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ABSTRACT One of the most recent studies on the analysis of complex systems is to understand the role
of community structure and centrality in analyzing the networks of complex systems such as protein and
social networks. Traditional measures of centrality - degree centrality, closeness centrality, and betweenness
centrality - cannot capture how community structures within these networks configure them. In this regard,
we propose a new community-consideration centrality method to fill this gap. This method includes a weight
of consideration, α, ranging from 0.0 to 1.0, to balance the focus between community and network-wide
importance in the centrality calculations. Our analysis of two zachary karate and dolphin datasets shows
that including community consideration in the degree, closeness, and betweenness centrality measures
accurately captures the proportional significance of both communities and networks. In particular, for the
lung adenocarcinoma cancer protein case study, our method not only identified more cancer hallmark genes
than the traditional centrality measures without considering communities but also outperformed several other
advanced centrality algorithms regarding the detection of crucial cancer-related genes. A balanced objective
between network and community impacts was observed at an optimum performance α values of 0.1 and
0.2. It finds a strong significance of community structure in network analysis and features a more nuanced
perspective on centrality in complex systems.

INDEX TERMS Degree centrality, closeness centrality, betweenness centrality, the hallmark of cancer.

I. INTRODUCTION
Centrality measures relevant to network analysis identify
nodes that crucially influence information, communication,
or interaction flows within a network [1]. Common centrality
types – degree, closeness, and betweenness – offer insights
into different aspects of network influence [2], [3]. For
example, degree centrality represents the direct impact of a
node on its first neighbors and has played a vital role in the
discovery of essential biomarker proteins in diseases such as
COVID-19 and type 2 diabetes mellitus [4], [5]. In disease
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multimorbidity networks, degree centrality is used to identify
diseases that potentially have chronic influence [6]. Degree
centrality in drug networks can also be used as a feature in
machine learning to predict drug side effects [7]. Closeness
centrality is a significant method in which essential proteins
can be identified in biological networks owing to the
swiftness of a node to reach others [8]. Closeness centrality
was a significant predictor of susceptibility to the spread
of Covid-19 [9]. Betweenness centrality, which indicates an
intermediate node, is imperative for the identification of key
tumor genes [10], [11].

However, the existence of communities in centrality
analysis needs to be considered in network research.
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Community detection is essential for understanding complex,
modular network structures as they identify tightly-knit node
groups within large networks [12]. In communities, groups
of nodes are more strongly related, share similar traits,
or play similar roles in a network [13]. This detection is
particularly evident in biological networks and can lead
to the discovery of protein clusters with shared functions
that are fundamentally essential for deciphering intricate
biological mechanisms [14], [15]. Community detection is
critical for gene clustering and protein complex identifica-
tion [16]. Community detection has been conducted using
various algorithms ranging from traditional methods, such as
disassembly greedy modularity [17], greedy modularity [18],
Louvain [19], and Girvan and Newman [20], to those using
deep learning techniques [21]. Healthcare application reviews
in the recent past have highlighted the burgeoning use of
community detection algorithms for extensive healthcare
database analysis and the role that technology plays in
knowledge discovery within health informatics [22].
Finally, our research innovates from existing method-

ologies by weaving community considerations into the
traditional centrality measures. It is bound forward, and a
dual-focused look at individual node impact and community
roles enriches the current network structure understanding.
From this viewpoint, the basic idea of our approach regarding
lung adenocarcinoma is that it proactively searches for
hallmark cancer proteins, focusing on capturing all the
essential proteins affecting the disease trajectory. Therefore,
from these viewpoints, our approach appears novel and
more complete in terms of network structures by combin-
ing node-specific analysis and community structure. This
approach offers profound and nuanced insights, particularly
in complex biological systems, setting a new precedent for
network analysis.

II. RELATED WORK
Over the years, various developments and fine-tuning of
centralitymeasures havewitnessed a continuous and dynamic
evolution of network analysis. This development parallels
diverse viewpoints and aims to assess the prominence of
nodes within various network structures.

Eigenvector centrality [23] values the power of a node’s
connections, which counts the number and effectualness of
the nodes connected to it. In other words, effective importance
passes through a node owing to neighbors with influential
friends. Katz Centrality [24] extended this idea to introduce
a factor that attenuates the influence of distant nodes, thus
tempering the instant effect instead of potentially extending
neighborhood influences.

Information Centrality [25] and Load Centrality [26], [27]
provide more intricate revelations on network structures.
Information Centrality is a measure of the efficiency of a
node concerning information the flow in the entire network,
considering all direct and indirect interventions between
nodes. Koad centrality focuses on the traffic volume in the
network which is considered a node and accorded value

to nodes sensitive to network link weights, such as the
maintenance of network connectivity and the ability to host
traffic.

Subgraph Centrality [28] and Communicability Between-
ness Centrality [29] have introduced more nuanced
approaches. Subgraph centrality totals the weights of all
long and small closed walks that start from and end at a
particular node, thus weighing a node’s involvement in local
motifs and a broader network structure. However, Commu-
nicability Betweenness Centrality generalizes the classical
betweenness concept by integrating the communicability
effect, which sums all paths binding any two nodes instead
of being confined to the shortest routes. This provides a more
comprehensive measure of how a node best facilitates the
connectivity across a network.

Second-order centrality [30] and Harmonic centrality [31]
are alternative centrality measures that offer new ways
to influence measurement and accessibility. Second-order
centrality provides a measure of the importance with which
nodes return to a point in random walks, thus providing
insights into node criticality and network structure. However,
harmonic centralities are based on the harmonic mean of
the distances from a node to all other nodes and effectively
capture the reachability of a node within the network.

Viral Rank Centrality [32] and Distinctive Centrality [33]
contribute to new perspectives on the centrality discourse.
Viral Rank Centrality measures the potential of a node to
initiate contagion through the spread of influence following
the mechanisms of viral propagation. Distinctive Centrality
emphasizes the uniqueness of a node’s connections, focusing
on the role of exclusive or rare links in determining a node’s
importance. These different centrality measures each have
their own unique focus and methodology and are collected
together to aggregate our understanding of the roles and
importance of the nodes in complex networks.

Overall, they provide a more multi-dimensional view of
the structure of entities encompassing direct influence and
connectivity, as well as the subtleties of information flow
and network resilience. While centrality metrics including
Eigenvector, Katz, Load, and other centrality-based metrics
provide deep insight into the importance of individual nodes
in networks based on connections and information flow, they
tend to waive away the large community structure within
which these nodes operate, especially on a network that has
a defined community. Consequently, particularly with net-
works characterized by well-outlined community structures,
indicated by high modularity, these metrics could inade-
quately capture how contributions or interactions of nodes
are performedwithin their community contexts, elements that
could be crucial in establishing the dynamics and strengths of
networks, whether social, biological, or technical.

III. MATERIAL AND METHODS
A. DATASET
To conduct our experiments, we began by selecting several
datasets covering the required dimensions. The datasets used
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were real-world networks referred to in various community
detection studies, including the ZacharyKarate Club andDol-
phin Social Networks. The Zachary Karate dataset, based on
a record of the pattern of interactions among 34 members of
a karate club in the mid-1970s at a university in the U.S. [34],
and the Dolphin dataset, which describes a community of
62 bottlenose dolphins in Doubtful Sound, New Zealand over
seven years [35], [36], are publicly available and hosted open
access at http://www-personal.umich.edu/ mejn/netdata/).
These datasets are popular sources for network analysis and
offer rich context for understanding the formation of social
ties and communities. The genetic mutations input data of
adenocarcinoma lung cancer were culled/extracted from four
primary databases: TCGA Genomic Data Commons Data
Portal [37] (https://portal.gdc.cancer.gov/), IntOGen cancer
mutation database [38] (https://www.intogen.org), cBioPor-
tal for cancer genomics [39] (https://www.cbioportal.org/),
and Catalogue of Somatic Mutations in Cancer (COSMIC)
[40] (https://cancer.sanger.ac.uk/cosmic). These databases
provide a rich source of genetic data, which is crucial for
our analysis in the context of lung cancer. We integrated
data from four cancer databases. Duplicate records were
carefully removed to validate the integrity of the datasets.
Subsequently, Protein-Protein Interaction (PPI) networks
were built using information recorded in the STRING
database (https://string-db.org/ ). All datasets were publicly
accessible.

B. METHOD
In our study, the ground truth embodied in the selected
datasets played an essential role. The underlying community
configurations of both the Zachary Karate Club and Dolphin
social networks were recognized and incorporated. Incorpo-
ration was critical in addition to applying new measures of
degree, closeness and betweenness centrality.

We performed community detection within the PPI net-
work using the disassembly greedymodularity approach [17].
This method allows the identification of groups of proteins
with high structural densities.Metascape (https://metascape.org)
was used for enrichment analysis of each community to
detect the possibility of carrying out the same function or
participating in the same biological pathway. This allows
the measurement of functional and structural relationships
among protein communities.

The next stage involves research on community consider-
ation centrality. This new approach features the adjustment
of traditional centrality measures such as degree, closeness
and betweenness, while considering the community structure
inside the network. These adjustments were hypothesized to
offer a more nuanced understanding of the involvement and
significance of each protein in lung cancer.

With regard to tools and software, the experiments carried
out in our case study mostly used network analysis based
tools. Centrality calculations and community detection algo-
rithms were implemented using Python with libraries, such
as NetworkX, to implement graph-based network analysis.

We compared our analysis’s proteins, which were char-
acterized as central, and those involved in the hallmark
of cancer [41], according to the COSMIC database. The
jackknife curve was used to confirm the validity of the
findings. This analysis involved a comparative study of
other centrality measures within a broader scope of network
analysis research.

C. COMMUNITY
In the network G(V ,E), where V is the set of vertices
and E is the edge (connection) between vertices, partition
P = C1,C2, . . . ,Ck divides the vertices into k . Each
community Ci refers to a group of vertices with a higher
density in the network. The extent to which a network
is divided into communities is measured using modularity,
as shown in (1). The higher the modularity, the better is the
partitioning Barabasi [12]. The toy network community is
shown in Fig. 1, with two communities and a modularity
of 0.3194.

M =
nC∑
C=1

[
LC
L
−
kC
2L

]
(1)

FIGURE 1. Communities in the Toy network consist of two communities,
red and blue. Based on the overall network, node five has the highest
degree, 6. However, looking at the red community, node five only has a
degree of 3, lower than node six, with a degree of 5.

D. COMMUNITY-CONSIDERATION DEGREE CENTRALITY
We developed a community consideration degree centrality
algorithm as shown in Algorithm 1, which algorithm
uses a degree centrality calculation applied to the overall
network and the community. The consideration proportion
is expressed as α = [0, 1], α ∈ R. The smaller the
value of α, the more the community is considered; the
larger α, the more the network is considered. Each ver-
tex is iterated to determine the community consideration
degree centrality. The first forms a subgraph G from each
community. Then, for each vertex contained in subgraph G,
the community-consideration degree centrality is calculated
according to and α and the degree value at vertex i. The time
complexity for calculating the degree of centrality of each
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node with a list adjacency isO(n+m), where n is the number
of nodes in the network and m is the number of edges. For all
the nodes, it takes O(n(n+ m)).

Algorithm 1 Algorithm for Calculating Community-
Consideration Degree Centrality
Input: graph G, community, α
Output: Community-consideration closeness centrality

for each community do
Create subgraph C from the community
for each i ∈ C do

CCDCα(i)← (d(i ∈ C)+ α(d(i ∈ G)− d(i ∈ C))
/(nC + α(nG − nC )− 1))

end for
end for

The degree centrality Freeman [2] of node i is the node
degree d(i) normalized by dividing it by the maximum node
degree (n− 1), as expressed in (2).

DC(i) =
d(i)
n− 1

=
|(i, j) ∈ E|
n− 1

(2)

If the network consists of several disjoint communities,
take one community C , then C ∩ C ′ = ∅ and C ∪ C ′ = V .
Equation (2) can be expressed as (3)

DC(i) =
|(i, j) ∈ E, j ∈ C| + |(i, j) ∈ E|, j /∈ C

nC + nC ′ − 1

=
dC (i)+ dC ′ (i)
nC + nC ′ − 1

(3)

If we do not involve terms containing C ′, and isolate C
alone, Equation (4) is formed.

DC(i) =
dC (i)
nC − 1

(4)

We want to adjust the balance proportion of commu-
nity and network involvement in the degree centrality.
From (3) and (4), we can form a variable range α =

[0, 1], α ∈ R and formulate the community consideration
degree centrality as (5).

CCDCα(i) =
dC (i)+ αdC ′ (i)
nC + αnC ′ − 1

(5)

If α = 1, then the formula will produce a degree of
centrality at the network level without considering the formed
community. Conversely, if α = 0, only the degree of the
community is considered. The value 0 < α < 1 represents
the degree of centrality by proportionally considering the
community and the network.

Because for each subgraph formed from community C,
VC ′ = VG − VC is applied for each subgraph formed from
community C, Equation (5) can be expressed as (6).

CCDCα(i) =
dC (i)+ α(dG(i)− dC (i))
nC + α(nG − nC )− 1

(6)

E. COMMUNITY-CONSIDERATION CLOSENESS
CENTRALITY
We developed a community consideration closeness cen-
trality algorithm. This algorithm uses closeness centrality
calculations applied to the entire network and community.
The proportion of consideration is expressed as α =

[0, 1], α ∈ R, which considers the community or network
as a whole.

The steps to obtain the community consideration closeness
centrality are expressed in Algorithm 2. First, the distance
from node i to each node in the network was calculated. Next,
the distance from each node i to each node in the community
is calculated, and then the community-consideration close-
ness centrality is calculated. The time-complexity closeness
centrality calculation for each node is O(n(n + m)). For all
nodes, O(n2(n+ m)).

Algorithm 2 Algorithm for Calculating Community-
Consideration Closeness Centrality
Input: graph G, community, α
Output: community-consideration closeness centrality

for each i ∈ G do
d(i)← 0
for each j ∈ G do

d(i)← d(i)+ d(i, j)
end for

end for
for each community do

Create subgraph C from the community
for each i ∈ C do

dC (i)← 0
for each j ∈ C do

dC (i)← dC (i)+ d(i, j)
end for

end for
end for
for each i ∈ G do

CCCCα(i)← (nC (i)+ α(nG − nC (i))− 1)/
(dC (i)+ α(d(i)− dC (i)))

end for

Closeness centrality Freeman [2] measures the shortest
path from node i to all nodes and is expressed by dividing the
number of destination nodes by the total topological distance
of all nodes in the network, as expressed by (7).

CC(i) =
n− 1∑n
j=1 d(i, j)

(7)

If the network consists of several disjoint communities,
take one community C , then C ∩ C ′ = ∅ and C ∪ C ′ = V .
Equation (7) can be expressed as (8)

CC(i) =
nC + nC ′ − 1∑nC

j=1 d(i, j)+
∑nC ′

j=1 d(i, j)
(8)
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If we do not involve the term containingC ′ and isolate onlyC ,
we obtain (9).

CC(i) =
nC − 1∑nC
j=1 d(i, j)

(9)

That is, if we want to set the proportion of the balance of
community and network involvement in closeness centrality,
we can form a variable range α = [0, 1], α ∈ R and formulate
the community-consideration closeness centrality as (10)

CCCC(i) =
nC + αnC ′ − 1∑nC

j=1 d(i, j)+ α
∑nC ′

j=1 d(i, j)
(10)

Because for each subgraph formed from community C,VC ′ =
VG − VC applied, (10) can be expressed as (11)

CCCC(i) =
nC + α(nG − nC )− 1∑nC

j=1 d(i, j)+ α(
∑nG

j=1 d(i, j)−
∑nC

j=1 d(i, j))

(11)

F. COMMUNITY-CONSIDERATION BETWEENNESS
CENTRALITY
The steps to obtain the community consideration between-
ness centrality are presented in Algorithm 3. Iterations
were performed for each community in graph G, form
subgraph G, and the betweenness centrality in each subgraph
was calculated. Next, we calculate the number of network
and community path combinations. Furthermore, for each
node in subgraphG, a community-consideration betweenness
centrality calculation is performed according to the degree
value at node i, the number of paths, and α. The time
complexity betweenness centrality for each nodewasO(n(n+
m)). For all nodes, O(n2(n+ m)).

Algorithm 3 Algorithm for Calculating Community-
Consideration Betweenness Centrality
Input: graph, community, α
Output: community-consideration betweenness centrality

for each community do
Create subgraph C from the community
BCC(i) = betweenness centrality on C
for each i ∈ C do

PC(i)← (nC − 1)(nC − 2)/2
end for
PG(i)← (n− 1)(n− 2)/2
BCG← betwenness centrality on G
CCBCα ← (BCC + α(BGC − BCG)/(PC + α(PG−

PC))
end for

The betweenness centrality Freeman [2] of node i is
expressed as (12)

BC(i) =
∑
j<k

pjk (i)
pjk

(12)

If the network consists of several disjoint communities,
take one communityC , thenC∩C ′ = ∅ andC∪C ′ = V .With

FIGURE 2. Illustration of betweenness centrality at node i, which is in the
blue community. The left side of the vertical line is a node in the same
community as i , and the right side is a node in a different community
from i .

i ∈ C , here are three possibilities pjk (i) and pjk according to
the existence of j and k , illustrated in Fig. 2:

1) j ∈ C, k ∈ C ; both nodes j and k are in the same
community as i

2) j ∈ C, k /∈ C ; One node is in a community with i, and
one node is not in a community with i

3) j /∈ C, k /∈ C ; both vertices are not in the same
community with i

Note that this graph is undirected; thus ∀j, k ∈ V , ((j, k) ∈
E = (k, j) ∈ E), and is counted only once. From Equation
(12), it can also be stated that (13)

BC(i) =

∑
j<k,j∈C,k∈C pjk (i)∑
j<k,j∈C,k∈C pjk

+
∑

j<k,j∈C,k /∈C pjk (i)+
∑

j<k,j/∈C,k /∈C pjk (i)

+
∑

j<k,j/∈C,k /∈C pjk +
∑

j<k,j∈C,k /∈C pjk
(13)

If we do not involve terms containing C ′ and isolate C
alone, then the formulation is formed as (14)

BC(i) =

∑
j<k,j∈C,k∈C pjk (i)∑
j<k,j∈C,k∈C pjk

(14)

That is, if we want to set the proportion of the balance of
community and network involvement in closeness centrality,
we can form a variable range α = [0, 1], α ∈ R and formulate
the community-consideration closeness centrality as (15).

BC(i) =

∑
j<k,j∈C,k∈C pjk (i)∑
j<k,j∈C,k∈C pjk

+α(
∑

j<k,j∈C,k /∈C pjk (i)+
∑

j<k,j/∈C,k /∈C pjk (i))

+α(
∑

j<k,j/∈C,k /∈C pjk +
∑

j<k,j∈C,k /∈C pjk )

(15)
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From the explanation and Fig. 2 it can be stated that (16)
and (17)∑
j<k,j∈V ,k∈V

pjk (i) =
∑

j<k,j∈C,k∈C

pjk (i)

+

∑
j<k,j∈C,k /∈C

pjk (i)+
∑

j<k,j/∈C,k /∈C

pjk (i)

(16)∑
j<k,j∈V ,k∈V

pjk =
∑

j<k,j∈C,k∈C

pjk

+

∑
j<k,j∈C,k /∈C

pjk +
∑

j<k,j/∈C,k /∈C

pjk

(17)

Then we substitute Equations (16) and (17) into
Equation (15) which yields Equation (18)

BC(i) =

∑
j<k,j∈C,k∈C pjk (i)∑
j<k,j∈C,k∈C pjk

+α(
∑

j<k,j∈V ,k∈V pjk (i)−
∑

j<k,j∈C,k∈C pjk (i))

+α(
∑

j<k,j∈V ,k∈V pjk −
∑

j<k,j∈C,k∈C pjk )

(18)

Because j, k ̸= i, based on the combination formula, two
vertices are chosen from n− 1 vertices. One of the excluded
nodes is node i. The denominator can be described by (19)
and (20). ∑

j<k,j∈C,k∈C

pjk =
(nC − 1)(nC − 2)

2
(19)

∑
j<k,j∈V ,k∈V

pjk =
(n− 1)(n− 2)

2
(20)

Thus, from (18), (19) and (20) we obtain (21)

BC(i) =

∑
j<k,j∈C,k∈C pjk (i)
(nC−1)(nC−2)

2
+α(

∑
j<k,j∈V ,k∈V pjk (i)−

∑
j<k,j∈C,k∈C pjk (i))

+α( (n−1)(n−2)2 −
(nC−1)(nC−2)

2 )

(21)

G. TOY EXAMPLE
As an example, we use the toy example shown in Fig. 1.
According to (6), the community-consideration degree cen-
trality can be seen in Fig. 3, where community-consideration
degree centrality node five without considering the commu-
nity (α = 1) has a value of 0.545 in the first place, followed
by node 6 with a value of 0.455, and nodes 2 and 8 with a
value of 0.364. If the community formed is considered with
a value of α = 0.5, then the first order ranking is node 6 with
a value of 0.588, followed by nodes 5, 8, and 2, each worth
0.529, 0.471, and 0.467, respectively. Meanwhile, if we only
consider the communities formed, without considering the
network as a whole, we isolate each community separately

FIGURE 3. Community consideration degree centrality in the toy example.
Vertex 5, first in network-level degree centrality, becomes 5th in the
community level.

FIGURE 4. Community consideration closeness centrality in a toy
example. There are sequence differences with α variations.

(α = 0). The first sequence was node 6, with a value of
0.833, followed by nodes 2, 0, and 1, which had the same
value of 0.750.

The community consideration closeness centrality accord-
ing to Equation (11) is shown in Fig. 4. The community
consideration closeness centrality of node five without
considering the community (α = 1) was 0.688, followed by
nodes 6, 8, and 2 with community-consideration closeness
centralities of 0.579, 0.550 and 0.524, respectively. If the
formed community is considered to have a value of α = 0.5,
then the ranking order remains the same: nodes 5, 6, 8, and 2.
However, if the value of α = 0.3, the order changes, namely
node 6 first with a value of 0.708, followed by nodes 5, 8,
and 2 with value of 0.676, 0.647, and 0.622, respectively.
If the overall network element is not considered and only the
community is considered (α = 0), then the order is node 6,
2, 0, and 1 with values of 0.857, 0.800, 0.800, and 0.800,
respectively.

The community consideration betweenness centrality
according to (21) is shown in Fig. 5. For α = 1, the order
is nodes 5, 6, 2, and 8 with values of 0.600, 0.400, 0.136,
and 0.100, respectively. The order did not change when the
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FIGURE 5. Community consideration betweenness centrality in the toy
example. Vertices 6 and 5 are first and second for α > 0.2, respectively.

value of α = 0.5. When the value of α = 0.4, the first order
is node six, followed by nodes 5, 2, and 8, with values of
0.491, 0.406, 0.143, and 0.139, respectively. For α = 0, the
order is node 6, 0, 8, 2 with values of 0.633, 0.500, 0.200 and
0.167 respectively.

IV. RESULTS
A. ZACHARY KARATE
The Zachary Karate dataset reflects the structure of the
interactions among 34 karate club members, with 78 con-
nections representing relationships such as joint training and
friendships [34]. Disputes among members of this club led to
the formation of two different factions within the karate club.
The first group followed the Instructor, Mr. Hi, represented
by node one, while the second group followed club president,
John A, represented by node 34 (Fig. 6).

FIGURE 6. The community on the Zachary Karate dataset is divided into
two groups: the red side with instructor Mr. Hi, node 1, and the red group
that follows the club president, John A., node 34.

We sorted the results of the community-consideration
degree, closeness, and betweenness centrality calculations
with a range of α from 0 to 1, as presented in Table 1. Almost
all the calculation results show that node one and node 34,
which represent instructors and club presidents, respectively,
occupy the top two ranks. The difference lies in their degree
of centrality. Both nodes have the same value when α = 0.5;

when α > 0.5, which means that it is more inclined to
the network as a whole, node 34 is ranked first; conversely,
when α < 0.5, which is more community-oriented, node
one is ranked first. Node 33 is in position 3, followed by
nodes 2 and 3, which are ranked 4 and 5, respectively,
depending on the value of α.

In community consideration closeness centrality, rank one
is occupied by node 1 for each α value. Most rank two is
occupied by node 34, except for α = 1.0 node 34, and the
club president is ranked three after node three, which is only
a club member. This means that community considerations
represented by the value of α can determine the order of
centrality formed to provide better results. In ranks 3-5, nodes
33, 3, 32, and 2 are generally occupied, and their sequence is
influenced by the value of α. Node 1 represents the instructor,
and node 34 represents the club president, consistently
ranking 1 and 2 on betweenness community-consideration
centrality for all α values. Rank 3 is occupied by node 33,
and ranks 4 and 5 are occupied by nodes 32, 3, 2, and 24,
whose order depends on the value of α.

B. DOLPHINS
The dolphin social network, often used in community
detection research, consists of 62 vertices labeled with
names representing dolphins and 159 edges that asso-
ciate the observed pair of dolphins occurring together
Cheng et al. [36], Lusseau et al. [35]. The network can be
partitioned into four groups: green, violet, yellow, and blue,
each consisting of 23, 20, 12, and 7 dolphins as a ground-truth
community structure, as shown in Fig. 7.

FIGURE 7. Dolphin Social Network Communities: illustrates the
62 dolphins network implementation divided into four communities
(green, violet, yellow, blue) based on observed social interactions,
showing the complex social structure of this network.

In community-consideration degree centrality, the top-five
nodes for α ≥ 0.5 to 0.5 are dominated by the green
and yellow communities, while for 0.1 ≤ α ≤ 0.4, it is
more varied in the three communities. For α = 1, it was
dominated by small communities (blue and yellow). The
order of community-consideration centrality in the Dolphin
dataset is presented in Table 2.

In community-consideration closeness centrality, for
α ≤ 0.2, the top five nodes are dominated by the green
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TABLE 1. Community-consideration degree, closeness, and betweenness centrality on karate dataset.

TABLE 2. Community-consideration degree, closeness, and betweenness centrality on Dolphins dataset.

community, with variations in the nodes and their sequences.
At α = 0.1, blue community nodes appear in addition to
green community nodes. For α = 0.0, it is dominated by
nodes in small communities, namely the blue and yellow
communities.

The community consideration betweenness centrality is
also in line, α ≤ 0.2; the top-five nodes are dominated by
large communities, namely green and violet, whereas nodes
in small communities appear at α ≤ 0.1.

C. HALLMARK OF CANCER
1) DATASET
We retrieved data on genetic mutations in lung adenocar-
cinoma from four databases, TCGA, IntOGen, Bioportal,
and Cosmic, which are available in the supplementary
files. Each dataset was showed using Interactivenn [42]
http://www.interactivenn.net/ (Fig. 8). Almost all genes
obtained from IntOGen and Cosmic were also found in the
other databases (18%) and 434/742 (58%). All these data
were combined, and the goal was to obtain as much protein
as possible. Protein interactions were determined using the

TABLE 3. Size of communities.

STRING database, with the highest confidence score of 0.9
(Fig. 9). The giant component of the network consists of
703 nodes with 4889 edges. The network forms a scale-free
network based on the degree distribution of the nodes.

2) COMMUNITY DETECTION
We used the greedymodularity disassembly algorithm [17] to
detect the communities. This is a community crisp algorithm,
in which each node is only in one community. The results
of this algorithm formed 11 communities of different sizes
with two large communities, four medium communities,
and five small communities (Fig. 10) as shown in Table 3.
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FIGURE 8. Venn Diagram of Lung Adenocarcinoma Genetic Mutations:
Showing the overlapping and unique mutation data contribution of TCGA,
IntOGen, Bioportal, and Cosmic database pointing to the combined
dataset which is comprehensive.

FIGURE 9. Network of Protein-Protein Interactions: This shows the
complex interplay between proteins seen to result from the data derived
from a genetic mutation in lung adenocarcinoma from the STRING
database. It shows the relationships seen and possible interactions
existing between these proteins that may imply their functional
interaction.

Modularity, which shows the strength of the network division
into communities, is 0.4684. This indicates that a community
structure was formed in the network.

3) ENRICHMENT ANALYSIS
We used Metascape to analyze the results of structural
groupings formed in the form of communities. The results

FIGURE 10. Lung Adenocarcinoma Protein Communities: shows protein
communities, various size from the big to the small sub-groups, of the
lung adenocarcinoma network and how they are related modularity-wise.

of the enrichment analysis of the majority of communi-
ties reflected functional grouping, in terms of biological
processes, molecular functions, cellular components, and
KEGG pathways, especially for large and medium-sized
communities. In two major communities, 1 and 2, it was
explicitly stated as a pathway to cancer in KEGG grouping.
Some small communities did not produce functional groups
(Table 4).

4) COMMUNITY-CONSIDERATION DEGREE CENTRALITY
We performed community-consideration degree centrality
calculations and sorted the genes from the highest values for
each variation in α values. At α = 1 of the top 10 sequences
(Table 5), it can be seen that degree centrality managed to
obtain eight hallmark genes. With a degree of centrality that
involves the community, that is, with 0.5 ≤ α ≤ 0.8, we can
obtain more results, as many as nine genes.

We used the jackknife curve to test the performance of
the ranking method [43], [44]. We compared the top-ranking
protein results obtained using the number of cancer hallmarks
from the Cosmic database. As the size of the shortlist
increased, most genes became hallmarks of cancer (Fig. 11).
Degree centrality, which considers only the community (α =
0, red line), exhibits theworst performance. Degree centrality,
which considers only the network as a whole (α = 1,blue
line), does not exhibit the best performance. However, when
combined, it showed a better performance. For example,
among the 50 gene lists, 35 (70%) were hallmarks of cancer
(α = 0, 1, green line). It can also be observed that the degree
of centrality when considering the community is better than
when it is not considering the community. The α values that
give better results are 0.1 (green line) and 0.2 (gold line).

5) COMMUNITY-CONSIDERATION CLOSENESS CENTRALITY
We also tested the community-consideration degree centrality
by ranking the geneswith the highest values for each variation
in α values. At α = 1 of the top 10 sequences, it can be
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TABLE 4. Enrichment analysis result.

TABLE 5. Result of community-consideration degree centrality.

FIGURE 11. Jackknife curve analysis for the cancer hallmark genes
identification through community consideration degree centrality.

seen that closeness centrality managed to get eight hallmarks
genes. This was similar to degree centrality, although there
were differences in the proteins listed. By involving the

FIGURE 12. Jackknife curve analysis for the cancer hallmark genes
identification through community consideration closeness centrality.

community, community-consideration closeness centrality
becomes higher results at 0.1 ≤ α ≤ 0.3; there
were nine genes (Table 6). Furthermore, we extended the list
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TABLE 6. Result of community-consideration closeness centrality.

to 50 genes with community-consideration closeness cen-
trality with a variety of α = 0.1 represented by the
jackknife curve (Fig. 12). Community-consideration degree
centrality showed better performance when we computed the
closeness centrality considered for the community. For the
top 50 shortlists at α = 0.1, the community-consideration
closeness centrality obtained 33 (66% ) hallmarks of cancer.
The best α that generates the most hallmarks of cancer is
α = 0.1 (green line) and α = 0.2 (gold line)

FIGURE 13. Jackknife curve analysis on the cancer hallmark genes
identification through community-consideration betweenness centrality.

6) COMMUNITY-CONSIDERATION BETWEENNESS
CENTRALITY
We did the same for community-consideration betweenness
centrality, showing results for values ranging from 0.1 ≤ α ≤

0.7 to 8 of the top 10 gene sequences (Table 7). Furthermore,
we extended to 50 gene lists with community consideration
betweenness centrality using the Jackknife curve (Fig. 13).
It has become evident that most genes are hallmarks of cancer.
Betweenness centrality, which considers only the community
(α = 0, red line) demonstrates the poorest performance.
Betweenness centrality, which solely considers the network
as a whole (α = 0, blue line), also does not exhibit an optimal
performance. However, when combined with community

considerations, better performance was achieved. Optimal
results are achieved at α values of 0.1 (green line) and 0.2
(gold line), followed by 0.3 and 0.4.

7) COMPARISON BETWEEN COMMUNITY-CONSIDERATION
DEGREE, CLOSENESS AND BETWEENNESS CENTRALITY
We compared the best results of community-consideration
degree, closeness and betweenness centrality at α = 0.1 and
α = 0.2. As shown in Fig. 14, the top-ranked n protein,
for n = 5 to n = 16, community-consideration closeness
centrality gives the best results in obtaining the hallmark of
cancer (thin line). For n = 17 to n = 46, community-
consideration degree centrality (thick line) was the best, while
for the rest, n > 47, community-consideration betweenness
centrality (dotted line) is the best. It can be concluded
that each community consideration can provide the most
significant results for identifying hallmarks of cancer.

We also compared our community consideration central-
ity method with other popular centrality algorithms. The
effectiveness of the method in identifying the critical nodes
within these complex networks was ascertained in detail.
We narrowed the focus on α values that yielded optimal
results for community consideration centrality at α = 0.1 and
α = 0.2. These α settings enabled us to fine-tune the
weight between the local community and global network
influence in our centrality calculations. Our findings showed
that centrality with these α values outperformed traditional
centrality, such as Information Centrality, Load Centrality,
and Harmonic Centrality, among others, in detecting crucial
nodes. Such a trend was all the more discernible concerning
biological networks where our approach exhibited better
performance than the other centrality measures towards
detecting hallmark genes associated with lung adenocarci-
noma cancer. The better performance of our method at α =

0.1 and α = 0.2 underlines the critical role of integrating
community structures within network centrality to offer a
more elaborate and accurate understanding of the influential
nodes in complex systems.

Most benchmark algorithms, including Eigenvector Cen-
trality, Katz Centrality and Information Centrality, have a
computational complexity of O(n3). This is further explained
by the fact that most of them depend on matrix operations
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TABLE 7. Result of community-consideration betweenness centrality.

FIGURE 14. Jackknife curve analysis showing detection of cancer
hallmarks with community-consideration centralities (Degree, Closeness
and Betweenness) at α = 0.1 and α = 0.2 vis-a-vis as benchmarks.

such as eigenvalue computation and computation which
involve matrix inversion, and have cubic characteristics
in line with those of the network nodes. Harmonic Cen-
trality works with an O(nm) complexity where the m is
the number of edges. This reduced complexity provides
computational benefits, particularly for large-scale sparse
networks. The proposed algorithm, community consideration
centrality (including the degree, closeness and betweenness
measures), complements all classical centrality measures
from a traditional computational complexity perspective.
Specifically, it shares the O(n3) complexity for the same
reasons as its counterparts – intensive matrix operations
standard for network analysis.

D. ANALYSIS OF HALLMARK GENES IN CANCER
THROUGH COMMUNITY CONSIDERATION CENTRALITY
Using the community consideration centrality approach,
which utilizes degree, closeness, and betweenness centrality,
as outlined in Table 5, 6 and 7, we identified a set of genes
that play a crucial role in the development and progression
of cancer. Our analysis revealed that 18 genes, including
AKT1, ATM, BRCA1, CASP8, CREBBP, CTNNB1, EGFR,
EP300, HRAS, KRAS, MYC, PIK3CA, PIK3R1, PTPN11,

TABLE 8. Hallmark genes in cancer.

RHOA, SMAD3, SMARCA4, and TP53, played a significant
role in cancer hallmarks at α = 0.1 and α = 0.2.
These genes have been mapped to the COSMIC database,
and their specific roles in key cancer processes such as
proliferative signaling, growth suppression, escaping immune
response of cancer, replicative immortality, tumor-promoting
inflammation, invasion andmetastasis, angiogenesis, genome
instability and mutations, escape programmed cell death, and
changes in cellular energetics are shown in Table 8.

Our analysis further investigated the categorization of these
genes, identifying them as either oncogenes or tumor suppres-
sor gene classes, based on their regulatory patterns in cancer.
Oncogenes are normally overexpressed in cancerous tissues
and promote tumorigenesis by stimulating cell proliferation,
survival, and other oncogenic processes. However, tumor
suppressor genes are significantly downregulated or inacti-
vated in cancerous conditions, with frequent downregulation
antagonizing the modulation of cell growth, DNA repair, and
apoptosis mechanisms to reduce the incidence or promote
regression of disease.
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For example, KRAS is a classic prototype oncogene that
is upregulated in various cancers, leading to continuous pro-
liferative signaling. Conversely, TP53, which is considered a
tumor suppressor gene, is mostly downregulated or mutated
in cancer, leading to a loss of control over the immune
response and cell death.

E. PARAMETER OPTIMIZATION IN COMMUNITY
CONSIDERATION CENTRALITY
In the crucial discussion regarding consideration weight α,
this parameter ranged from 0.0 (signifying full consideration
of communities) to 1.0 (indicating sole reliance on network
structure upon centrality calculation), corresponding sensi-
tively to centrality measures. This is crucial for the studying
networks with different community structures. Our empirical
analysis revealed a strong influence of community structure
on centrality within such networks, especially with α values
close to zero (α = 0.1 and α = 0.2). This observation
is essential within networks with community structures
such as those obtained from our lung cancer datasets.
In these networks, clustered and interconnected nodes within
communities are critical for the functional integrity of the
networks. It is illustrates the importance of low α values,
revealing that more genes are hallmarks of cancer. However,
the selection of α approximating 1 is more appropriate when
no communities can be identified or when the modularity is
low. Centrality measures are influenced more by the overall
network structure than by community structure. Choosing
α = 0.1 and α = 0.2 as near-optimal solutions demonstrates
that community structures are essential in biological network
analysis. This underscores the urgency of considering the
individual properties of nodes and their roles within commu-
nities. It is more so for scientists who try tomake sense amidst
complex biological systems where understanding individual
and collective behaviors becomes exceedingly significant.
Thus, our choice of α value in this study not only advances
the methodology of network analysis but also highlights
community structures as essential components for identifying
critical elements within biological networks. Therefore, our
optimal α settings, indicate the strong influence of commu-
nity structure and support the need for a nuanced approach
that balances individual node significance with the commu-
nity context and networks in which community structures
reside.

F. EXPANDONG HORIZONS: COMMUNITY-
CONSIDERATION CENTRALITY IN DIVERSE DOMAINS
Thus, this study offers significant development for net-
work analysis literature because it innovatively proposes
more consideration of community structures to be given
as input when computing centrality measures. Given the
potential value of our methodology beyond lung cancer,
it has general implications and provides valuable insights
across various domains. Traditional centrality measures
often overlook the intricate sub-structures within a net-

work. By incorporating these communities, this approach
allows for a more detailed and accurate analysis of net-
works,thereby enhancing our understanding of the impor-
tance of individual nodes and the collective influence of
communities.

Community-consideration centrality is not only limited
to biological networks but also applies to other fields
such as social network analysis, organizational studies, and
communication networks. For instance, in social network
analysis, community structure effects are essential for
sufficiently identifying critical influencers or understanding
group dynamics. Similarly, in organizational networks, this
can be useful in identifying centralized units or departments
that substantially impact the flow of information and, thus,
organizational efficiency. Integrating community structures
into epidemological network models can help delve deeper
into the mechanisms of disease spread. This can help detect
potential hotspots or super-spreaders in communities, thus
helping to design more targeted and better intervention
measures. This approach is also helpful for understanding
the dynamics of disease spread in dense populations.
Furthermore, our system biology method helps decode
complex biological networks such as cellular processes, gene
regulation, and metabolic pathways. Thus, understanding
the role of these community structures in such networks
may provide new biomarkers for diseases and potential
drug targets, and a better understanding of the mechanisms
associated with the plethora of biological functions being
studied.

The concept of community consideration centrality opens
up research in new areas that study the dynamics of
communities among different types of networks. Further
research may aim to develop more sophisticated models
that dynamically adjust community weights according to
network characteristics, apply them to overlapping commu-
nities, or translate this concept into large-scale networks
to understand global patterns and behaviors. The broader
implications of our research indicate the importance of
community structure in contention with network analyses.
This adds value to theoretical considerations in network
science and provides practical tools and insights formanaging
real-life problems in all possible scientific and social
areas.

V. CONCLUSION
This study proposes three centralities that consider the
community: the community consideration degree, closeness,
and betweenness centrality. Using this approach, community
involvement with a certain weight can be considered,if a com-
munity is found in the network. We tested some real-world
Zachary Karate and Dolphin datasets with proportional
results, and we used community-consideration centrality to
determine the hallmark of lung cancer and showed better
results than using community-consideration centrality. Even
though the performance is good, there is still potential for
improvement and development: for example the relationship
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between the community structures formed to determine α

and determine the community-consideration centrality of
overlapping communities.

REFERENCES
[1] S. Gómez, ‘‘Centrality in networks: Finding the most important nodes,’’

in Business and Consumer Analytics: New Ideas. Switzerland: Springer,
2019, pp. 401–433.

[2] L. C. Freeman, ‘‘Centrality in social networks conceptual clarification,’’
Social Netw., vol. 1, no. 3, pp. 215–239, Jan. 1978.

[3] K. Das, S. Samanta, and M. Pal, ‘‘Study on centrality measures in social
networks: A survey,’’ Social Netw. Anal. Mining, vol. 8, no. 1, pp. 1–11,
Dec. 2018.

[4] S. B. S. Omit, S. Akhter, H. K. Rana, A. R. M. Rana, N. K. Podder,
M. I. Rakib, and A. Nobi, ‘‘Identification of comorbidities, genomic
associations, and molecular mechanisms for COVID-19 using
bioinformatics approaches,’’ BioMed Res. Int., vol. 2023, Jan. 2023,
Art. no. 6996307.

[5] X.-Y. Zhang, T.-Y. He, C.-Y. Xu, K.-F. Cao, and X.-S. Zhang,
‘‘Theoretical investigation of the pathway-based network of type 2
diabetes mellitus-related genes,’’ Eur. Phys. J. B, vol. 96, no. 6, p. 86,
Jun. 2023.

[6] B. A. Monchka, C. K. Leung, N. C. Nickel, and L. M. Lix, ‘‘The effect
of disease co-occurrence measurement on multimorbidity networks:
A population-based study,’’ BMC Med. Res. Methodol., vol. 22, no. 1,
p. 165, Jun. 2022.

[7] F. Zhou and S. Uddin, ‘‘Interpretable drug-to-drug network features for
predicting adverse drug reactions,’’ Healthcare, vol. 11, no. 4, p. 610,
Feb. 2023.

[8] G. Li, M. Li, J. Wang, Y. Li, and Y. Pan, ‘‘United neighborhood closeness
centrality and orthology for predicting essential proteins,’’ IEEE/ACM
Trans. Comput. Biol. Bioinf., vol. 17, no. 4, pp. 1451–1458, Jul. 2020.

[9] S. Uddin, A. Khan, H. Lu, F. Zhou, and S. Karim, ‘‘Suburban road networks
to explore COVID-19 vulnerability and severity,’’ Int. J. Environ. Res.
Public Health, vol. 19, no. 4, p. 2039, 2022.

[10] C. Durón, Y. Pan, D. H. Gutmann, J. Hardin, and A. Radunskaya,
‘‘Variability of betweenness centrality and its effect on identifying
essential genes,’’ Bull. Math. Biol., vol. 81, no. 9, pp. 3655–3673,
Sep. 2019.

[11] R. Jothi, ‘‘A betweenness centrality guided clustering algorithm and its
applications to cancer diagnosis,’’ in Mining Intelligence and Knowledge
Exploration, A. Ghosh, R. Pal, and R. Prasath, Eds. Cham, Switzerland:
Springer, 2017, pp. 35–42.

[12] A.-L. Barabasi, Network Science. Cambridge, U.K.: Cambridge Univ.
Press, 2016.

[13] S. Fortunato, ‘‘Community detection in graphs,’’ Phys. Rep., vol. 486,
nos. 3–5, pp. 75–174, Feb. 2010.

[14] F. Liu, S. Xue, J. Wu, C. Zhou, W. Hu, C. Paris, S. Nepal, J. Yang,
and P. S. Yu, ‘‘Deep learning for community detection: Progress,
challenges and opportunities,’’ in Proc. Int. Joint Conf. Artif. Intell., 2020,
pp. 1–7.

[15] S. Rahiminejad, M. R. Maurya, and S. Subramaniam, ‘‘Topological and
functional comparison of community detection algorithms in biological
networks,’’ BMC Bioinf., vol. 20, no. 1, pp. 1–25, Dec. 2019.

[16] I. Manipur, M. Giordano, M. Piccirillo, S. Parashuraman, and
L. Maddalena, ‘‘Community detection in protein–protein interaction
networks and applications,’’ IEEE/ACM Trans. Comput. Biol. Bioinf.,
vol. 20, no. 1, pp. 217–237, Jan. 2023.

[17] H. C. Rustamaji,W. A. Kusuma, S. Nurdiati, and I. Batubara, ‘‘Community
detection with greedy modularity disassembly strategy,’’ Tech. Rep., 2023.

[18] M. E. J. Newman, ‘‘Fast algorithm for detecting community structure in
networks,’’ Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip.
Top., vol. 69, no. 6, Jun. 2004, Art. no. 066133.

[19] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, ‘‘Fast
unfolding of communities in large networks,’’ J. Stat. Mech., Theory Exp.,
vol. 2008, no. 10, Oct. 2008, Art. no. P10008.

[20] M. Girvan and M. E. J. Newman, ‘‘Community structure in social
and biological networks,’’ Proc. Nat. Acad. Sci. USA, vol. 99, no. 12,
pp. 7821–7826, Jun. 2002.

[21] K. Berahmand, Y. Li, and Y. Xu, ‘‘DAC-HPP: Deep attributed clustering
with high-order proximity preserve,’’ Neural Comput. Appl., vol. 35,
no. 34, pp. 24493–24511, Dec. 2023.

[22] M. Rostami, M. Oussalah, K. Berahmand, and V. Farrahi, ‘‘Community
detection algorithms in healthcare applications: A systematic review,’’
IEEE Access, vol. 11, pp. 30247–30272, 2023.

[23] E. Landau, ‘‘Zur relativen wertbemessung der turnierresultate,’’Deutsches
Wochenschach, vol. 11, pp. 366–369, 1895.

[24] L. Katz, ‘‘A new status index derived from sociometric analysis,’’
Psychometrika, vol. 18, no. 1, pp. 39–43, Mar. 1953.

[25] K. Stephenson and M. Zelen, ‘‘Rethinking centrality: Methods and
examples,’’ Social Netw., vol. 11, no. 1, pp. 1–37, Mar. 1989.

[26] K.-I. Goh, B. Kahng, and D. Kim, ‘‘Universal behavior of load distribution
in scale-free networks,’’ Phys. Rev. Lett., vol. 87, no. 27, Dec. 2001,
Art. no. 278701.

[27] M. E. J. Newman, ‘‘Scientific collaboration networks. II. Shortest paths,
weighted networks, and centrality,’’ Phys. Rev. E, Stat. Phys. Plasmas
Fluids Relat. Interdiscip. Top., vol. 64, no. 1, p. 16132, Jun. 2001.

[28] E. Estrada and J. A. Rodríguez-Velázquez, ‘‘Subgraph centrality in
complex networks,’’ Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat.
Interdiscip. Top., vol. 71, no. 5, p. 56103, May 2005.

[29] E. Estrada, D. J. Higham, and N. Hatano, ‘‘Communicability betweenness
in complex networks,’’ Phys. A, Stat. Mech. Appl., vol. 388, no. 5,
pp. 764–774, Mar. 2009.

[30] A.-M. Kermarrec, E. Le Merrer, B. Sericola, and G. Trédan, ‘‘Sec-
ond order centrality: Distributed assessment of nodes criticity in
complex networks,’’ Comput. Commun., vol. 34, no. 5, pp. 619–628,
Apr. 2011.

[31] P. Boldi and S. Vigna, ‘‘Axioms for centrality,’’ 2013, arXiv:1308.2140.
[32] F. Iannelli, M. S. Mariani, and I. M. Sokolov, ‘‘Influencers identification

in complex networks through reaction-diffusion dynamics,’’ Phys. Rev. E,
Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 98, no. 6, p. 62302,
Dec. 2018.

[33] A. Fronzetti Colladon and M. Naldi, ‘‘Distinctiveness centrality in social
networks,’’ PLoS ONE, vol. 15, no. 5, May 2020, Art. no. e0233276.

[34] W. W. Zachary, ‘‘An information flow model for conflict and fission
in small groups,’’ J. Anthropological Res., vol. 33, no. 4, pp. 452–473,
Dec. 1977.

[35] D. Lusseau, K. Schneider, O. J. Boisseau, P. Haase, E. Slooten, and
S. M. Dawson, ‘‘The bottlenose dolphin community of doubtful sound
features a large proportion of long-lasting associations,’’ Behav. Ecology
Sociobiol., vol. 54, no. 4, pp. 396–405, Sep. 2003.

[36] J. Cheng, X. Yin, Q. Li, H. Yang, L. Li, M. Leng, and X. Chen,
‘‘Voting simulation based agglomerative hierarchical method for net-
work community detection,’’ Sci. Rep., vol. 8, no. 1, pp. 1–11,
May 2018.

[37] J. Liu, T. Lichtenberg, and K. A. Hoadley, ‘‘An integrated TCGA pan-
cancer clinical data resource to drive high-quality survival outcome
analytics,’’ Cell, vol. 173, no. 2, pp. 400–416, 2018.

[38] F. Martínez-Jiménez, F. Muiños, I. Sentís, J. Deu-Pons, I. Reyes-Salazar,
C. Arnedo-Pac, L. Mularoni, O. Pich, J. Bonet, H. Kranas,
A. Gonzalez-Perez, and N. Lopez-Bigas, ‘‘A compendium of mutational
cancer driver genes,’’ Nature Rev. Cancer, vol. 20, no. 10, pp. 555–572,
Aug. 2020.

[39] E. Cerami, J. Gao, U. Dogrusoz, B. E. Gross, S. O. Sumer, B. A. Aksoy,
A. Jacobsen, C. J. Byrne, M. L. Heuer, E. Larsson, Y. Antipin, B. Reva,
A. P. Goldberg, C. Sander, and N. Schultz, ‘‘The cBio cancer genomics
portal: An open platform for exploring multidimensional cancer genomics
data,’’ Cancer Discovery, vol. 2, no. 5, pp. 401–404, May 2012.

[40] J. G. Tate, S. Bamford, H. C. Jubb, Z. Sondka, D. M. Beare,
N. Bindal, H. Boutselakis, C. G. Cole, C. Creatore, E. Dawson, and P. Fish,
‘‘COSMIC: The catalogue of somatic mutations in cancer,’’ Nucleic Acids
Res., vol. 47, pp. 941–947, Jan. 2019.

[41] D. Hanahan and R. A. Weinberg, ‘‘Hallmarks of cancer: The next
generation,’’ Cell, vol. 144, no. 5, pp. 646–674, Mar. 2011.

[42] H. Heberle, G. V. Meirelles, F. R. da Silva, G. P. Telles, and
R. Minghim, ‘‘InteractiVenn: A web-based tool for the analysis of
sets through venn diagrams,’’ BMC Bioinf., vol. 16, no. 1, pp. 1–7,
May 2015.

[43] J. Zhong, C. Tang, W. Peng, M. Xie, Y. Sun, Q. Tang, Q. Xiao, and
J. Yang, ‘‘A novel essential protein identification method based on PPI
networks and gene expression data,’’ BMC Bioinf., vol. 22, no. 1, p. 248,
Dec. 2021.

[44] S. Li, Z. Zhang, X. Li, Y. Tan, L. Wang, and Z. Chen, ‘‘An iteration
model for identifying essential proteins by combining comprehensive PPI
network with biological information,’’ BMC Bioinf., vol. 22, no. 1, p. 430,
Sep. 2021.

VOLUME 11, 2023 134353



H. C. Rustamaji et al.: Community-Consideration Centrality, a Case Study of Lung Cancer Proteins

HERU CAHYA RUSTAMAJI was born in
Yogyakarta, Indonesia, in 1971. He received
the bachelor’s degree in computer science from
Gadjah Mada University, and the master’s degree
from the Bandung Institute of Technology. He is
currently pursuing the Ph.D. degree in computer
science with IPB University. He is a Lecturer
with UPN Veteran Yogyakarta Informatics Engi-
neering. His research interests include network
science, bioinformatics, and machine learning.

WISNU ANANTA KUSUMA received the bach-
elor’s and master’s degrees from the Bandung
Institute of Technology, and the Ph.D. degree
from the Tokyo Institute of Technology, in 2012.
He is currently an Associate Professor with the
Computer Science Department, IPB University.
He is also the Executive Secretary of Institute for
International Research on Advanced Technology,
IPB University, coordinator of the Bioinformatics
Working Group, Faculty of Mathematics and

Natural Science, IPB University, and coordinator of the Bioinformatics
and High-Performance Computing Research Group, Advanced Research
Laboratory, IPB University. He has been the author of more than 60 articles
and has reviewed international journals. His current research interests include
machine learning, high-performance computing, and bioinformatic research.
He is the Chairperson of the Indonesian Society of Bioinformatics and
Biodiversity and an ExCo Member of the Asia Pacific Bioinformatics
Network (APBioNet).

SRI NURDIATI received the bachelor’s degree
from the Department of Statistics, FMIPA, IPB
University, the master’s degree in computer sci-
ence from the University of Western Ontario,
Canada, and the doctoral degree in applied mathe-
matics from Twente University, The Netherlands.
She is currently a Professor of mathematical
science with theMathematics Department, Faculty
of Mathematics and Natural Sciences, IPB Uni-
versity. She has conducted extensive research in
applied mathematics and network science.

IRMANIDA BATUBARA received the bachelor’s
and master’s degrees from the Chemistry Depart-
ment, IPB University, Indonesia, and the Ph.D.
degree from Gifu University, Japan, in 2009. She
was the Director of the Tropical Biopharmaca
Research Center, IPB University. She is currently
a Professor with the Department of Chemistry,
Faculty of Mathematics and Natural Sciences, IPB
University.

134354 VOLUME 11, 2023


