3 runs of the
30 runs for cases 16 and 17, respectively while the proposed
TwoArchHHO converged to the solutions in all runs.

VII. CONCLUSION
The research conducted for this study yielded a significant
contribution which is the introduction of a newly proposed
TwoArchHHO for solving the MaOOPF problem in order to
enhance power system operation and management. By com-
bining the two-archive method from Two_Arch2 algorithm
into HHO algorithm, the search process was significantly
improved. The validation of this enhancement was evident
in the analysis outcomes derived from experimental trials
conducted on 19 different case studies. From the simula-
tion results of all systems, it can be concluded that the
proposed algorithm successfully provided Pareto fronts and
best-compromised solutions for both MOOPF and MaOOPF
problemswith better solutions than those of several compared
algorithms and its traditional algorithms which are MOHHO
and TwoArch2 that are evident by hypervolume values. It was
observed that the proposed TwoArchHHO obtained the dom-
inant solutions in the different objective aspects for most
cases. MOHHO found very low-quality Pareto fronts, espe-
cially in large systems and could not converge to the solutions
in the IEEE 118-bus system whereas TwoArch2 could con-
verge to the solutions with acceptable quality. In addition, the
statistical analysis results were verified by the hypervolume
metric through Friedman test ranking and boxplots. When
investigated in this point of view, TwoArchHHO has high per-
formance on solving MOOPF and MaOOPF problems for all
system sizes, especially in large systems. With the proposed
algorithm, the power system operation andmanagement were
improved in several terms including cost, emission, trans-
mission loss and voltage deviation reductions surpassing the
outcomes achieved by other algorithms. However, by solving
MaOOPF problems, the optimal solutions could not meet
all best objective values at the same time as it is called
best-compromised solutions giving good average values in all
aspects. So, system operators should select objective func-
tions depending on situations. In the future, the proposed
algorithm could be applied to address real-world MaOOPF
challenges in practical systems to improve the operation and
management in various aspects. Moreover, there’s potential
to introduce supplementary objective functions, such as the
L-index, into the framework.
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