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ABSTRACT In single-source unsupervised domain adaptation (SUDA), it is often assumed that a
single-source domain can cover all target domain features. However, the limitation of labeled samples means
that a model trained on a labeled source domain cannot always cover all target representations in practice.
Therefore, multi-source unsupervised domain adaptation (MSUDA) has recently become an attractive topic
because it can provide richer information than SUDA. In the MSUDA setting, multiple labeled source
datasets and an unlabeled target dataset are available. The differently labeled source domains follow distinct
distributions to provide different contributions to the target domain. Therefore, when combining multiple
source domains into one source domain, the model tends to focus on whichever source domain makes a
dominant contribution to the target domain, which induces bias in learning in the MSUDA setting. To solve
this problem, this paper proposes a divide-and-conquer-based MSUDA framework that divides the MSUDA
problem into multiple tasks (SUDAs) that it then conquers using multiple task-specific models. Each task
is a pair that consists of a single source domain and a target domain, and the tasks provide different views
on the target domain because each task has a different source domain. Then, they cooperate to supplement
their knowledge via collaborative learning. This cooperation between multiple views can suppress noisy
information and preserve critical information, thus mitigating the negative transfer problem during DA and
significantly boosting the classification accuracy on the target domain as a result. The proposed method
achieved state-of-the-art performance on several real-world visual domain adaptation datasets.

INDEX TERMS Multiple source domains, image classification, domain adaptation, transfer learning, multi-
task learning, collaborative learning.

I. INTRODUCTION
Traditional deep learning-based approaches generally
assume that the training and testing sets come from the
same domain and that the model is trained on a labeled
dataset to infer results from an unlabeled dataset. However,
in real-world applications, the labeling of large-scale training
data consumes a lot of time and requires expertise. Domain
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adaptation (DA) is a widely used approach for tackling the
limitation of the low availability of labeled data. The learning
mechanism in this approach is inspired by the fact that
humans often solve new tasks using experience gained from
previous similar tasks in a process called ‘‘transfer learning.’’
Thus, the purpose of DA is to train a model using labeled data
from the source domain(s) and then transfer the knowledge
from the prior trainedmodel to either an unlabeled or sparsely
labeled testing set of a target domain that has the same feature
space but different distribution by learning domain-invariant
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FIGURE 1. Illustration of SUDA and MSUDA tasks. (a) SUDA struggles to
cover the target domain. (b) The target domain can be covered by the
abundant source samples in MSUDA.

representations. The many advantages of DA mean that it has
been widely applied in various applications such as object
detection [1], [2], [3], semantic segmentation [4], [5], [6],
and image classification [7], [8], [9], [10].

Based on the number of source domains available for
training, the DA can be categorized into two subgroups:
single-source unsupervised domain adaptation (SUDA) and
multi-source unsupervised domain adaptation (MSUDA).
SUDA has been widely explored in previous studies [17],
[18], [19], [20], [21], [22], [23]. In these methods, they
assume that the source samples can cover the entire
embedding space of the target domain. However, [40] shows
that it is difficult for a single source domain to cover the
entire target domain. Therefore, these methods have room
for performance improvement, because target samples with
representations that are mismatched in a common space can
be misclassified, as illustrated in Fig. 1 (a). Thus, MSUDA
has recently attracted attention because it can exploit rich
information from multiple source domains and transfer it to
the target domain. An early MSUDA method [38] combined
all labeled source domains into a single source domain. Then,
the DA process minimized the domain discrepancy between
the source and target domains using SUDA [17]. How-
ever, the improvement might not be significant because this
method only focuses on learning domain-invariant represen-
tations for all domains and does not consider discrimination
between classes. In MSUDA, the differently labeled source
domains have distinct distributions and deliver different
contributions to the target domain. Each pair of source
and target domains has a different class decision boundary.
Therefore, when combining multiple source domains into
one source domain, the model tends to focus on the source
domain, which has a dominant contribution to the target
domain, leading to bias in learning for the MSUDA setting.
This is explained in detail later in Section IV. Furthermore,
recent studies [26] and [69] proved that if we naively combine
all training data, the semantic information in each domain
can be damaged. Thus, the class-discriminative ability of
the classifier is reduced due to an increase in the intra-class
variance.

To preserve the unique features in each source domain, and
alleviate dominant domain and intra-class variance problems,

we introduce a novel framework called Divide and Conquer
Using Multiple Tasks (DCMT). Specifically, the dividing
stage is proposed to preserve the specific characteristics in
each source domain and reduce the variance of the training
set from the multiple source domains, while the conquering
stage is proposed to leverage information learned from each
group, including multiple tasks, to benefit the training of the
specific task as shown in Fig. 2. Our method assumes that
MSUDA includes N source domains and a target domain
and is divided into N SUDA tasks. Each task contains a
labeled source domain and an unlabeled target domain. The
proposed framework includes a shared feature extractor, N
classifiers, and N discriminators. In the dividing stage, the
feature extractor tries to generate the representations of all
domains. Simultaneously, the classifiers trained on different
labeled source domains hold the unique features of each
source domain. In this way, we can mitigate the intra-class
variance among multiple source domains. Besides, multiple
classifiers have unique characteristics in each source domain,
providing different views on the target domain. Each view
contains partial target information, as shown in Fig. 1(b).
In the conquering stage, to unify the target information
from different views, we propose collaborative learning
(Co-learning) that produces multi-view consistency for
alleviating the dominant domain problem and mapping the
common characteristics across different domains in a joint
embedding space. The contributions of this paper can be
summarized as follows:

1) To optimally exploit information from multiple source
domains, we propose a divide-and-conquer-based
framework that divides the MSUDA task into multiple
SUDA tasks. Each SUDA task is handled by a different
model built from N classifiers, N discriminators, and
the shared feature extractor. In this way, we can
alleviate the intra-class variance problem. Besides,
these models can obtain unique information from
various source domains to provide different views on
the target domain.

2) We propose Co-learning that allowsmultiple classifiers
to exchange their high-confidence predictions of target
samples in every iteration. Thus, they can provide
complementary information to each other to enhance
learning effectiveness and alleviate bias in learning
(dominant domain) in MSUDA. This approach can
address the negative transfer problem by suppressing
noise and preserving important information because the
multiple views of the model are trained to encourage
proving consistent prediction.

3) We showed the effectiveness of our method by compre-
hensive experiments with various benchmark datasets,
including Office-31, Office-Caltech10, ImageCLEF-
DA, Office-Home, and DomainNet.

II. RELATED WORK
In this section, we review previous studies into single-source
domain adaptation and multiple-source domain adaptation.
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A. SINGLE SOURCE DOMAIN ADAPTATION
In recent decades, research groups have been forced to
propose methods for transferring knowledge from a source
domain to a target domain by resolving the domain shift [21]
on SUDA. These methods can be categorized into three
groups: adversarial-based [17], [18], [19], [20], discrepancy-
based [21], [22], [23] and autoencoder-based methods [24],
[25], [26].

Domain-Adversarial Training ofNeural Networks (DANN)
[17] is a popular adversarial-based method used in unsuper-
vised domain adaptation; it consists of three components: a
feature extractor, a classifier, and a discriminator. The feature
extractor is shared between the source and target domains and
is trained to maximize the classification accuracy on labeled
source samples and to confuse the discriminator, making it
impossible to distinguish between source and target domains.
Instead of using the common feature extractor, Adversarial
Discriminative Domain Adaptation (ADDA) [18] uses two
feature extractors, one for the source domain and one for
the target domain. The training process of ADDA has two
stages. In the first stage, the parameters of the source feature
extractor are optimized by minimizing the classification
error on the labeled source domain. In the second stage,
the target feature extractor parameters are initialized by the
pre-trained source feature extractor. Then, they are fine-tuned
on the unlabeled target data to confuse the discriminator
by reducing the difference between the source and target
distributions.

Discrepancy-based methods [21], [22], [23] align the
target and source distributions by minimizing their domain
dissimilarity. Maximum Mean Discrepancy (MMD) [32]
is the most popular method for measuring the similarity
between two different distributions. Domain Adaptation via
Transfer Component Analysis (TCA) [21] utilizes MMD,
aiming to reduce the mean deviation of the data of the
source and target domains by minimizing the marginal
distribution difference. Learning Transferable Features with
Deep Adaptation Networks (DAN) [22] uses MMD to
enhance the transferable features by explicitly minimizing
domain discrepancies in the adaptation layers of the deep
neural network.

Transfer LearningwithDeepAutoencoders (TLDA) [24] is
a popular autoencoder-basedmethod that resolves the domain
shift by using Kullback–Leibler (KL) divergence to make
the two domains’ distributions close in the embedding space.
A Bi-shifting Auto-Encoder (BAE) network [25] has been
proposed to minimize the shift in representations between
the source and target domains by bidirectional transformation
learning. In Dual-Representation-Based Autoencoder for
Domain Adaptation (DRAE) [26], the distribution divergence
between the source and target domains is minimized by
learning the global representations of both domains in the first
phase. The local representation is learned in the second phase
to maintain class-discriminative information in each class of
both domains.

B. MULTI-SOURCE DOMAIN ADAPTATION
Multi-Source-TrAdaBoost (MTrA) [33] is one of the ear-
liest frameworks for MSUDA. It was developed based on
the TrAdaBoost [34] algorithm for transferring extracted
knowledge from multiple source domains to a target domain,
to improve the classification accuracy of the target domain.
However, in this method, to reduce the impact of negative
transfer, only a source domain closely related to the target
domain is considered in each iteration of the adaptation
process. Self-supervised Implicit Alignment (SImpAl) [41]
extends the concept of Maximum Classifier Discrepancy
(MCD) [19] for multi-source domain adaptation using multi-
ple classifiers. This method enforces an agreement between
the different classifiers to implicitly align the domains in the
latent space without requiring any additional components,
such as a discriminator for adversarial learning. Adversarial
Multiple Source Domain Adaptation (MDAN) [38], inspired
by the concept of DANN [17], provides a novel generalization
bound for multi-source domain adaptation. This method
has two versions: hard and soft. In the hard version,
DANN is applied to minimize the domain discrepancy
for each source-target pair. However, in the soft version,
DANN is applied to the combined source domain containing
all source domains and the target domain. Multi-Source
Adaptation Network (MSAN) [42] mitigates the domain shift
between the target domain and multiple source domains
by applying multiple GAN architectures to simultaneously
transfer information from the source domains to the target
domain. An Attention Guided Multiple Source and Target
Domain Adaptation (AMDA) [49] focuses on extracting the
important semantic information in images from multiple
source domains by exploring the attention mechanism, which
improves the classification performance by alleviating the
negative transfer.

III. PROPOSED METHOD
As shown in Fig. 2, the architecture of the proposed divide-
and-conquer-based method consists of three components: a
common feature extractor,N classifiers, andN discriminators,
where N is the number of source domains. Each model
includes the shared feature extractor, a classifier, and a
discriminator; it is used to extract the representations of a task
that consists of a source domain and a target domain. The
source domain for each task is different. Thus, the number of
divided tasks is the same as the number of source domains,N.

The shared feature extractor extracts the representations
of all samples from the multiple source domains and the
target domain. Therefore, it can represent knowledge that is
common to all domains. The different classifiers are used
to categorize the representations of the different labeled
source domains. The discriminator minimizes the domain
discrepancy between the source domain and the target domain
in each task.

The labeled source domains are used to train the N
different models. These models obtain representations of the
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FIGURE 2. The architecture of the proposed method. A shared feature extractor E extracts the representations of an unlabeled target domain and N
labeled source domains. MSUDA is decomposed into various SUDA tasks. A model consists of a shared feature extractor, a classifier, and a
discriminator. It works as an expert when trained on different labeled source domains in a j-th task using supervised learning. Each model can fully
exploit the information of a source domain. Then, we used Co-learning to exchange knowledge among multi-expert models. These models exchange
their pseudo labels, which are generated by selecting the high-confidence scores from the weak augmentation images of unlabeled target samples to
teach each other via Co-learning.

N source domains and provide their views on the unlabeled
target domain. Since a source domain holds only partial
information about the target domain, we use the Co-learning
algorithm, which exchanges the knowledge of different
models, to supplement the different views on the target
domain. Our method aims to extract the target information
from different source domains and then unify this information
to obtain all of the target representations in a process called
‘‘conquering’’.

A. PROBLEM DEFINITION AND NOTATION
The problem setting of MSUDA, involves N labeled source
datasets S = {Sj}Nj=1, where each Sj =

{
(x
Sj
i , ySji )

}nSj
i=1 contains

nSj labeled samples, x
Sj
i is the i-th image in source j and y

Sj
i is

its category label. There is a single unlabeled target dataset
T = {xTi }

nT
i=1, where nT is the total number of images in

the unlabeled target domain, and xTi is the i-th unlabeled
target image. We summarize the important symbols used
throughout our paper in Table 1.

In the proposed method, the problem of MSUDA is
solved by dividing it intomultiple single-source unsupervised
domain adaptation (SUDA) tasks. Data samples in each task
come from the source and target domains. The features in
each task are extracted by a model. Consequently, there are
N models ω = {ωj}

N
j=1 used to decompose N tasks in a

TABLE 1. Important notation.

MSUDA problem. These models contain different classifiers
and discriminators but share the same feature extractor.
As shown in Fig. 2, the data samples of task j aggregated from
Sj ∪ T are used to train the model ωj, which consists of the
feature extractor E , classifier Cj, and discriminator Dj.

B. MULTI-VIEW LEARNING PROCESS
In MSUDA, multiple source domains carry various features.
Each source might only contain a part of the target
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information [9], [40]. Therefore, the whole set of features in
the target domain can be covered by combining the features
from all source domains, as shown in Fig. 1 (b).We verify this
assumption by demonstrating the embedding space of the real
data in Section IV.

There are N tasks created from a given unlabeled target,
and N labeled source domains. The features of task j are
ESj =

(
E(xSj ),E(xT )

)
, where xSj is the set of labeled images

of the source domain Sj and xT is the set of the unlabeled
target images, extracted by model ωj, j ∈ {1, 2, . . . ,N }. First,
models are trained on their own labeled source domain. Then,
each model generates predicted values on the target samples,
using the trained knowledge from its own source domain.
Since the knowledge obtained from the different models is
significantly different, they provide different views on the
target domain. Co-learning is used to allow the different
models to provide the same prediction on the unlabeled
target data. The closeness of these predictions is called
the prediction consistency in the target domain. Section III
explains the details of co-learning. Co-learning can boost the
target classification accuracy and alleviate bias in the learning
of the different models trained on different labeled source
domains. The detailed training process is as follows.

C. TRAINING PROCESS
The feature extractor E and classifier Cj of the model ωj are
trained in a supervised manner to minimize the classification
loss on labeled samples from the source domain Sj over
K classes. The j-th classifier is trained using the standard
cross-entropy loss according to the following equation:

LSjcls = −E
(x
Sj
i ,y

Sj
i )∼Sj

K∑
k=1

1
[k=y

Sj
i ]

log
(
Cj(E(x

Sj
i ))

)
, (1)

where 1[.] is an indication function with a value of either
1 or 0, depending on whether the input [] is true or false.

The cost of training the shared feature extractor E is
computed across all labeled source domains, as follows:

LEcls =
1
N

N∑
j=1

LSjcls. (2)

The common feature extractor is trained by applying
Eq. (2) to N source domains; thus, it obtains features from
multiple source domains. The classifier in each model only
holds the representations of its source domain.

1) DOMAIN-LEVEL ADAPTATION FOR ALIGNMENT
We then use adversarial training strategies to reduce the
domain discrepancy between each pair of source and target
domains in each task. Similar to DANN [17], the adversarial
loss function is calculated as follows:

min
E

max
Dj

Ldj = Exs∼Sj
[
log(Dj(E(xs)))

]
+ Ext∼T

[
log(1 −Dj(E(xt )))

]
, (3)

where Ldj is the domain loss between the target domain and
the source domain Sj. The cost function of the adversarial
process for training the shared feature extractor E across all
source and target domains is computed as follows:

LEdomain =
1
N

N∑
j=1

Ldj . (4)

The discriminator in each model is trained using Eq. (3).

2) CO-LEARNING ON AN UNLABELED TARGET DOMAIN
In practice, the differently labeled source domains have
distinct distributions, so the different source domains have
very different contributions to the target domain. The target
domain is attracted by the source domain that contributes the
most to it, leading to bias in learning in MSUDA. Therefore,
we use Co-learning to allow different models to teach each
other by mutually exchanging information about the target
domain provided by multiple views.

The Co-learning process includes two steps. In the first
step, augmentation is applied over an unlabeled target
image xTi to create two versions: the weakly augmented,
a(xTi ), and strongly augmented versions, A(xTi ), where a(.)
is the weak augmentation function consisting of simple
transformations such as flipping and randomly cropping
images, A(.) is the strong augmentation functions inspired
by the RandAugment [35], it transforms the input image
by randomly selecting from various augmentation methods
such as equalization, image sharpening, brightness variation,
rotation, or color variation and applying them to an input
image. Then, the model ωm corresponding to task m is used
to generate the prediction values of the weakly augmented
version a(xTi ), while the model ωj corresponding to task j
provides the predictions of the strongly augmented version
A(xTi ) with the same unlabeled target image as follows:

pwm = pwm
(
xTi

)
= softmax

(
Cm(E(a(xTi )))

)
,

pstrj = pstrj
(
xTi

)
= softmax

(
Cj(E(A(xTi )))

)
, (5)

where pwm and pstrj are the prediction vectors of the weak
and strong augmentation versions of a target image xTi
generated by models ωm and ωj, respectively. m and j are
the indexes of the model. In the second step, Co-learning
is implemented as follows: model ωj provides its prediction
on the strongly augmented image pstrj . The other models
offer their pseudo labels by selecting the highest confidence
score from a weakly augmented image max

(
pwm

)
, where m ∈

{1, 2, . . . ,N } and m ̸= j. Then, consistency regularization is
conducted by minimizing the cross-entropy of each selected
pseudo label argmax

(
pwm

)
and prediction pstrj of the strongly

augmented image.
Incorrect pseudo-labels can have a negative effect on the

performance of models. Therefore, only the output with high
probability, over a given threshold value, is selected as a
pseudo label, (max

(
pwm

)
≥ τ ), where τ is the threshold value.

The method for selecting the threshold value is detailed in
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Section IV. The consistency loss between the j-th model and
the rest of the models is calculated as follows:

Lcrj =

N−1∑
m=1
m̸=j

nT∑
i=1

1
[
max

(
pwm

)
≥ τ

]
· ŷTmi log

(
pstrj

)
, (6)

where 1[.] is an indication function, and ŷTmi is the pseudo
label of the unlabeled target sample xTi created by the m-th
model. Eq. (6) describes that the proposed method leverages
knowledge from (N-1) models to benefit the training of
the j-th specific model by using pseudo labels. First,
(N-1) models offer their pseudo labels by selecting the
highest prediction on the weakly augmented image of the
target samples. These pseudo labels then are converted to
one-hot encoded labels, ŷTmi = argmax

(
pwm

)
, to compute the

cross-entropy loss with the prediction of the j-th model on the
strongly augmented version of the same target samples. This
process is called collaborative learning (Co-learning), which
leverages information learned from each group, including
multiple tasks, to benefit the training of the specific task. The
Co-learning loss used to train the shared feature extractor E
is computed as follows:

LECo =
1
N

N∑
j=1

Lcrj . (7)

The classifier in each model is updated using Eq. (6).
When N = 2, Co-learning is simplified to co-training,
in which two models collaborate to make a consistent
prediction on the target domain. The proposed Co-learning
method allows different models to supplement information
mutually by interacting among multiple views. Therefore,
knowledge from multiple source domains can be transferred
to the target domain more robustly. We show that Co-learning
reduces the performance degradation due to bias in learning in
Section IV.
In previous work [36], the model could efficiently

categorize unlabeled target data by encouraging the features
to cluster around a specific class in the source domain. Thus,
we implemented an added cost function to train the feature
extractor and classifier in each model, using a minimax
strategy inspired by [36]. The classifier Cj is trained on the
labeled source domain j and consists of weight vectorsWj =[
w1
j ,w

2
j , . . . ,w

K
j

]
, where j ∈ {1, 2, . . . ,N }, K indicates the

number of classes, and the weight vectorwij represents the i-th
class prototype. The output of classifierCj, 1

α
W T
j f , is fed into

a softmax layer to obtain the final probability output p(x) =

σ
( 1

α
W T
j f

)
, where α is the temperature, and f is the input

feature. The entropy maximization is performed on unlabeled
target data to make each wij similar to the target features
f for the generation of a domain-invariant prototype. The
feature extractor is trained to discriminate features between
the source and target domains, in which the f is assigned to
one of the prototypes by minimizing the entropy. The impact
of this cost on the model for classifying the target domain is

discussed in Section IV. The unlabeled target data is fed to
model ωj. The entropy is calculated as follows:

Hj = −ExTi ∼T

K∑
k=1

pj(y = k | xTi ) log
(
pj(y = k | xTi )

)
, (8)

where K represents the number of classes and pj(y = k | xTi )
represents the probability of xTi belonging to class k, which
is the prediction output of model ωj.
The total cost functions for training the shared feature

extractor E are computed as follows:

LE = LEcls + LEdomain + LECo + λ
1
N

N∑
j=1

Hj, (9)

where λ is a balancing parameter [36]. The cost functions for
training the classifiers are calculated as follows:

LCj = LSjcls + Lcrj − λ

N∑
j=1

Hj. (10)

The discriminator in each model is computed using Eq. (3).

D. INFERENCE
The final prediction on the i-th unlabeled target sample is
computed by taking the averaged softmax outputs of multiple
classifiers as follows:

yprediction = argmax
( 1
N

N∑
j=1

(
Cj(E(xTi ))

))
. (11)

IV. EXPERIMENTS
We evaluated our proposed method on benchmark datasets
for MSUDA tasks. Then, we analyzed the contributions of
the proposed method via extensive ablation.

A. DATASETS
For the experiments, we used five standard bench-
mark datasets: Office-31, Office-Home, Office-Caltech10,
ImageCLEF-DA, and the challenging large-scale benchmark,
DomainNet.

• Office-31 [50] is an unbalanced dataset consisting of
4,110 images from three different domains: Amazon
(A), Webcam (W), and DSLR (D). Amazon has 2,817
images, Webcam holds 795 images, and DSLR contains
498 images. They share 31 categories. We implemented
the proposed method for three scenarios: A, W→D
(where A and W are the source domains and D is the
target domain); A, D→W; and D,W→A, as in [49].

• Office-Home [51] is an unbalanced dataset containing
15,588 images from four domains: Real World (Rw),
Clipart (Cl), Art (Ar), and Product (Pr) which share
65 categories. Ar contains 2,427 images, Cl comprises
4,365 images, Pr holds 4,439 images, and Rw has
4,357 images. The proposed method was evaluated via
two cases: two-source domain and three-source domain.
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The two-source domain setting includes 12 tasks: Rw,
Pr→Ar/Cl (where Real World and Product are the
source domains and Art and Clipart are the target
domains); Cl, Rw→Ar/Pr; Pr, Cl→Ar/Rw; Rw,
Ar→Cl/Pr; Ar, Pr→Cl/Rw; Cl, Ar→Pr/Rw. The
three-source domain setting includes four tasks: Ar, Cl,
Pr→Rw; Ar, Cl, Rw→Pr; Ar, Pr, Rw→Cl; and Cl,
Pr, Rw→Ar.

• Office-Caltech10 [52] is an unbalanced dataset con-
taining mixed images from Office-31 and Caltech10,
with 2,533 images sharing 10 categories. The Office-
31 dataset includes three domains: Amazon (A) holds
958 images, Webcam (W) contains 295 images, and
DSLR (D) consists of 157 images.Caltech10 contributes
a domain, Caltech (C), which has 1,123 images. The
proposed method was tested via four tasks: A, D,
W→C; C, D, W→A; A, C, D→W; and A, C, W→D,
as in [48].

• ImageCLEF-DA [22] contains four different domains:
Caltech-256 (C) [53], ImageNet ILSVRC 2012 (I) [54],
Pascal VOC 2012 (P) [55], and Bing (B). Each domain
has 12 categories, and each category contains 50 images.
We evaluated the proposed method for the following
tasks: B,C→I/P; B, I→C/P; B, P→C/I;C, I→B/P;C,
P→B/I, and I, P→B/C, where B,C→I/P indicates that
the knowledge of source domains B and C is transferred
to the target domain I or P, as in [49].

• DomainNet [43] is a challenging large-scale domain
adaptation dataset containing 345 categories with six
different domains.WhereReal (rel) has 175,327 images,
Clipart (clp) contains 48,837 images, Painting (pnt)
consists of 75,759 images, Sketch (skt) holds 70,386
images, Infograph (inf) has 53,201 images, and Quick-
draw (qkd) contains 172,500 images. In experiments,
for a fair comparison with previous MSUDA works,
we selected four domains, Real, Painting, Clipart, and
Sketch, with 126 categories in each domain from the
DomainNet-126 dataset. We constructed 12 scenarios to
evaluate the proposed method: rel, skt→clp/pnt; skt,
pnt→clp/rel; pnt, rel→clp/skt; clp, skt→pnt/rel; rel,
clp→pnt/skt; and clp, pnt→rel/skt in the two-source
domain setting, as in [49]. In the three-source domain
setting, the proposed method was evaluated for four sce-
narios: rel, pnt, skt→clp; pnt, clp, skt→rel; rel, clp,
skt→pnt; and clp, rel, pnt→skt. We also verified the
classification performance of the proposed method with
the challenge domain adaptation tasks on the five-source
domain setting with DomainNet-3451 dataset, where
345 was the number of categories included in each
source domain. We reported the experimental results of
six domain adaptation tasks: inf, pnt, qdr, rel, skt→clp;
clp, pnt, qdr, rel, skt→inf; clp, inf, qdr, rel, skt→pnt;
clp, inf, pnt, rel, skt→qdr; clp, inf, pnt, qdr, skt→rel;
clp, inf, pnt qdr, rel→skt.

1http://ai.bu.edu/M3SDA/#dataset

TABLE 2. Description of datasets used in the experiments.

Detailed information about all of the datasets used for the
experiments is given in Table 2.

B. EXPERIMENTAL SETTING
The baseline (BL) of the proposed method used for
experiments consisted of a shared feature extractor, N
classifiers, and N discriminators, where N is the number
of source domains. Therefore, in the two-source domain,
three-source domain, and five-source domain settings, the
numbers of classifiers and discriminators were two, three,
and five, respectively. Similar to AMDA [49] and DRT [47],
we selected ResNet-50 and ResNet-101 as the backbones
and pre-trained on the ImageNet dataset [54] for the
shared feature extractor of MSUDA. A classifier consisted
of networks with two fully connected layers containing
512 hidden units, and a discriminator containing three fully
connected layers with 1,024 hidden units. All parameters in
the shared feature extractor, classifiers, and discriminators
were updated using backpropagation with stochastic gradient
descent (SGD). The momentum was 0.9, and the initial
learning rate was η0 = 0.01. The weight decay was set to
0.0005. The balancing parameter in Eqs. (9) and (10) was set
to 0.1. The batch size (b) used in the experiments was 96. The
threshold value, τ in Eq. (6), was set to 0.88, as reported in the
ablation study section. All experiments were implemented in
Pytorch framework [56] on a GeForce RTX3090 GPU.
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TABLE 3. Comparison of different methods on the Office-Home dataset based on a ResNet-50 backbone in the two-source domain setting.

TABLE 4. Comparison of different methods on the ImageCLEF-DA dataset based on a ResNet-50 backbone in the two-source domain setting.

For evaluating our method, we used the Office-Home,
ImageCLEF-DA, and DomainNet-126 datasets as in [49],
the Office-31, Office-Caltech10 datasets as in [48], and the
DomainNet-345 datasets as in [45], [46], and [47].
The DomainNet-345 dataset had two versions, including
the original and cleaned versions. The cleaned version was
generally recommended; however, during implementation,
we found a problem with the cleaned version. The ’t-shirt’
class with the index of 327 in the Painting training set
(painting_train.txt file) was excluded, but this class was
inserted in the test set (painting_test.txt file), which could
negatively affect to the final classification accuracy. This
problem was also mentioned in the previous work [46].
Therefore, all experiments on the DomainNet-345 datasets
were conducted by using the original version.

C. COMPARISON WITH SOTA METHODS
For a fair comparison with previous publications, we used
the ResNet-50 backbone to extract the results on
ImageCLEF-DA, Office-31, Office-Caltech10, Office-Home,
and DomainNet-126 datasets, while we used the ResNet-101
backbone to extract the results of theDomainNet-345 dataset.

D. ANALYSIS OF RESULTS
In this section, we reported the domain adaptation results
of the proposed method in three settings: two-source
domain, three-source domain, and five-source domain. In the

two-source domain setting, two labeled source domains were
used for domain adaptation on an unlabeled target domain.
In the three-source domain, three labeled source domains
transferred their knowledge to an unlabeled target domain,
and in the five-source domain setting, the knowledge of five
labeled source domains was extracted to adapt to an unlabeled
target domain.

Tables 3, 4, 5, and 6 reported comparisons of the results
of the proposed method and SOTA domain adaptation
methods in the two-source domain setting on Office-Home,
ImageCLEF-DA, DomainNet-126, and Office-31 datasets,
respectively. The results in Tables 3, 4, and 5 were divided
into two parts. One part reported the results of single-
source-single-target methods of which the best classification
accuracy on the target domain was selected, called the single
best. For example, as shown in Table 3, Rw and Pr were
selected to work as source domains, and Ar was a target
domain. The highest result between Rw→Ar and Pr→Ar
was chosen to report as single best. The other part contains
the results of multi-source-single-target methods, called
multi-source.

The proposed method achieved outstanding performance
compared to other benchmark methods in most of the domain
adaptation tasks. Compared to AMDA, which is one of
the latest methods, the mean accuracy of our method was
2.5% higher on the Office-Home dataset and 0.9% higher on
the ImageCLEF-DA dataset, as recorded in Tables 3 and 4,
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TABLE 5. Comparison of different methods on the DomainNet-126 dataset based on a ResNet-50 backbone in the two-source domain setting.

TABLE 6. Comparison of different methods on the Office-31 dataset
based on a ResNet-50 backbone in the two-source domain setting.

respectively. The proposed method significantly improved
the target classification accuracy on the challenging large-
scale benchmark, DomainNet-126, as shown in Table 5.
Compared to the PCT [70], which produced the best perfor-
mance among the SUDA methods, the average accuracy of
the proposed method was 6.1% higher. The mean accuracy
of the target domain increased up to 14.0% compared to
AMDA [49]. Table 6 reports the results on the Office-31
dataset. Our method recorded slightly higher accuracy in
the average classification results compared to the previous
studies.

Tables 7 and 8 showed the classification accuracies
of the proposed method and the benchmark methods on
Office-Caltech10, and Office-Home, in the three-source
domain setting. In addition to results from the single-best
and multi-source experiments, these tables contain source-
combined results for the case in which multiple sources
are concatenated as one source domain. Experiments on the
Office-Caltech10 dataset using the proposed method showed

TABLE 7. Comparison of different methods on the Office-Caltech10
dataset based on a ResNet-50 backbone in the three-source domain
setting.

TABLE 8. Comparison of different methods on the Office-Home dataset
based on a ResNet-50 backbone in the three-source domain setting.

better target classification accuracy than that of all benchmark
methods. Our method could achieve perfect classification in
some tasks such as A, C, D→W and A, C, W→D. On the
Office-Home dataset, our method only showed outstanding
classification accuracy in the case of Ar, Pr, Rw→Cl.
However, the average classification accuracy on the target
domain of the proposed method was the highest.

Table 9 reported the comparison results of the proposed
method and existing methods on the DomainNet-345 dataset
with the five-source domain setting. The proposed method
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TABLE 9. Comparison of different methods on the DomainNet-345 dataset based on a ResNet-101 backbone in the five-source domain setting.

TABLE 10. Ablation studies for comparison of classification accuracy (%) between a single classifier and multiple classifiers on DomainNet-126 dataset
with N = 3 over four domain adaptation tasks using a ResNet-50 backbone.

TABLE 11. Impact of each component on the proposed method. The experiments were conducted on the DomainNet-126 dataset with N = 3 over four
domain adaptation tasks using a ResNet-50 backbone.

was better than the second best method, MSCAN [45],
0.9% in the averaged classification accuracy on the target
domain.

In general, multi-source domain adaptation showed supe-
rior results to those from a single source domain because it
could access the rich information of multiple source domains.
The proposed method also recorded improvements over
simply combining all source domains, as it could solve the
problem of bias in learning.

E. ABLATION STUDIES
In this section, first, we analyzed the impact of the number
of classifiers on classification accuracy in the MSUDA
setting. Second, we determined the best way to select
appropriate pseudo labels by analyzing the classification
accuracy variation of the proposed method according to the
threshold value in Eq. (6). Third, we analyzed the contribution
of each module in the proposed method: Baseline (BL),
domain-level adaptation (DA), Co-learning, and minimax
strategy (Minimax), as described in Section III. Finally,
we analyzed the impact of the number of source domains for
adaptation on the target domain.

1) ABLATION STUDIES FOR IMPACT OF THE NUMBER OF
CLASSIFIERS IN THE MSUDA SETTING
Table 10 reported the comparison of classification accuracies
of a single classifier and multiple classifiers for four domain
adaptation tasks on the DomainNet-126 dataset in the
three-source domain setting. These results illustrated that the
transfer performance of multiple classifiers was generally
superior compared to the single classifier. Besides, the
different classifiers successfully exchanged their knowledge
to ensure that they provided similar predictions on the target
samples, which indicated the efficiency of the Co-learning
algorithm.

Figure 3 (a) provided the classification accuracies of single
classifier and multiple classifiers on the DomainNet-126
dataset in the two-source domain setting. As shown in this
figure, when the numbers of source domains and classes in
each domain are small, the number of classifiers constructed
in the overall framework can less affect the classification
performance. However, when the number of source domains
increases, a single classifier can struggle to discriminate
the various information within the same class containing
the different domains, as shown in Fig. 3 (b). When both
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FIGURE 3. Comparison results of classification accuracies of a single classifier and multiple classifiers. Different colors indicate the different domain
adaptation tasks. The dashed line denotes the classification accuracy of a single classifier, while the solid line denotes the classification accuracy of
multiple classifiers. (a) results on the DomainNet-126 dataset in the two-source domain setting. (b) results on the DomainNet-126 dataset in the
three-source domain setting. (c) results on the DomainNet-345 dataset in the five-source domain setting.

FIGURE 4. The impact of the threshold on the classification performance.
The results were extracted from tasks skt, pnt→rel; rel, skt→clp; and
pnt, rel→skt on the DomainNet-126 dataset.

the numbers of source domains and classes in each source
domain significantly increased, a single classifier showed the
worst classification performance while multiple classifiers
still provided outstanding classification results, as shown in
Fig. 3 (c). In this figure, the classification accuracy by the
multiple classifiers was slightly decreased when the number
of source domains reached five because two additional source
domains (Quickdraw and Infograph) contain very noisy
labels.

2) SENSITIVITY OF THRESHOLD VALUE FOR SELECTING
PSEUDO LABELS
The quality of pseudo labels affected the inference results
on the target domain. We conducted a study to evaluate
the impact of threshold values on selecting pseudo labels,
as in [37]. Tasks skt, pnt→rel; rel, skt→clp; pnt, rel→skt
on the DomainNet-126 dataset were implemented with
various threshold values τ in Eq. (6) using a ResNet-50
backbone. The threshold value corresponding to the best
inference result on the target domain was selected, as reported

in Fig. 4. As shown in this figure, when the threshold
value was small (τ = 0.4 ∼ 0.6), the model generated
many incorrect pseudo labels, which negatively affected the
inference accuracy on the target domain. However, when τ

was raised to 0.96, the model discarded useful information,
which also led to a decrease in the classification performance
on the target domain. It was obvious that the classification
performance on the target domain was not sensitive when the
threshold value was in an interval [0.6, 0.92], significantly
stable in an interval [0.8, 0.92], and achieved the highest
accuracy around 0.88, as indicated by the red dashed line.
Thus, we selected 0.88 as the optimal threshold value for all
our experiments.

3) IMPACT OF EACH MODULE IN THE PROPOSED METHOD
ON THE TARGET LEARNER
The proposed method consisted of four modules: BL, DA,
Minimax, and Co-learning. Each module had a different
contribution to the classification accuracy of the target
domain. We analyzed the impact of each module. The BL
was implemented by training the shared feature extractor,
and N classifiers over N labeled source domains to produce
inferences on the target domain. For instance, in the
results reported in Table 11 with N = 3 on task rel,
pnt, skt→clp, three labeled source domains, rel, pnt and
skt, transferred their knowledge to the target domain clp.
In this case, three classifiers were trained to minimize
misclassification of the labeled images rel, pnt, and skt,
using Eq. (1). The shared feature extractor was trained for
the correct classification of all rel, pnt, and skt images using
Eq. (2). Finally, they were used to produce inferences on
the target domain clp images. The average results of BL
were just over 67%, as shown in Table 11, after applying
the DA to the BL in which three discriminators were
used to minimize the domain discrepancy between pairs
(rel, clp), (pnt, clp), and (skt, clp), respectively. Thus,
the mean classification accuracy on the target domain over
four tasks slightly increased. In case (BL+DA), the cost
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FIGURE 5. Test classification accuracy on the target domain of the
proposed method with and without Co-learning. (a) results from clp,
skt→rel, and (b) results from clp, skt→pnt on the DomainNet-126
dataset.

function for the shared feature extractor was computed by
the sum of Eqs. (2) and (4). The cost functions of each
classifier and discriminator were computed respectively as
Eqs. (1) and (3). When the minimax strategy in [36] was
integrated into (BL+DA), it became (BL+DA+Minimax),
and the average classification performance on the target
domain was improved to 73%. Then, Co-learning was
added to (BL+DA+Minimax). The average inference results
on the target domain in (BL+DA+Minimax+Co-learning)
reached over 79%. In both cases (BL+DA+Minimax)
and (BL+DA+Minimax+Co-learning), the cost function to
train the discriminators did not change. However, the total
cost functions used to train the shared feature extractor
and classifiers were updated as in Eqs. (9) and (10),
respectively.

To investigate the efficiency of Co-learning for migrating
the bias in learning in MSUDA, we extended our experi-
ments on the DomainNet-126 dataset over two tasks, clp,
skt→rel and clp, skt→pnt, using (BL+DA+Minimax) and
(BL+DA+Minimax+Co-learning), respectively. Because
these scenarios were conducted with N = 2, target classifier
1 of model 1 extracted the target prediction over source
domain 1 (clp), and target classifier 2 of model 2 extracted
the target prediction over source domain 2 (skt). The final

target prediction was averaged from the results of these two
classifiers. The results are reported in Figs. 5 (a) and (b).
Fig. 5(a) shows the results of clp, skt→rel, and Fig. 5 (b)
shows the results of clp, skt→pnt. Without Co-learning, the
output prediction results over the target domain of the two
classifiers were significantly different, as indicated by the
orange circles in Figs. 5 (a) and (b). In contrast, with Co-
learning, the bias in prediction between these two classifiers
almost disappeared. Even at the end of the training, the
classification accuracies of the different classifiers were
similar, as shown by the blue circles in Figs. 5 (a) and (b).

F. VISUALIZATION OF THE ANALYSIS OF THE PROPOSED
METHOD
We visualized the feature distribution of the source and target
domains, confusion matrices, and attention maps, to analyze
the efficiency of the proposed method for MSUDA.

1) FEATURES VISUALIZATION
We visualized the feature distribution of multiple sources and
target domains using t-SNE [57]. Figures 6 and 7 show the
representations of multiple source domains and the target
domain in two settings: two-source domain and three-source
domain, respectively.

Figures 6 (a), (b), and (c) show the features of source
domain 1 (clp), source domain 2 (pnt), and the target domain
(rel) in theDomainNet-126 dataset on task clp, pnt→relwith
N = 2. Model 1 was trained on source domain 1 (clp), while
model 2 was trained on source domain 2 (pnt). Then, they
provided different views over the target domain (rel).

Given the view from model 1, this model had limited
information from class 1. It could not generalize to classify
class 1 in the target domain, as indicated by the horizontal
boundary red dashed line shown in Fig. 6 (a). However, the
missed information from model 1 could be complemented
by model 2 via the Co-learning algorithm, as denoted by
the black box in Fig. 6 (b). Because model 2 is trained on
source domain 2 (pnt), it contains abundant information of
class 1. Similarly, following the view from model 2, source
domain 2 (pnt) lacked the information to cover classes 2 and
3 in the target domain. These were indicated by green and
blue dashed lines of vertical boundaries 1 and 2, respectively,
in Fig. 6 (b). However, this model could be generalized to the
target domain because model 1 trained on source domain 1
(clp) could supplement the shortage of information about
classes 2 and 3 in source domain 2. This is illustrated by red
boxes in Fig. 6 (a). The two source domains, clp and pnt,
collaborated to transfer their knowledge to the target domain
rel. The well-organized representations of the target domain
are shown in Fig. 6 (c).

To show that our method could work well on various
datasets, we ran the proposed method on task A, D, W→C
(N = 3) using the Office-Caltech10 dataset. The embedding
space of source domain 1 (A), source domain 2 (D), source
domain 3 (W), and the target domain (C) are represented in
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FIGURE 6. t-SNE visualization of different sources and target domains (two source domains) on the DomainNet-126 dataset. Source domain 1 (Clipart)
was used to train model 1, while model 2 was trained by using source domain 2 (Painting). Each model provided a different view of the target domain
(Real). (a) The view from model 1. It could obtain more information from classes 2 and 3 than model 2 for adaptation to the target domain (Real),
as indicated by green and blue lines of the vertical boundaries 1 and 2, respectively. (b) The view from model 2, which held more information from class
1 than model 1 to adapt to the target domain, as illustrated by the horizontal boundary red line. (c) Visualization of the representations of the target
domain.

FIGURE 7. t-SNE visualization of different source and target domains (three source domains) on the Office-Caltech10 dataset in case A, D, W→C. (a), (b),
(c), and (d) show the representations of classes in the source and target domains with horizontal views.

Figs. 7 (a), (b), (c), and (d). Similar to the previous analysis
for N = 2, if only source domain 1 was used to adapt
to the target domain, some information about class 2 and
class 7 in source domain 1 was missed. This is indicated by
horizontal boundaries 1 and 2, and the missed information
is denoted by the black boxes in Fig. 7 (a). Information
from source domains 2 and 3 supplemented the shortage of
information from source domain 1, to generalize the target
domain, and the black boxes indicate the supplementary
information in Figs. 7 (b) and (c). When only the knowledge
of source domain 2 or source domain 3 was used for
domain adaptation, the models trained on these source
domains missed information from class 1 and class 9. This
situation is illustrated by horizontal boundaries 3 and 4,
and the lost information is denoted by the red boxes in
Figs. 7(b) and (c). However, source domain 1 supplemented
this lost information from source domains 2 and 3 to adapt
to the target domain, as displayed by the red boxes in
Fig. 7 (a).

Using feature visualization analysis, we could observe that
the complementary information from multiple views of the

source domains could be integrated via Co-learning to elicit
a good representation of the target domain.

2) CONFUSION MATRIX VISUALIZATION
Figures 8 (a) – (f) show the confusion matrix visualization
of classifiers 1, 2, and 3 in the case N = 3 (three-
source domain setting) on the Office-Caltech10 dataset.
Figures 8 (a) – (c) show the confusion matrix results of
classifiers 1, 2, and 3, respectively, without Co-learning,
while Figures 8(d) – (f) display the confusion matrix results
of these classifiers with Co-learning.

Following the representations of source domains, as shown
in Figs. 7 (a) – (c), source domain 1 held more information
about classes 5 and 7, corresponding to Keyboard and Mon-
itor in Fig. 8, than source domains 2 and 3. In cases without
Co-learning, serious bias in learning occurred. Therefore, the
classifier trained on source domain 1 performed well on these
classes in the target domain compared with the classifiers
trained on source domains 2 and 3, respectively, as shown
in Figs. 8 (a) – (c). This problem almost disappeared when
Co-learning was applied, as shown in Figs. 8 (d) – (f).
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FIGURE 8. Confusion matrix visualization of different classifiers. These experiments were implemented on the Office-Caltech10
dataset based on a ResNet-50 backbone on task A, D, W→C. (a), (b), and (c) show the confusion matrices for classifiers 1, 2, and
3 without Co-learning. (d), (e), and (f) show the confusion matrices for classifiers 1, 2, and 3 with Co-learning.
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FIGURE 9. The features of the last convolutional layer in the ResNet-50
backbone were extracted for attention map visualization analysis. These
results were obtained from task A, D, W→C on the Office-Caltech10
dataset. Input images were randomly selected from Keyboard, Monitor,
and Mouse classes in the target data. (a) The input images. (b) Results of
the attention maps obtained from the model without Co-learning.
(c) Results of the attention maps obtained from the model with
Co-learning.

The classification performance on the target domain could
be degraded because the classifier was confused by similar
features that came from the different classes within the
same domain, leading to negative transfer, a phenomenon
called inter-class similarity. For example, as shown in
Figs. 8 (b) – (c), the classifier found it hard to discriminate
between class 5 and class 6 (Laptop) or class 6 and
class 7. The reason was that these classes contained many
common features. This result was concordant with the feature
visualization in Fig. 7 (d), in which a few representations of
classes 5, 6, and 7 overlapped. However, this problem was
alleviated, as shown in Figs. 8 (d) – (f), using Co-learning.
The results reported in Figs. 4, 5, 6, and 7 indicated that

Co-learning boosted target classification accuracy because it
could mitigate the bias in learning caused by the imbalanced
classes problem. Moreover, it allowed the different source
domains to exchange their knowledge to alleviate negative
transfer because of the inter-class similarity.

3) VISUALIZATION OF ATTENTION MAPS
We used GradCam [58] to visualize attention maps, in which
the features of an input image extracted by the last
convolutional layer in ResNet-50 were displayed. The
experiments were conducted on the Office-Caltech10 dataset
with N = 3 on task A, D, W→C, to analyze the
efficiency of Co-learning for classifying objects. The input
images were randomly selected from classes Keyboard,

Monitor, and Mouse in the target dataset. As shown in
Figs. 9 (a) – (c), Co-learning enabled the adaptation model
to focus on the main regions of objects. For example, the
information about objects that were extracted by the models
that used Co-learning was more discriminative than that from
the models without Co-learning. As shown in Fig. 9 (c),
the model with Co-learning could capture object information
more accurately than the model without Co-learning, shown
in Fig. 9 (b). The model without Co-learning was sensitive to
noise from the background, while the model with Co-learning
only concentrated on the main regions of the objects. These
results were concordant with the confusion matrix analysis of
Fig. 8 in Section IV. They also illustrated that our framework
was successful in transferring content information across
domains.

V. CONCLUSION
In this paper, we present the divide-and-conquer-based
method for MSUDA. The complex problem of MSUDA
was simplified by dividing it into many single-source-single-
target tasks. The models were trained on different source
domains in each task, each of which contained different views
on the target domain. The conquering stage is then proposed
to leverage information learned from each group, including
multiple models, to benefit the training of the specific model.
Using experiments, we showed that the proposed framework
could alleviate the bias learning problem in MSUDA. The
experimental results also showed that our method achieved
state-of-the-art results on several benchmark DA datasets.
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