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ABSTRACT In this study, we investigated whether self-supervised pretraining could produce a neural
network feature extractor applicable to multiple classification tasks in B-mode lung ultrasound analysis.
When fine-tuning on three lung ultrasound tasks, pretrained models resulted in an improvement of the
average across-task area under the receiver operating characteristic curve (AUC) by 0.032 and 0.061 on
local and external test sets respectively. Compact nonlinear classifiers trained on features outputted by a
single pretrained model did not improve performance across all tasks; however, they reduced inference time
by 49% compared to the serial execution of separate fine-tuned models. When training using 1% of the
available labels, pretrained models consistently outperformed fully supervised models, with a maximum
observed test AUC increase of 0.396 for the task of view classification. Overall, the results indicate that
self-supervised pretraining is a useful strategy for producing initial weights for lung ultrasound classifiers.

INDEX TERMS Multi-task, self-supervised learning, ultrasound.

I. INTRODUCTION
Lung ultrasound (LUS) is a point-of-care ultrasound
(POCUS) examination that is performed in acute care
settings to rapidly narrow down differential diagnoses
for patients in respiratory distress. In addition to its
enhanced portability, safety, and affordability, LUS has
exhibited diagnostic accuracy for a variety of respiratory
conditions that is comparable to traditional modalities,
such as chest radiography [1], [2], [3], [4] and computed
tomography [2], [5], [6], [7]. Despite mounting evidence for
its efficacy, there are barriers to the widespread adoption
of POCUS, including reduced availability of training and
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lack of access to devices [8], [9], [10]. Multiple studies
have proposed machine learning solutions for routine tasks
in LUS interpretation, citing automation as a means to
improve access to LUS [11], [12], [13]. A major barrier to
the development of machine learning models for tasks in
POCUS is the lack of access to curated, labeled datasets [14].
In addition to the sparsity of LUS expertise, the expense of
soliciting experts to manually label retrospectively acquired
ultrasound videos is prohibitive. As a result, there is
remarkable value in discovering techniques that can reduce
the amount of labeling required for retrospectively collected
datasets.

Recent years have witnessed a surge of interest in
self-supervised learning (SSL) as a strategy for represen-
tation learning in computer vision. Hailed as a means to
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FIGURE 1. An overview of the methods described in this work. (1) Three tasks were identified for lung ultrasound (LUS) image classification:
parenchymal versus pleural views, A-lines versus B-lines (applicable to parenchymal views), and pleural effusion (PE) versus no pleural effusion
(applicable to pleural views). (2) A convolutional feature extractor f was pretrained to minimize a self-supervised objective, using unlabeled and labeled
LUS images as input and trainable projector g. (3a) Task-specific models were defined by appending linear classifier or multilayer perceptron hi to
copies of pretrained f . The models were trained end-to-end for each task using labeled data. (3b) An alternative framework in which f ’s weights were
not fine-tuned. Instead, task-specific models hi were trained that each received f ’s feature representations as input.

productively leverage unlabeled data when labels are scarce,
self-supervised pretraining produces a feature extractor that
may be used to initialize the weights of a model in a
supervised learning setting. It has been shown to improve
performance on several supervised learning tasks in multiple
domains of medical imaging, such as radiography [15], [16],
computed tomography [16], [17], magnetic resonance imag-
ing [16], [17], ultrasound [18], [19], and dermatology [15].
Studies have indicated that models pretrained with SSL
perform comparably to fully supervised models even when
fine-tuned with significantly less labeled data [15], [17].
Given the widespread paucity and expense of labeled medical
images, it is therefore unsurprising that SSL has risen as a
reasonable strategy to leverage unlabeled data. The primary
objective of this study was to determine if contemporary
self-supervised learning methods are a viable solution for
improving performance in LUS classification tasks, particu-
larly when the number of labels in a retrospectively acquired
LUS dataset is low. We considered multiple tasks to ensure
that any observed benefits of SSL were not confined to one
particular LUS task.

The secondary objective of this work was to explore
whether SSL methods can produce a single set of feature
representations that are useful across different LUS tasks.
More specifically, we wished to determine if such repre-
sentations could be useful for the hierarchical arrangement

of LUS interpretation tasks. LUS interpretation involves
the recognition of multiple artifacts that narrow differential
diagnoses in emergency and critical care scenarios, hereafter
referred to as multi-task LUS interpretation. As is common
across other medical imaging modalities, LUS interpretation
can be conducted in a hierarchical manner. Interpreters
engage in the predictive process of a decision tree, beginning
with the root node and traversing down a single path,
guided by decisions at each node. Examples of hierarchical
interpretation from other modalities include the distinction of
malignant pulmonary nodules on CT [20] and the identifica-
tion of lipomatous tumors onMRI [21]. Past work inmachine
learning-based hierarchical medical imaging classification
has resorted to training entirely separate classifiers for each
node in the tree [22]. Our study sought to determine if a single
feature extractor could produce meaningful representations
for multi-task LUS interpretation. We hypothesized that
self-supervised pretraining is suited for the task of developing
a feature extractor that is useful for multiple classification
tasks. The weights of the feature extractor could be fine-tuned
for individual subsequent tasks (Fig. 1, 3a). Alternatively,
holding the weights constant would facilitate the addition
of new tasks to the multi-task LUS interpretion system by
training classifiers on top of the features (Fig. 1, 3b).

The core contributions of this work are thus as follows:
(1) an investigation of the suitability of self-supervised
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feature extractors for multi-task interpretation of B-mode
LUS, and (2) a tree-based classification strategy in which
the inputs to the root node are obtained from a feature
extractor pretrained with SSL. Section II provides a focused
background of the SSL methods investigated in this study,
an overview of the evidence regarding the impact of SSL
in improving automatic ultrasound interpretation, and a
summary of prior approaches to multi-task medical image
interpretation. Section III describes the LUS interpretation
tasks, datasets, and SSL pretraining protocol employed in this
study. Section IV provides an evaluation of the performance.
It also gives runtime statistics for each task and compares
the fine-tuning of end-to-end models for each task against
the training of multilayer perceptrons (MLP) on features
outputted by a single pretrained extractor. Lastly, conclu-
sions and recommendations for practitioners are given in
Section V.

II. BACKGROUND
A. JOINT EMBEDDING SELF-SUPERVISED LEARNING
Broadly, self-supervised learning (SSL) is a form of unsuper-
vised representation learning that is employed to pretrain a
feature extractor for transfer learning. The feature extractor is
trained to solve a pretext task, which is a supervised learning
problem using labels that are computed from unlabeled data.
The weights of the pretrained feature extractor can then be
used to initialize a new model trained to solve a supervised
learning task using a labeled dataset. In the joint embedding
framework of SSL, the pretext task is designed to reduce the
differences between representations of semantically related
images that satisfy a pairwise relationship. Semantically
related positive pairs of images are customarily passed
through the feature extractor, with the output being sent
through a projection head (typically a MLP), producing
embeddings. A common approach for defining positive pairs
is to produce two distinct distortions of the same image,
ensuring that the distorted views do not alter the semantic
content of the image. Joint embedding methods aim to
maximize the similarity of the embeddings of positive pairs,
thereby encouraging the feature extractor to learn to produce
feature representations that are invariant to meaningless
transformations. Refer to Fig. 2 for a visual depiction of a
prototypical joint embedding method.

There are two cardinal categories of joint embedding
SSLmethods: contrastive and non-constrastive. In contrastive
learning tasks, the SSL objective is designed to minimize
the difference between embeddings of pairs of images
satisfying the pairwise relationship (i.e., positive pairs)
and maximize the difference between pairs that do not
satisfy the relationship (i.e., negative pairs). SimCLR is a
popular contrastive learning method where positive pairs
are produced by transforming each image twice, where
the parameters of the transformations are sampled from
a distribution [23]. The model is trained to optimize the
InfoNCE objective [24] to attract positive pairs and repel
negative pairs in the embedding space.

Non-contrastive learning emerged as a strategy to address
shortcomings in contrastive learning, such as its reliance
on large batch sizes. Non-contrastive methods do not
require negative pairs and focuses solely on minimizing
the distance between embeddings of positive pairs. How-
ever, non-contrastive methods are vulnerable to information
collapse – a degenerate solution where embeddings are con-
sistently predicted as null vectors. To combat this adverse sce-
nario, objectives have been proposed that included weighted
terms to promote embedding decorrelation [25], [26] and
nonzero variance in a batch [26].

B. JOINT EMBEDDING METHODS IN B-MODE
ULTRASOUND
Multiple studies have assessed the impact of joint embedding
self-supervised pretraining on the performance of machine
learning solutions in diagnostic B-mode US tasks, particu-
larly when labels are scarce. For example, contrastive and
non-contrastive methods have been applied to breast tumor
classification and left ventricle segmentation with mixed
results [18], [27], [28]. Contrastive pretraining has been
observed to improve the performance of models trained
to distinguish benign and malignant breast tumors [18].
However, a similar study on a separate dataset found that a
non-contrastive method did not outperform fully supervised
models initialized with ImageNet-pretrained weights [27].
Similarly, contrastive and non-contrastive learning were
reported to respectively improve and degrade on left ventricle
segmentation in echocardiograms [28]. Anand et al. [29]
performed a comprehensive evaluation of several joint
embedding methods for the task of echocardiogram view
classification, observing consistent improvement over full
supervision.

Focusing on LUS applications, Chen et al. [30] proposed
a custom contrastive learning objective with interpolated
intra-video positive pairs, outperforming both fully super-
vised and SimCLR-pretrained models on the public POCUS
dataset [31]. Adopting a curriculum learning approach,
Basu et al. [19] achieved even better performance on POCUS
with their contrastive learningmethod that employed progres-
sively harder intra-video positive pairs. Both studies evalu-
ated their ultrasound-specific contrastive learning approaches
on small public LUS datasets. The authors pretrained feature
extractors on a 22-video public LUS dataset acquired with
devices manufactured by Butterfly Network. They fine-
tuned their models for the task of COVID-19 pneumonia
classification using the public POCUS [31] dataset. The
current study adds to the previous literature exploring SSL
for LUS tasks by (1) investigating the utility of the same
pretrained feature extractor for multiple LUS tasks and
(2) including experimentation with non-contrastive methods.

C. MULTI-TASK MEDICAL IMAGE INTERPRETATION
Several studies have addressed multi-task learning for
multi-task medical imaging interpretation. For instance,
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FIGURE 2. A depiction of the forward pass for a batch of images in a standard joint embedding SSL task. Batches of images are subjected to
stochastic data transformations twice, producing distorted views xa and xb, which are passed through the feature extractor f to yield feature
representations ka and kb. The projector g transforms ka and kb into embeddings za and zb respectively. Typically, the objective function
L(za, zb) is optimized to maximize the similarity of za and zb.

Zhang et al. [32] trained a single neural network with ded-
icated output layers for the classification of carotid plaques
and estimation of the degree of stenosis on CT angiography
imaging. Xu et al. [33] proposed a single convolutional
neural network (CNN) architecture for adbominal US view
classification and landmark localization using features from
intermediate residual blocks as input for both tasks. Focusing
on hierarchical interpretation, Fu et al. [34] proposed a system
for medical image classification consisting of a convolutional
neural network (CNN) followed by a decision tree in which
each node is a linear classifier [34]. Decision trees with neural
network nodes have also been proposed [22].

In this study, we showed that a single CNN pretrained with
self supervision provides sufficient feature representations
for multiple tasks, including tasks arranged hierarchically.
Note that the methodology in this work is distinct from
multi-task learning in that it explores the feasability of reusing
a single self-supervised pretrained feature extractor for the
development of multiple LUS classifiers.

III. METHODS
A. LUS CLASSIFICATION TASKS
The LUS interpretative workflow addressed in this work has
been described as a decision tree [35]. After determining
the view, the interpreter traverses down the tree to look for
increasingly specific artifacts that reduce a possible differen-
tial diagnosis. We focused on three binary classification tasks
for LUS image interpretation: view classification (View),
A-line versus B-line classification (A/B), and pleural
effusion detection (PE). The A/B task is applicable to
parenchymal LUS views, and the PE task is applicable to
pleural LUS views. Table 1 summarizes these tasks, and Fig. 1
displays emblematic examples for each class.

B. DATA
Datasets from one local and one external healthcare insti-
tution were extracted from a private repository of LUS
videos. Access to the data was permitted via ethics approval
granted by Western University (REB 116838). The dataset

FIGURE 3. Examples of each class for each LUS binary classification task:
View (a), AB (b), and PE (c).

had been previously labeled for the View, AB, and PE
tasks by competent LUS interpreters during prior work [11],
[36]. The labeled portion of the local dataset was split by
patient identifier into a training set (70%), validation set
(15%), and test set (15%), and the external dataset was
reserved for testing only. Local videos with no labels were
used only during self-supervised pretraining. Table 2 details
the cardinalities and class distribution of these datasets.
Regions peripheral to the US beam were expunged of
extraneous visual artifacts, and the images were cropped to
the boundaries of the beam. All images were downsampled
to 128 × 128 pixels.
We also evaluated the effectiveness of SimCLR-pretrained

weights on the public COVIDxUS dataset [37], splitting it
by video identifier into a training, validation, and test set.
Although patient identifiers were not available for every
video, we ensured that multiple videos from the same
patient identifier were contained in the same set. COVIDxUS
contains 243 LUS videos (29 651 images) originating from a
variety of manufacturers and clinical sources. Each example
belongs to one of four classes: normal lung, COVID-19,
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TABLE 1. A summary of the LUS tasks addressed in this study.

TABLE 2. Breakdown of the institutional US datasets used in this study. For each LUS binary classification task, x / y indicates the number of negative and
positive examples respectively.

non-COVID-19 pneumonia pneumonia, and other patholo-
gies. The dataset was sourced from openly available LUS
examinations acquired at a variety of institutions with an
assortment of ultrasound devices.

C. SELF-SUPERVISED PRETRAINING
Three joint embedding SSL methods were trialed to produce
pretrained models for each LUS task: SimCLR (with τ =

0.1) [23], Barlow Twins (with λ = 0.005) [25], and VICReg
(with λ = 25, µ = 25, ν = 1) [26]. As was done in the
original studies, positive pairs were produced by distorting
images by applying stochastic data augmentations sampled
from a family of transformations. Fig. 4 provides examples of
augmented views of B-mode images from the local dataset.
Below is the list of transformations, where P indicates the
probability of a transformation being applied:

1) Random crop of c ∼ U(0.5, 1.0) of the image’s area.
(P = 0.8).

2) Horizontal flip. (P = 0.5)
3) Multiplicative Gaussian noise, with SD σ ∼

U(0.0, 0.1). (P = 0.5).
4) Brightness adjustment by c ∼ U(0.5, 1.5). (P = 0.7).
5) Contrast adjustment by c ∼ U(0.6, 1.0). (P = 0.7).

With probability 0.5, this occurs before brightness
adjustment.

Feature extractors were pretrained for 15 epochs using
the union of the unlabeled and training images. The
MobileNetV3 [38] architecture, initialized with ImageNet-
pretrained weights, was employed as the feature extractor
for all pretraining. The output of this architecture is a
576-dimensional feature representation vector.

D. EVALUATION PROTOCOL
Wecompared pretrainedmodels with fully supervisedmodels
initialized with ImageNet-pretrained weights. The following

FIGURE 4. Augmented views of B-mode images, comprising positive pairs
for self-supervised pretraining.

experiments were conducted to determine the pretrained
models’ effectiveness at learning the LUS tasks.

• Linear classification (LC): The weights of the feature
extractor were held constant, and a linear classifier was
trained using its outputted feature representations.

• Fine-tuning (FT): The weights of both the feature
extractor and a linear head were trained.

• Nonlinear classification (NC): The weights of the
feature extractor were held constant and a nonlinear head
was trained on the features. The head consisted of aMLP
with a single hidden layer of 32 nodes with rectified
linear unit activation.
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TABLE 3. AUC evaluated on the local and external test sets for the linear classification (LC), fine-tuning (FT), and nonlinear classification (NC)
experiments. Results are presented for each of the View, AB, and PE tasks. The bottom row gives the geometric mean across tasks, with bold typeface
indicating the best-performing pretraining strategy.

Fig. 1 (images 3a & 3b) illustrates how FT and NC each
implement hierarchical LUS interpretation for the tasks of
interest. In all trials, the initial learning rates for the feature
extractor and head were 1×10−5 and 1×10−4 , respectively.
The learning rates were multiplied by a factor of e−0.02 each
epoch. Models were trained for 10 epochs to minimize the
binary cross-entropy loss function. The weights resulting in
the lowest validation loss were retained. We assessed model
performance by determining the area under the receiver
operating characteristic curve (AUC) on the local and external
test sets. All experiments were conducted using a systemwith
an Intel i9-10900K CPU at 3.7GHz and a Nvidia GeForce
RTX 3090 GPU.

IV. RESULTS
A. LINEAR EVALUATION (LC)
Feature extractors were pretrained using SimCLR [23],
Barlow Twins [25], and VICReg [26]. To evaluate the
separability of the resulting representations with respect to
the three LUS tasks, linear classifiers were trained on the
output of the feature extractors. In each trial, the feature
extractor’s weights were held constant, and a perceptron
was fitted for each binary LUS task, using the pretrained
representations as input. Table 3 provides the performance
of classifiers trained for the LC experiment on the local
and external test sets. AUC was designated as the primary
evaluation metric, but additional classification metrics are
reported in the Appendix.

We compared the test AUC exhibited by classifiers
initialized with self-supervised pretrained weights against
classifiers initialized with ImageNet-pretrained weights (i.e.,
no self-supervision). Hereafter, we refer to the models initial-
ized without self-supervised pretraining as fully supervised.
In the case of linear evaluation, self-supervised pretraining
resulted in greater performance on local test data for View

and AB, but not for PE. On the external test set, the
linear classifiers for pretrained models outperformed fully
supervised models on AB, but not for View. The lack of
difference for Viewmay be the result of the greatly increased
number of training examples labeled for View compared
to the other tasks. SimCLR- and VICReg-pretrained models
performed better on the PE task with external test data than
fully supervisedmodels, but BarlowTwins-pretrainedmodels
did not – a finding that was unique to this experiment.

B. FINE-TUNING EVALUATION (FT)
As in the LC experiment, a single-node fully connected layer
was appended to the pretrained feature extractors. The entire
network was then fine-tuned, facilitating task specialization
by the feature extractor. The learning rate for the feature
extractor was set to a tenth of that of the output layer (specifics
are provided in Section III-D). Table 3 provides the AUC
evaluated on the local and external test sets for the FT
experiment. Each pretraining method achieved greater AUC
on the local test set across all tasks. On the external test
set, self-supervised pretrained models resulted in a minimum
AUC improvement across pretraining methods of 0.053 and
0.115 for AB and PE, respectively. Improved external test
set performance suggested improved generalizability of the
pretrained classifiers. On the external View test set, fully
supervised methods achieved the greatest AUC by a very
small margin. In fact, the performance of fully supervised
and pretrained models was close for View on both local
and external test data – a finding that may be due to the
substantially larger number of labels available for the View
task compared to the others. Section IV-E explores how these
results differ when considerably fewer labels are available for
each task.

The general result that fine-tuned models initialized with
self-supervised pretrained feature extractors outperform fully
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TABLE 4. Mean class-wise AUC on the COVIDxUS test set for FT and NC.

supervised baselines is consistent with previous studies that
investigated the utility of ultrasound-specific contrastive pre-
training objectives for COVID-19 classification [19], [30].
A caveat is that the experiments by Chen et al. [30]
comparing pretrained and fully supervised models were
conducted in a semi-supervised setting, as opposed to
self-supervision. The present study expands on previ-
ous results, showing that (1) self-supervised pretraining
improved performance of fine-tuned classifiers on three
additional LUS interpretation tasks, and (2) that non-
contrastive self-supervised approaches also improved LUS
classifiers.

C. NONLINEAR CLASSIFICATION (NC)
The last experiment type performed on local and external test
was nonlinear classification. Similar to the LC experiment,
the objective was to evaluate the ability of unmodified
pretrained feature representations to serve as inputs to a
simple classifier Unlike LC, NC experiments make use of
a 2-layer MLP, facilitating nonlinear decision boundaries.
It was expected that such models would not perform as well
as fine-tuning, since the feature extractor was barred from
specializing in the task. However, should the performance
gap with lightweight nonlinear classifiers be acceptably
small, a hierarchical multi-task interpretation system could be
constructed that resuses representations computed with one
pass of the pretrained model. Here we detail the performance
of lightweight classifiers on test data and compare them to
fine-tuned models.

As shown in Table 3, pretraining did not consistently result
in clear improvement on local test data. Similar to FT, there
was little difference in performance on View. On the AB
task, multiple pretrained models outperformed their fully
supervised counterparts on local and external test data. Most
notably, a fully supervised MLP achieved higher AUC on
the PE task on the local and external test sets than any
of the pretrained models. While we are not able to offer
a direct explanation for this finding, we speculate that the
performance gap was related to the fact that there may have
been considerably fewer examples of pleural effusions in the
pretraining data. With 27.0% of the images with a PE label
containing a pleural effusion and 31.3% of the images in the
entire training set labeled as being a pleural view, we estimate
that the approximate prevalence of pleural effusions across
the dataset was 8.3%. It is possible that the pretrained models
learned to produce stronger representation for parenchymal
views and non-PE pleural views.

D. PUBLIC DATASET EVALUATION
To promote experimental replicability, we investigated the
effect of self-supervised pretraining with SimCLR on
COVIDxUS, a public LUS dataset [37]. As shown in
Table 4, models pretrained with SimCLR on the COVIDxUS
training set achieved better mean class-wise test AUC than
fully supervised models. These results were consistent with
the improvement in COVID-19 pneumonia classification
observed by previous works employing contrastive self-
supervised pretraining [19], [30]. To explore the transferabil-
ity of pretrained weights, we conducted a separate training
run using weights pretrained with SimCLR on the local LUS
dataset. Although COVIDxUS contained less than a tenth
of the number of videos in the local training set alone,
it was amalgamated from a variety of institutions and device
manufacturers. Despite having been pretrained on several
more videos, the models pretrained on local data greatly
underperformed those pretrained on COVIDxUS alone, while
performing comparably to fully supervised models. The
results highlighted the importance of pretraining on a data
distribution that is similar to the LUS interpretation task of
interest.

E. LABEL EFFICIENCY
FT and NC were repeated for ImageNet-pretrained and
SimCLR initialization using 1%, 10%, and 50% of the
training set to evaluate the label efficiency of self-supervised
pretrained models. As depicted in Fig. 5, self-supervision
improved performance on the local test set in most cases.
Moreover, the performance gain realized with SimCLR
pretraining was largest when training with 1% of the
labels. Recalling from Sections IV-A, IV-B, and IV-C that
pretrained models did not clearly outperform fully supervised
models for the View task, the label efficiency experiments
highlighted the utility of self-supervised pretraining forView
when fewer labeled training examples were available.

A notable finding was the leading performance of the fully
supervised MLPs for PE (the NC experiment), which we
suspect was related to the smaller size of the local test set.
However, fully supervised MLPs trained on only 1% of the
availablePE labels greatly underperformed thosewith feature
representations from the SimCLR-pretrained model.

F. QUALITATIVE EVALUATION OF REPRESENTATIONS
Seeking to better understand the results, we visualized two-
dimensional t-SNE [39] projections of the representations
outputted by both an ImageNet-pretrained and a SimCLR-
pretrained feature extractor. As can be seen in Fig. 6,
the projections for PE were not well-separated, even after
pretraining with SimCLR, offering insight into the com-
paratively diminished improvement imbued by pretraining.
In contrast, the projections suggested that self-supervised
pretraining improved the separability of the data for the
AB task, which was reflected in the decidedly stronger
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FIGURE 5. Local test AUC for supervised models initialized with ImageNet-pretrained weights and SimCLR-pretrained weights. Results are provided for
the fine-tuning (FT) and nonlinear classification (NC) experiments training on various fractions of the labeled dataset.

FIGURE 6. A comparison of t-SNE projections of features for the examples in the local test set outputted by a feature extractor initialized with
ImageNet-pretrained weights before SimCLR pretraining (top) and after SimCLR pretraining (bottom).

performance of the SimCLR-pretrained model. The differ-
ence in performance after self-supervised pretraining was
less clear for View, which may have occurred because
there were significantly more labeled examples available
for View (see Table 2). Moreover, the t-SNE projections
for View exhibited separability before and after SimCLR
pretraining.

G. INFERENCE EFFICIENCY
Recall that LUS interpretation consists of a hierarchically
arranged set of tasks. Instead of training several task-specific
models, the representations outputted by one self-supervised
LUS feature extractor could be useful for multiple such tasks.
Since speed is one of the essential qualities of POCUS,
the design of automated LUS diagnostic assistive software
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should prioritize runtime minimization. Real-time device
inference could be accomplished by using copies of the
output of a single feature extractor as input to multiple
lightweightMLP classifiers. Furthermore, as LUS is a rapidly
evolving diagnostic tool, classifiers for novel tasks could be
integrated by training lightweight classifiers on the pretrained
model’s representations.

Although the results indicated that task-specific fine-
tuning yielded the greatest per-task performance, any future
work that improves nonlinear classification with pretrained
weights would improve the execution time of a hierarchically
arranged end-to-end LUS interpretation workflow. To quan-
tify the potential runtime gains of using a single feature
extractor for multi-task LUS classification, we compared the
prediction time of two serially arranged fine-tuned CNNs
(Fig. 1, 3a) against one feature extractor and two subsequent
MLP classifiers (Fig. 1, 3b). Both configurations reflect the
decision tree connecting the View, AB, and PE tasks in the
simplified LUS interpretation workflow. After conducting
1000 serial predictions, the former took an average of
0.116 s (SD 0.003 s), while the latter took an average
of 0.059 s (SD 0.001 s), underlining the runtime advantage
of multi-task inference with a shared feature extractor. With
each feature extractor and MLP requiring 3.7 × 107 and
3.7 × 104 floating point operations respectively, reusing the
output of a single feature extractor as input to multiple
task-specific MLPs would save considerable computational
resources. The LUS diagnostic tree depicted in Fig. 1 would
require approximately half the floating point operations if
each node was a lightweight MLP instead of an entire CNN.
Future work should focus on improving the applicability
of unaltered feature representations from self-supervised
pretrained models for multiple LUS classification tasks.

V. DISCUSSION AND CONCLUSION
In this study, joint embedding SSL methods were observed
to improve the performance of classifiers on a variety
of LUS tasks, particularly when only a small fraction of
labels were available. Fine-tuning self-supervised pretrained
models for each task consistently yielded the greatest
performance gains for each task, with SimCLR-pretrained
models improving across-tasks averageAUC improvement of
0.032 and 0.061 on local and external test sets, respectively.
When holding the weights of pretrained feature extrac-
tors constant, linear classifiers trained on representations
from self-supervised models consistently achieved greater
across-task average AUC on local and external test data. MLP
classifiers trained on features outputted by self-supervised
pretrained models did not outperform fully supervised mod-
els on all tasks. Nevertheless, low-dimensional projections of
feature representations provided qualitative evidence that the
test examples were well-separated with respect to two of the
three tasks studied.

Based on the results of this study, practitioners working
on developing automated LUS interpretation software aided
by machine learning should strongly consider pretraining a

feature extractor using any of the image-based contrastive or
non-contrastive SSLmethods investigated in the experiments,
particularly when the majority of the available images are
unlabeled. Given that pretraining improved the performance
of fine-tuned models for multiple LUS tasks, the results
support the conclusion that self-supervised pretraining is a
viable method to boost LUS classifier performance. More-
over, practitioners may benefit from reduced dependence
on expensive labeling expertise, achieving high classifier
performance even without an abundance of labels. Despite
the benefits of fine-tuning, it was observed that training
two-layer MLP networks on the feature representations
outputted by pretrained models did not consistently improve
performance across tasks. As such, practitioners should
consider fine-tuning for specific LUS tasks instead of training
with a frozen pretrained feature extractor’s representations.

There are several directions for future works that could
improve the usefulness of feature representations for multiple
LUS tasks. Given the greatly reduced inference time for
multi-task LUS interpretation when reusing features from
a single pretrained feature extractor, there would be great
merit in future work that improves the quality of pretrained
feature extractors and the separability of their outputs
with respect to multiple tasks. Any comprehensive LUS
interpretation software should be capable of distinguishing
multiple cardinal artifacts in LUS images (e.g., A-lines,
B-lines, pleural effusions, consolidations). Separability of
feature representations with respect to multiple classification
tasks would facilitate the training of multiple lightweight
MLPs after a single forward pass of the feature extractor.
To discover how feature extractors may be improved to output
representations useful for multiple LUS tasks, future studies
could systematically ascertain the effect of LUS-specific
data augmentations in joint embedding methods. Alternative
definitions of a positive pair for LUS videos could be
explored as well. Instead of distorting the same image twice,
one could explore the effect of intra-video positive pairs
for multiple LUS tasks, along with sample weights for SSL
objectives that exploit temporal proximity in B-mode videos.
Future work could also examine the effect of fine-tuning a
subset of the deeper layers in the feature extractor, effectively
implementing a tradeoff between runtime efficiency for
multi-task classification and full fine-tuning.

In summary, this study demonstrated that joint embedding
self-supervised pretraining is a practical strategy for improv-
ing performance on LUS classification tasks when a fraction
of the available data is labeled. More broadly, the findings
imply that access to immense clinical labeling resources is
not necessary to develop proficient LUS classifiers; rather,
unlabeled data can be adapted via self-supervised learning to
achieve improved performance.

APPENDIX
CLASSIFICATION METRICS
Tables 5 and 6 provide additional classification metrics from
the evaluation on the local and external test sets, respectively
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TABLE 5. Classification metrics calculated based on predictions for the local test set for the LC, FT, and NC experiments.

TABLE 6. Classification metrics calculated based on predictions for the external test set for the LC, FT, and NC experiments.

(detailed in Sections IV-A, IV-B, and IV-C). To supplement
the AUC reported in Table 3, we provide precision, recall (i.e.,
sensitivity), and specificity. All available training labels were
employed for these experiments.

Table 5 provides amore detailed picture of the performance
on the local test set. Notably, metrics are similar for View,
with most pretrained models exhibiting slightly greater
performance in the fine-tuning setting for each metric.
For the AB task, pretrained models exhibited decidedly
greater precision and specificity, but lower recall. The fully
supervised models predicted very few false positives for PE
on the local test set, as evidenced by their high precision and
specificity. However, the recall of linear and fine-tuned PE
classifiers was abhorrently low, suggesting that a plenitude
of false negative predictions were made. The fully supervised
MLP trained for PE performed particularly well compared to
pretrained models.

External test set metrics are reported in Table 6. In contrast
to the local test set, the performance of pretrained models
was nearly consistently greater than that of fully supervised
models across all three tasks. Most notably, linear classifiers
always achieved greater precision, recall, and specificity on
external test data. The findings indicated that feature repre-
sentations from pretrainedmodels may bemore generalizable
than fully supervised models.

REFERENCES
[1] D. Lichtenstein, I. Goldstein, E. Mourgeon, P. Cluzel, P. Grenier,

and J.-J. Rouby, ‘‘Comparative diagnostic performances of auscultation,
chest radiography, and lung ultrasonography in acute respiratory distress
syndrome,’’ J. Amer. Soc. Anesthesiol., vol. 100, no. 1, pp. 9–15,
2004.

[2] K. Nagarsheth and S. Kurek, ‘‘Ultrasound detection of pneumothorax
compared with chest X-ray and computed tomography scan,’’ Amer.
Surgeon, vol. 77, no. 4, pp. 480–483, Apr. 2011.

[3] N. Xirouchaki, E. Magkanas, K. Vaporidi, E. Kondili, M. Plataki,
A. Patrianakos, E. Akoumianaki, and D. Georgopoulos, ‘‘Lung
ultrasound in critically ill patients: Comparison with bedside chest
radiography,’’ Intensive Care Med., vol. 37, no. 9, pp. 1488–1493,
Sep. 2011.

[4] K. Alrajhi, M. Y. Woo, and C. Vaillancourt, ‘‘Test characteristics of
ultrasonography for the detection of pneumothorax,’’Chest, vol. 141, no. 3,
pp. 703–708, Mar. 2012.

[5] P. Nazerian, G. Volpicelli, S. Vanni, C. Gigli, L. Betti, M. Bartolucci,
M. Zanobetti, F. R. Ermini, C. Iannello, and S. Grifoni, ‘‘Accuracy of
lung ultrasound for the diagnosis of consolidations when compared to
chest computed tomography,’’ Amer. J. Emergency Med., vol. 33, no. 5,
pp. 620–625, May 2015.

[6] D. Chiumello, M. Umbrello, G. F. S. Papa, A. Angileri, M. Gurgitano,
P. Formenti, S. Coppola, S. Froio, A. Cammaroto, and G. Carrafiello,
‘‘Global and regional diagnostic accuracy of lung ultrasound compared to
CT in patients with acute respiratory distress syndrome,’’ Crit. Care Med.,
vol. 47, no. 11, pp. 1599–1606, 2019.

[7] M. Wang, X. Luo, L. Wang, J. Estill, M. Lv, Y. Zhu, Q. Wang, X. Xiao,
Y. Song, M. S. Lee, H. S. Ahn, J. Lei, and J. Tian, ‘‘A comparison of
lung ultrasound and computed tomography in the diagnosis of patients with
COVID-19: A systematic review and meta-analysis,’’Diagnostics, vol. 11,
no. 8, p. 1351, Jul. 2021.

VOLUME 11, 2023 135705



B. Vanberlo et al.: Self-Supervised Pretraining Improves Performance and Inference Efficiency

[8] A. K. Brady, C. R. Spitzer, D. Kelm, S. B. Brosnahan, M. Latifi, and
K. M. Burkart, ‘‘Pulmonary critical care fellows’ use of and self-reported
barriers to learning bedside ultrasound during training,’’ Chest, vol. 160,
no. 1, pp. 231–237, Jul. 2021.

[9] Y. Y. Greenstein and K. Guevarra, ‘‘Point-of-care ultrasound in the
intensive care unit: Applications, limitations, and the evolution of clinical
practice,’’ Clinics Chest Med., vol. 43, no. 3, pp. 373–384, 2022.

[10] A. S. Ginsburg, Z. Liddy, P. T. Khazaneh, S.May, and F. Pervaiz, ‘‘A survey
of barriers and facilitators to ultrasound use in low- and middle-income
countries,’’ Sci. Rep., vol. 13, no. 1, p. 3322, Feb. 2023.

[11] R. Arntfield, D. Wu, J. Tschirhart, B. VanBerlo, A. Ford, J. Ho,
J. McCauley, B. Wu, J. Deglint, R. Chaudhary, C. Dave, B. VanBerlo,
J. Basmaji, and S. Millington, ‘‘Automation of lung ultrasound interpreta-
tion via deep learning for the classification of normal versus abnormal lung
parenchyma: A multicenter study,’’ Diagnostics, vol. 11, no. 11, p. 2049,
Nov. 2021.

[12] N. Durrani, D. Vukovic, J. van der Burgt, M. Antico, R. J. G. van
Sloun, D. Canty, M. Steffens, A. Wang, A. Royse, C. Royse, K. Haji,
J. Dowling, G. Chetty, and D. Fontanarosa, ‘‘Automatic deep learning-
based consolidation/collapse classification in lung ultrasound images for
COVID-19 induced pneumonia,’’ Sci. Rep., vol. 12, no. 1, p. 17581,
Oct. 2022.

[13] G. F. L. Tan, T. Du, J. S. Liu, C. C. Chai, C. M. Nyein, and A. Y. L. Liu,
‘‘Automated lung ultrasound image assessment using artificial intelligence
to identify fluid overload in dialysis patients,’’ BMC Nephrol., vol. 23,
no. 1, p. 410, Dec. 2022.

[14] S. Liu, Y. Wang, X. Yang, B. Lei, L. Liu, S. X. Li, D. Ni, and T. Wang,
‘‘Deep learning in medical ultrasound analysis: A review,’’ Engineering,
vol. 5, no. 2, pp. 261–275, 2019.

[15] S. Azizi, B. Mustafa, F. Ryan, Z. Beaver, J. Freyberg, J. Deaton,
A. Loh, A. Karthikesalingam, S. Kornblith, T. Chen, V. Natarajan,
and M. Norouzi, ‘‘Big self-supervised models advance medical image
classification,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV),
Oct. 2021, pp. 3458–3468.

[16] F. Haghighi, M. R. H. Taher, M. B. Gotway, and J. Liang, ‘‘DiRA:
Discriminative, restorative, and adversarial learning for self-supervised
medical image analysis,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2022, pp. 20792–20802.

[17] Z. Zhou, V. Sodha, J. Pang, M. Gotway, and J. Liang, ‘‘Models genesis,’’
Med. Image Anal., vol. 67, Jan. 2021, Art. no. 101840.

[18] S. Perek, M. Amit, and E. Hexter, ‘‘Self supervised contrastive learning on
multiple breast modalities boosts classification performance,’’ in Proc. Int.
Workshop Predictive Intell. Med., in Lecture Notes in Computer Science:
Including Subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics, vol. 12928, 2021, pp. 117–127.

[19] S. Basu, S. Singla, M. Gupta, P. Rana, P. Gupta, and C. Arora,
‘‘Unsupervised contrastive learning of image representations from ultra-
sound videos with hard negative mining,’’ in Proc. Int. Conf. Med.
Image Comput. Comput.-Assist. Intervent., in Lecture Notes in Computer
Science: Including Subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics, vol. 13434, 2022, pp. 423–433.

[20] H. Ma, Y. Guo, Q. Wang, M. Liu, Y. Qiang, X. Guo, Y. Guo, and Q. Chen,
‘‘Classification decision tree in CT imaging: Application to the differential
diagnosis of solitary pulmonary nodules,’’ Chin. J. Radiol., pp. 50–55,
2008.

[21] E. J. Shim, M. A. Yoon, H. J. Yoo, C. G. Chee, M. H. Lee, S. H. Lee,
H. W. Chung, and M. J. Shin, ‘‘An MRI-based decision tree to distinguish
lipomas and lipoma variants from well-differentiated liposarcoma of the
extremity and superficial trunk: Classification and regression tree (CART)
analysis,’’ Eur. J. Radiol., vol. 127, Jun. 2020, Art. no. 109012.

[22] S. H. Yoo, H. Geng, T. L. Chiu, S. K. Yu, D. C. Cho, J. Heo, M. S. Choi,
I. H. Choi, C. Cung Van, N. V. Nhung, B. J. Min, and H. Lee, ‘‘Deep
learning-based decision-tree classifier for COVID-19 diagnosis from chest
X-ray imaging,’’ Frontiers Med., vol. 7, p. 427, Jul. 2020.

[23] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, ‘‘A simple framework
for contrastive learning of visual representations,’’ inProc. Int. Conf.Mach.
Learn., 2020, pp. 1597–1607.

[24] A. van den Oord, Y. Li, and O. Vinyals, ‘‘Representation learning with
contrastive predictive coding,’’ 2018, arXiv:1807.03748.

[25] J. Zbontar, L. Jing, I. Misra, Y. LeCun, and S. Deny, ‘‘Barlow twins: Self-
supervised learning via redundancy reduction,’’ in Proc. Int. Conf. Mach.
Learn., 2021, pp. 12310–12320.

[26] A. Bardes, J. Ponce, and Y. LeCun, ‘‘VICReg: Variance-invariance-
covariance regularization for self-supervised learning,’’ in Proc. Int. Conf.
Learn. Represent., 2022.

[27] N.-Q. Nguyen and T.-S. Le, ‘‘A semi-supervised learning method to
remedy the lack of labeled data,’’ in Proc. 15th Int. Conf. Adv. Comput.
Appl. (ACOMP), Nov. 2021, pp. 78–84.

[28] M. Saeed, R. Muhtaseb, and M. Yaqub, ‘‘Contrastive pretraining for
echocardiography segmentation with limited data,’’ in Proc. Annu. Conf.
Med. Image Understand. Anal., in Lecture Notes in Computer Science:
Including Subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics, vol. 13413, 2022, pp. 680–691.

[29] D. Anand, P. Annangi, and P. Sudhakar, ‘‘Benchmarking self-supervised
representation learning from amillion cardiac ultrasound images,’’ inProc.
44th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC), Jul. 2022,
pp. 529–532.

[30] Y. Chen, C. Zhang, L. Liu, C. Feng, C. Dong, Y. Luo, and X. Wan,
‘‘USCL: Pretraining deep ultrasound image diagnosis model through video
contrastive representation learning,’’ in Medical Image Computing and
Computer Assisted Intervention—MICCAI 2021: 24th International Con-
ference, Strasbourg, France, September 27–October 1, 2021, Proceedings,
Part VIII 24. Springer, 2021, pp. 627–637.

[31] J. Born, G. Brändle, M. Cossio, M. Disdier, J. Goulet, J. Roulin,
and N. Wiedemann, ‘‘POCOVID-Net: Automatic detection of COVID-
19 from a new lung ultrasound imaging dataset (POCUS),’’ 2020,
arXiv:2004.12084.

[32] W. Zhang, G. Yang, N. Zhang, L. Xu, X. Wang, Y. Zhang, H. Zhang,
J. Del Ser, and V. H. C. de Albuquerque, ‘‘Multi-task learning with multi-
view weighted fusion attention for artery-specific calcification analysis,’’
Inf. Fusion, vol. 71, pp. 64–76, Jul. 2021.

[33] Z. Xu, Y. Huo, J. Park, B. Landman, A. Milkowski, S. Grbic, and S.
Zhou, ‘‘Less is more: Simultaneous view classification and landmark
detection for abdominal ultrasound images,’’ inMedical Image Computing
and Computer Assisted Intervention—MICCAI 2018: 21st International
Conference, Granada, Spain, September 16–20, 2018, Proceedings, Part
II 11. Springer, 2018, pp. 711–719.

[34] G. FU, R. Wang, J. Li, M. Vakalopoulou, and V. Kalogeiton, ‘‘Me-NDT:
Neural-backed decision tree for visual explainability of deep medical
models,’’ inMedical Imaging With Deep Learning, 2021.

[35] N. J. Soni, R. Arntfield, and P. Kory, Point of Care Ultrasound E-Book.
Amsterdam, The Netherlands: Elsevier, 2019.

[36] B. VanBerlo, D. Smith, J. Tschirhart, B. VanBerlo, D. Wu, A. Ford,
J. McCauley, B. Wu, R. Chaudhary, C. Dave, J. Ho, J. Deglint, B. Li,
and R. Arntfield, ‘‘Enhancing annotation efficiency withmachine learning:
Automated partitioning of a lung ultrasound dataset by view,’’Diagnostics,
vol. 12, no. 10, p. 2351, Sep. 2022.

[37] A. Ebadi, P. Xi, A. MacLean, S. Tremblay, S. Kohli, and A. Wong,
‘‘COVIDx-U.S.—An open-access benchmark dataset of ultrasound imag-
ing data for AI-driven COVID-19 analytics,’’ 2021, arXiv:2103.10003.

[38] A. Howard, M. Sandler, B. Chen, W. Wang, L.-C. Chen, M. Tan, G. Chu,
V. Vasudevan, Y. Zhu, R. Pang, H. Adam, and Q. Le, ‘‘Searching for
MobileNetV3,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV),
Oct. 2019, pp. 1314–1324.

[39] L. van derMaaten andG.Hinton, ‘‘Visualizing data using t-SNE,’’ J.Mach.
Learn. Res., vol. 9, no. 11, pp. 2579–2605, 2008.

BLAKE VANBERLO (Graduate Student Member,
IEEE) received the B.E.Sc. degree in software
engineering from Western University, London,
ON, Canada, in 2017. He is currently pursuing the
Ph.D. degree with the Cheriton School of Com-
puter Science, University of Waterloo, Waterloo,
ON, Canada. Since, he has been a Summer
Research Assistant with the Robarts Research
Institute and aMachine Learning Developer Intern
with Unity Technologies. He was also a Freelance

Artificial Intelligence Consultant, primarily focusing on development and
deployment of municipal applications. During the Ph.D. degree, he was a
Sessional Instructor with the University of Waterloo and the Director of
Machine Learning with Deep Breathe. He is an Alumnus of the Schulich
Leader Scholarship Program. He is also a recipient of the Vanier Canada
Graduate Scholarship.

135706 VOLUME 11, 2023



B. Vanberlo et al.: Self-Supervised Pretraining Improves Performance and Inference Efficiency

BRIAN LI is currently pursuing the bachelor’s
degree in biomedical engineering with the Uni-
versity of Waterloo, Waterloo, ON, Canada. Pre-
viously, he was a Machine Learning Engineering
Intern with DarwinAI and a Data Science Intern
with Capital One. He is also a Machine Learning
Engineer with Deep Breathe while pursuing the
bachelor’s degree.

JESSE HOEY (Member, IEEE) received the Ph.D.
degree in computer science from The University
of British Columbia, in 2004. He is currently a
Professor with the David R. Cheriton School of
Computer Science, University of Waterloo, where
he leads the Computational Health Informatics
Laboratory (CHIL). He is also a Faculty Affiliate
with the Vector Institute, and an Affiliate Scientist
with KITE/TRI, Toronto. He has published over
100 peer-reviewed scientific articles. He is the

Editor-in-Chief of IEEE TRANSACTIONS ON AFFECTIVE COMPUTING and an Area
Chair for the International Joint Conferences on Artificial Intelligence
(IJCAI).

ALEXANDER WONG (Senior Member, IEEE)
received the B.A.Sc. degree in computer engi-
neering, the M.A.Sc. degree in electrical and
computer engineering, and the Ph.D. degree in
systems design engineering from the University
of Waterloo, Waterloo, ON, Canada, in 2005,
2007, and 2010, respectively. He is currently the
Canada Research Chair of Artificial Intelligence
and Medical Imaging, the Co-Director of the
Vision and Image Processing Research Group,

and a Professor with the Department of Systems Design Engineering,
University of Waterloo. He is a fellow of the Royal Society of Public
Health, Institution of Engineering and Technology, Institute of Physics, and
International Society for Design and Development in Education. He has
authored over 600 refereed journals and conference papers and patents,
in various fields, such as computational imaging, artificial intelligence,
computer vision, graphics, image processing, and multimedia systems. His
research interests include integrative biomedical imaging systems design,
operational artificial intelligence, and scalable and explainable deep learning.
He is a member of the College of the Royal Society of Canada. He has
received a number of awards, including two outstanding performance
awards, the Distinguished Performance Award, the Engineering Research
Excellence Award, the Sandford Fleming Teaching Excellence Award, the
Early Researcher Award from the Ministry of Economic Development and
Innovation, two magna cum laude awards and the Cum Laude Award from
the Annual Meeting of the Imaging Network of Ontario, the Alumni Gold
Medal, the Outstanding Paper Award at the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR)Workshop on Adversarial
Machine Learning in Real-World Computer Vision Systems and Online
Challenges, in 2021, the Best Paper Award at the Conference on Neural
Information Processing Systems (NIPS) Workshop on Transparent and
Interpretable Machine Learning in 2017, the AquaHacking Challenge First
Prize, in 2017, the Best Student Paper at the Ottawa Hockey Analytics
Conference, in 2017, the Best Paper Award at the NIPS Workshop on
Efficient Methods for Deep Neural Networks, in 2016, the Synaptive Best
Medical Imaging Paper Award, in 2016, the Distinguished Paper Award by
the Society of Information Display, in 2015, the Best Paper Award at the
Conference of Computer Vision and Imaging Systems, in 2015 and 2017,
and the Best Paper Award by the Canadian Image Processing and Pattern
Recognition Society, in 2009 and 2014.

VOLUME 11, 2023 135707


