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ABSTRACT To achieve the goal of carbon neutrality, increasing the contribution of renewable energy
sources (RESs) such as solar and wind to power grids is necessary. However, existing energy management
systems are not well-equipped to handle the inherent volatility of RESs, and previous attempts to develop
new management systems have mostly been limited to small scales such as microgrids and buildings. The
Korea Electrotechnology Research Institute and Korea Institute of Energy Research jointly developed a
renewables management system (RMS) for large-scale grids that comprises four parts: a 12-h-ahead solar
irradiance forecast model; look-ahead horizon stability assessment; generation o f future RES penetration
scenarios by a generative adversarial networks model; and confidence level-based adaptive droop control
strategy for energy storage systems. In particular, the adaptive droop control obtains the joint probability
distribution at each substation based on copula theory, and the droop gain changes with the confidence level.
Simulations were performed to demonstrate the effectiveness of the proposed RMS at managing large-scale
grids with high RES penetration.

INDEX TERMS Renewable management system, forecast, copula theory, adaptive droop control, energy
storage system.

I. INTRODUCTION
The rapid development of renewable energy sources (RESs)
such as solar and wind power is expected to play an important
role in achieving the goal of carbon neutrality and stimulating
the global economy [1]. South Korea is aiming to achieve
carbon neutrality before 2050, and many domestic scholars
have focused on contributing to this goal [2]. Two solutions
have been proposed to achieve carbon neutrality: increas-
ing RES utilization to 400 GW to replace fossil fuels and
increasing energy efficiency by integrating RESs and energy
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storage systems (ESS). South Korea has an ambitious goal
to achieve 70% RES generation ratio by 2050, and to phase
out fossil fuel power generation. Due to geographical limi-
tations, the solar installation rate is overwhelmingly higher
than that of wind energy, necessitating a greater capacity
of solar. However, the intermittency of solar power requires
revolutionary changes in grid operation and planning [3].
In 2050, ±4GW variation can occur when there is a 1% of
forecast error in peak level. Accordingly, some of the most
pressing issues are the development of practical and precise
forecast techniques and look-ahead horizon stability assess-
ment. Thus, some researchers have argued that a separate
renewables management system (RMS) should be developed
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to compensate existing centralized energy management sys-
tems. Therefore, the proposed RMS system aims to focus on
the enhancement of RESs forecasting technologies and the
control of ESS at the substation level. Some attempts have
already been made to develop various RMS architectures,
as shown in Table 1.

TABLE 1. Previous studies on key functions in RMS.

For instance, Mohandes et al. [4] used the multiplicative
weight update method with deep learning to improve fore-
casting. In addition to this, novel deep learning techniques
for forecasting the RES supply have been introduced nowa-
days [5], [6]. However, those techniques suffer in accuracy
when frequent curtailment orders occur. Large-scale grids
with high RES penetration have too many possible curtail-
ment orders for a given time step. Wrong data can generate
inaccurate forecasts, and considering all exceptions is impos-
sible. In addition, mitigating the variability of RESs is gener-
ally limited tomaximumpower point tracking. To address this
issue, we propose the lattice-based satellite imaging is used
for practical forecasting of RESs. And, many studies have
also been conducted on power dispatch in response to changes
in RESs generation, and this technology is playing a key
role in RMS systems. For example, Solanki et al. [7] incor-
porated various optimization algorithms for hourly dispatch
of a microgrid. Yang et al. [8] optimized the power flow for
economic efficiency to realize practical real-time control of
distributed generators. And, Cui et al. [9] considered both the
equivalent CO2 emissions and operating costs for dispatch of
a microgrid. Barchi et al. [10] and Dinh et al. [11] both pro-
posed rule-based control schemes for distributed generators
in buildings and homes. As mentioned earlier, these studies
mostly considered RMSs for small-scale power grids, such as
microgrids, buildings, and homes.

Unfortunately, RMS systems have been predominantly
developed and researched for distributed generators in small-
scale network, rather than for large-scale power systems.
Note that, grid operators cannot combine multiple RMS
architectures that have their own management algorithms.
Furthermore, grid operators cannot regulate the power of non-
dispatchable RESs. In South Korea, meticulous preparations
are ongoing for the formulation of a virtual power plant and
bidding market for RESs. However, RESs are not obligated
to satisfy grid regulations extracted from the recent IEEE
standards IEEE 1547 or IEEE 2800, and there are inherent
update issues with coordinating control schemes for exist-
ing distributed generators. An effective way to address RES
variability in South Korea is to predict the power supply
at each substation and eliminate variability in real-time by
using ESSs.

FIGURE 1. Proposed architecture of the RMS.

Therefore, this paper presents an advanced RMS that
was jointly developed by the Korea Electrotechnology
Research Institute (KERI) and Korea Institute of Energy
Research (KIER), as shown in Fig. 1. The Korean RMS
uses copula theory to derive a confidence level based on
past and current forecast data. Given the high proportion of
solar power in South Korea, integrating forecast accuracy
metrics into the system control logic is essential. Thus, the
Korean RMS incorporates both look-ahead horizon stability
assessment and an adaptive droop control scheme for the
ESS. Several studies have demonstrated that adaptive droop
control of the ESS based on copula theory is an effective
approach [12], [13]. Rather than a monitoring system, the
Korean RMS should be considered a control system. Pre-
vious studies have not considered a control strategy for the
ESS that considers the confidence level of the RESs. Thus,
an advanced control strategy is introduced that considers
the forecast uncertainty of RESs to minimize curtailment
orders and properly manage the state of charge (SOC) of
the ESS. For grid planning, the investment costs for future
substations and transmissions depend on the RES patterns.
Many physical model-based methods have difficulties with
handling uncertainties from stochastic changes inherent to
someRESs. Using representative values for RESs can leads to
inaccurate investments in future grids [14]. Thus, a generative
adversarial networks (GAN) model was utilized derive mean-
ingful RES patterns at each substation that are fully utilized
for grid planning. The main contributions of the Korean RMS
can be summarized as follows:

• Lattice-based satellite imaging is used for precise fore-
casting of RESs. RESs can be fully observed for
each substation without making any changes to the
model.

• Grid data are generated, and over 10 types of stability
assessments are performed in 5-min intervals. The sta-
bility results are organized in an SQL database and are
displayed by the RMS.

• The forecast data are used as inputs of the GAN
model [15] to obtain future RES penetration scenarios
for grid planning.

• An adaptive droop control scheme for ESSs based on
copula theory is introduced to minimize curtailment.
The control logic depends on the confidence level
of the RESs. Any control strategy can be integrated with
the RMS.
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The rest of the paper is organized as follows. Section II
introduces the architecture of the Korean RMS. Section III
describes the adaptive droop control of the ESS based on cop-
ula theory. Section IV presents simulations used to evaluate
the performance of the Korean RMS. Section V concludes the
paper.

II. KOREAN RENEWABLES MANAGEMENT SYSTEM
The Korean RMS was installed in KERI, and a data com-
munication structure has been constructed between the email
servers of KERI and KIER. The Korean RMS can be divided
into four main parts, which are described below.

A. FORECASTING SOLAR IRRADIANCE BASED ON
SATELLITE IMAGING
The forecast model of the Korean RMS is focused on
forecasting the solar irradiance because solar power makes
up a large proportion of RESs in South Korea. The Uni-
fied Model–Local Data Assimilation and Prediction System
(UM-LDAPS) [16] operated by the Korea Meteorological
Administration is employed for the 12-h-ahead solar irradi-
ance forecast. UM-LDAPS is usually initialized four times
per day (i.e., 03:00, 09:00, 15:00, and 21:00 Korean Standard
Time (KST)), and the forecast horizon is increased by up to
48 h from each initialization. In this study, the 48-h forecast
initialized at 03:00 KST each day was utilized. Owing to
spin-up time, the modeling output was valid 5 h after the
simulation began. Therefore, the time domain was set to
08:00–20:00 KST each day. To reduce the intrinsic bias
of UM-LDAPS, the analog ensemble method was used to
forecast each grid cell. This method is used to post-process
forecast data by utilizing historical analogs to forecast future
events or conditions [17], and it is based on the concept that
similar patterns in the past tend to be associated with similar
outcomes in the future:

∥Ft ,At∥ =

∑Nv

i=1

wi
σfi

√∑k

j=−k
(Fi,t−j − Ai,t+j)2. (1)

whereFt is the current deterministic forecast at a future time t ,
At is the analog forecast for the same time and location valid
at a past time t ′, Nv is the number of physical variables, wi is
the weight of each variable, σfi is the standard deviation of
the training time series, and k is the half of the number of
additional times computed. Note that t ′ represents the elapsed
time in the concept of window time, so t ′ denotes the previous
time in the time series data. (1) requires at least two physical
variables, which in this study were defined as the direct nor-
mal irradiance (DNI) and global horizontal irradiance (GHI)
and were weighted equally. The final forecast is the average
of the analog ensemble members. The number of analogs
to be used and the length of the training period can also
influence the forecast accuracy.

The analog ensemble method has several steps [18].
First, the forecast and historical variables are defined.
To determine GHI, a composite 2-year dataset (2018–2019)
from UM-LDAPS was equally divided into historical

analog (2018) and verification (2019) datasets. Observation
data were retrieved from the University of Arizona Solar
Irradiance Based on Satellite–KIER (UASIBS-KIER) model,
which estimates the solar irradiance every 10 min for the
Korean peninsula by using the GK–2A L1B dataset as shown
in Fig. 2a. A collocation process was performed because of
the different grid spacings for UM-LDAPS (i.e., 2 km) and
UASIBS-KIER (i.e., 500 m). Then, the physical variables
of the UM-LDAPS model were selected with their corre-
sponding weights. As noted above, GHI and DNI were used
as predictors with equal weightings because they provide
analogous data. Finally, the analog ensemble method was
performed by computing the distance of every lead from
past forecasts issued at the same time. Forecasts were made
based on independent searches. The data were then arranged,
and the forecast with the smallest distance was selected. The
average value of the selected analogs was calculated, which
was set as the forecast for the same lead time and location.
These steps are important because they eliminate cumulative
error and missing forecasts. The analog ensemble method
with UM-LDAPS and UASIBS-KIER forecasts the hourly
mean solar irradiance, which can be interpolated into the
30-min average solar irradiance by using the clearness index.

FIGURE 2. (a) Domain for the UASIBS-KIER model; (b) cluster groups.

TABLE 2. Verification results.

Table 2 summarizes the verification results. Considering
all grid cells over the Korean peninsula would have been
too much for analysis, so cluster analysis was performed to
group the forecasts, as shown in Fig. 2b. The nominal root
mean square error (nRMSE) was 6.73% on average over
the Korean peninsula, and the lowest nRMSE was in the
southeast (SE) region. This may be because the SE region
receives a higher annual solar irradiance than the rest of
South Korea [19]. Finally, the locations of each substation
were mapped onto all grid cells over the Korean peninsula.
The distance between a RES-based power plant location and
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FIGURE 3. Architecture of the proposed Korean RMS for grid operation and planning.

grid cells was formulated by considering the sphere of Earth’s
surface as a haversine function.

B. LOOK-AHEAD HORIZON STABILITY ASSESSMENT
Recent studies on online power system stability assessment
technology predominantly employ deep learning methodolo-
gies. However, our system leverages existing commercial
software to evaluate the future power system stability. This
methodology aligns with conventional approaches seen in
previous research [21], [22], [23]. In our study, the stabil-
ity assessments are conducted based on data acquired from
SCADA (Supervisory Control and Data Acquisition) sys-
tems, rather than relying on high-resolution measurement
devices such as PMUs (Phasor Measurement Units). For
the look-ahead horizon stability assessment, multiple static
and dynamic parameters are assessed for their stability in
real time by using Python and Power System Simulator for
Engineering (PSS®E), as detailed in Table 3 and Fig. 3.
The current network data (.∗raw) and forecast results (.xlsx)
for each substation are integrated to obtain the look-ahead
horizon stability. The main Python function calls multiple
sub-functions simultaneously, which perform designated sta-
bility analyses by using the created future network data.
To mitigate the calculation time for PSS®E, the results are
transferred to a dashboard server in 5-min intervals through
the multi-tenant Apache NiFi socket, which is an open-source
data communication tool. Inter-area power flow analysis,
fault current analysis, contingency analysis, and dynamic
analysis calculation times are 0.76, 26.4, 18.09, and 60 sec-
onds, respectively.

C. CONFIDENCE LEVEL BASED ON A COPULA THEORY
For a variable droop gain, the confidence level (i.e., fore-
cast accuracy) of the look-ahead horizon stability assessment

TABLE 3. Look-ahead stability assessment with PSS® E.

should be calculated. For the Korean RMS, the confidence
level (p) is obtained as follows. First, the correlation between
variables can be determined by using Pearson’s correlation
coefficient rxy for the bivariate case [20], as shown in (2).

rxy =

∑n
i=1 (xi − x̄) (yi − ȳ)√∑n

i=1 (xi − x̄)2
√∑n

i=1 (yi − ȳ)2
(2)

where x̄ and ȳ are the average values of each variable.
rxy depicts the linear correlation between variables, but
it cannot fully represent the interdependency or correla-
tional characteristics between them [21]. Thus, a copula-
based approach was used to analyze the interdependency
between the historical and current forecast data. The copula
is a multivariate cumulative distribution function that can
be defined for variables following a uniform distribution.
Based on Sklar’s theorem, the bivariate case is expressed
as follows:

H (x, y) = C
(
Fx (x) ,Fy (y)

)
(3)
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where H denotes a joint distribution function, and C
and Fx denote the copula and cumulative distribution
function (CDF), respectively [22]. As noted above, the
copula-based approach requires variables to follow a uniform
distribution in the range [0, 1]. To analyze the forecast and
measured data, variables should be transformed into CDFs,
after which the data are transformed into rank parameters
with a uniform distribution. Then, the copula-based approach
is applicable. Note that a CDF requires a probabilistic den-
sity function (PDF). Thus, if the variable follows a certain
distribution, a parametric approach can be applied. For exam-
ple, if the wind speed data are known to follow a Weibull
distribution, the PDF can be estimated by finding the param-
eters that can best represent the given data. However, when
information on the distribution is not available, this approach
cannot be utilized, and a non-parametric approach should be
used instead. Kernel density estimation is a non-parametric
approach to estimating the PDF of given data based on the
defined kernel function [23], as shown in (4).

f̂h (x) =
1
n

∑n

i=1
Kh (x − xi) , (4)

In general, a Gaussian function, Epanechikov function,
or uniform function is utilized as the kernel function. These
are respectively defined below:

Kh,G (x;µ, σ) =
1

σ
√
2π

e−(x−µ)2/(2σ 2), (5)

Kh,EP (x) =
3
4

(
1 − x2

)
(for |x| < 1) , (6)

Kh,u (x;a, b) =
1

b− a
(for a ≤ x ≤ b) . (7)

Then, the copula-based rank correlation and confidence level
p can be computed:(

UPM
p − PF

) (
LPMp − PF

)
= 0. (8)

where PF is the forecast data, PM is the measured data, and
Up and Lp are the upper and lower bounds, respectively, of the
confidence interval. As shown in Fig. 4, the confidence level
analysis is used to obtain the distribution of forecast data
when historical data are given. The confidence level p derived
from the two kinds of data is then utilized for adaptive droop
control of the ESS at each substation.

FIGURE 4. Copula-based confidence level analysis for substation N.

D. GENERATING RES PENETRATION SCENARIOS FOR
GRID PLANNING
Once the RMS updates the forecast data, future RES
penetration scenarios can be created by using a GAN
model [14], as shown in Fig. 3. The Korean RMS imple-
ments an open-source GAN model [24] in Python. Grid
planning requires utilizing past historical data to capture
the stochastic characteristics of RESs. Using constant val-
ues in a model-based approach can lead to incorrect results.
Moreover, assuming numerous scenarios considering the
uncertainty of RESs is time-consuming and inefficient.
To overcome these issues, the GANmodel is used to generate
RES penetration scenarios and capture stochastic data. This
approach overcomes the difficulties associated with the lack
of perfect knowledge of future PDFs. The generated scenarios
are then utilized for grid planning.

III. COPULA-BASED ADAPTIVE DROOP CONTROL OF ESS
An adaptive droop control algorithm is used for better
ramp-rate control and SOCmanagement of the ESS. As noted
earlier, the Korean RMS is considered a control system rather
than a monitoring system, so a practical control strategy was
developed for large-scale ESSs that are installed at the upper
level of substations.

A. VOLTAGE SOURCE INTERFACE OF THE ESS MODEL
An ESS comprises battery cells grouped into modules, which
are all housed within a protective shell. These modules are
linked in series and in parallel to form a battery string [25].
The ESS includes a voltage source converter (VSC), which
enables four-quadrant control. In other words, the real current
can be directed to either charging or discharging operations
while the reactive current can independently either provide
or absorb reactive power. The ESS also depends on the SOC,
which represents the available battery energy as a percentage
of its total capacity. In this study, the ESS was modeled by
combining the plant, electrical, and converter models pro-
vided by the WECC.

FIGURE 5. ESS control structure with the WECC models.

Fig. 5 shows a typical vector control structure of the ESS.
The modeling approach is similar to that used by several
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previous studies [26], [27]. The ac system connected to the
VSC is modeled in a synchronously rotating reference d − q
frame, and the q-axis is locked with the ac voltage to ensure
decoupled control. The dynamics on the ac side of the VSC
in the d − q frame can be expressed as follows:[

vd1
vq1

]
−

[
vd2
vq2

]
= R

[
id1
iq1

]
+ L

d
dt

[
id1
iq1

]
+

[
−ωLiq1
ωLid1

]
, (9)[

vd1
vq1

]
−

[
vd2
vq2

]
= R

[
id
iq

]
+ L

d
dt

[
id
iq

]
−

[
−ωLiq
ωLid

]
. (10)

where v2 is the voltage at the point of common coupling
(PCC) and v1 is the voltage at the VSC. R and L are the
resistance and inductance, respectively, while i is the current
flowing to the ac system. ω is the angular frequency of the
ac voltage at the PCC. The reference voltage generated by
the inner current control loop is transformed back into the
abc frame and pulse with modulation (PWM) to produce the
desired converter three-phase voltage. The voltage reference
sent to the PWM is represented as follows:[

1vd2
1vq2

]
= −

[
Ad (s)
Aq (s)

] [
1id,ref −1id
1iq,ref −1iq

]
+ ωL

[
−1iq
1id

]
+

[
vd1
vq1

]
, (11)

where Ad (s) and Aq (s) =
kps+ki
s . Ad (s) and Aq (s) are

proportional–integral controllers, and the q-axis current of the
d−−q frame is aligned with the ac system phasor based on a
phased-locked loop (PLL), i.e., vq= 0. Thus, active, reactive
and droop control are all achieved by using P= 3/2 (vd id )
and Q= −3/2(vd iq).

B. DESIGN OF ADAPTIVE DROOP CONTROL
Tomitigate the variability inherent in RESs, ramp-rate control
is frequently implemented with ESSs [28], [29]. The power
variation can be represented in (12) and the proposed adaptive
droop control strategy is both intuitive and simplistic:

1P =
P (t) − P (t − 1t)

Pnor
, (12)

where 1P is defined as the difference between two consec-
utive samples of power normalized to the power Pnor . For a
standard ramp-rate Rs(%), Pref for the active power reference
of ESS can be calculated as follows:

Pref =


1P− Rl, if1P/ts > Rl,
1P+ Rl, if1P/ts < −Rl,
0, if − Rl ≤ 1P/ts ≤ Rl .

(13)

where ts is the sampling period and Rl is the ramp-rate
constraint at the PCC that can be calculated by (Rs×Pnor )/ts.
At high ramp rates, a constraint is necessary. Considering
stable range of SOC, the output of the d-axis current (id )
injected into the grid should be set as follows:

1) If SOC (t) > SOCmax , then idmin is updated to 0.
2) If SOCmin > SOC (t), then idmax is changed to 0.

idmax and idmin are the maximum and minimum active current
limits, respectively. By forcing these limits to zero when the
SOC hits its limits, the ESS is shut down so that it cannot
further charge or discharge once at SOCmax or SOCmin,
respectively.

The proposed adaptive droop control strategy is to design
the droop gain of Pref in the outer controller. A variable droop
is introduced to adjust the rapid charge or discharge at the
ESS. However, frequent changes in the droop gain are not
desirable for converter stability and SOC. Thus, three droop
gains were applied, as shown in Fig. 6: Di,0,Di,min,Di,max .
The variation in the confidence level is measured after the
solar irradiance forecast in 30-min intervals. For M substa-
tions, the ith ESS uses the proposed adaptive droop control
strategy, and the ESS of each substation has its own confi-
dence level. At any time, the weighted average method can
be used to recalculate the confidence level to accommodate
additional RESs. For example, if there are two RESs with
95% of 20 MVA and 85% of 10 MVA at one substation,
the confidence level can be calculated by (95×20 + 85×10)/
(20 + 10) = 91.6%. This implies a change in RES capacity
at the ith ESS, and the modified confidence level changes the
droop gain.

If the power variability 1P at substation is greater than Rl ,
then the ith ESS recognizes the need for ramp-rate control
with the variable droop gain. This can be achieved by the
binary control signal as shown in (14).

S =

{
0, if 1P (t) > Rl,
1, if 1P (t) ≤ Rl,

(14)

If there is sudden increase in RES power, then1P exceedsRl ,
and the binary signal S is switched to 0. If 1P is regulated to
within the stable range, then S= 1 to return to the original
control. After the confidence level p is obtained at each sub-
station, the droop value for the ith ESS is adaptively changed
as follows:

D′
i =


Di,0, if 0.3 ≥ p ≥ 0.8
Di,min, if p > 0.8
Di,max , if p < 0.3

(15)

A high droop gain is chosen when p is small because
this implies high confidence in the forecast accuracy for a
given time. Thus, a relatively fast current response flows into
the substation to regulate 1P. In contrast, a relatively slow
current response is injected into the substation for SOC man-
agement when p is large because the forecast accuracy may
be compromised for a given time. In summary, the confidence
level p determines the droop gain, as shown in Fig. 6.
There may be chattering and oscillation around the switch-

ing surface due to the variable structure control. For bounded
disturbances and uncertainties, the Lyapunov function should
still move toward zero [30]. Thus, convergence analysis can
be performed by defining the control law as ṡ (x) · s (x) < 0.
Given a fixed sampling period, the variable x= 1/P can be
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FIGURE 6. Confidence level-based adaptive droop control structure of
the ESS.

defined as

x = A · D′
+ B =

D
Pdelta − Rl

+ P0 (16)

where Pdelta is the 1P values integrated for a given sampling
time. Thus,Pdelta andRl are considered time-invariant values,
and the state-space equation can be written as ẋ = A · Ḋ′.

Considering that D0 is constant for linearization, the input
signal ucan be written as T · Ḋ′ +D0 = u. Then, u is defined
in the control law, and the switching surface s (x) is given by
s (x) = x−ts/Pdelta, and the product of s (x) and its derivative
is given by ṡ (x) · s (x) = ẋ · s (x) = A/T · (−D0 + u) · (x) .

Considering the droop gain range, we have ṡ (x) · s (x) < 0.
In conclusion, the proposed adaptive droop control strategy
does not degrade the ramp-rate control dynamics further than
the fixed droop strategy [31]. The final RMS workflow is
illustrated in Fig. 7, and it aligns with the contents of Fig. 1.

FIGURE 7. Proposed RMS workflow for ESS control.

IV. RESULTS AND DISCUSSION
A. VOLTAGE SOURCE INTERFACE OF THE ESS MODEL
For verification, the proposed control strategy for the Korean
RMS model was simulated on the IEEE-39 standard network

FIGURE 8. Modified IEEE-39 standard bus system.

depicted in Fig. 8, which was modified to add a solar power
plant and ESS. SOCmin and SOCmax were set to 0.2 and 0.8,
respectively. The total energy of the ESS was assumed
as 10 MWh; thus, the discharging time can be calculated

as T =

(
6MWh
10MWh

)
×(60×60×1h)

0.8−0.2 = 3,600s. The maximum out-
put power for 1 h was 8MWh−2MWh

1h = 6MWh. The maximum
current was calculated as Imax =

10MVA
10MW = 1.he calculated

parameters were used in the dynamic ESS models REGC_1,
REPC_A, and REECC_1. The nominal droop gain D0, mini-
mum droop gain Dmin, and maximum droop gain Dmax were
set to 0.035, 0.012, and 0.1, respectively.

To test the effectiveness of the proposed strategy, two cases
were considered. As shown in Figs. 9 and 10, the power
fluctuation 1P at bus 5 significantly exceeded the ramp-rate
limit of 1.0. Based on the stability assessment results, specific
combinations of RES patterns may overload the transmission
lines and consume the primary reserve. In the two cases,
the objective was to attenuate the power fluctuation via ESS
control while optimizing the battery SOC for different levels
of confidence in the forecast accuracy. The solar power pro-
files in Fig. 9 are based on actual measured data from plants.
The demand profiles were the same as those used in the test
case. To mimic real grid operations, the automatic generation
control of conventional generators with area control error was
also included in both cases. The area control error can be
calculated by −10 ×B×(fmes− f0). B and f0 were set to 0.625
and 50, respectively. Every 5 min, the 30-min-ahead forecast
of solar irradiance (total 12-h-ahead a day) and confidence
level pwere computed. The forecast values were then used to
calculate the confidence levels, as shown in Figs. 11 and 12.
Because of the lack of historical solar data for the IEEE-39
standard system, both the copula function and confidence
level were generated by applying actual measurements from
Jeonnam in South Korea.

B. PERFORMANCE EVALUATION
1) CASE 1: HIGH CONFIDENCE LEVEL
In case 1, the standard ramp rate Rs was set to 0.5. The
power fluctuation 1P at bus 5 is represented by a gray line
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FIGURE 9. Solar power profiles at bus 5.

FIGURE 10. Ramp-rate standard violation due to solar profiles.

FIGURE 11. Copula function result at Jeonnam.

FIGURE 12. Confidence level analysis.

in Fig. 13. The key feature is that variation in the solar
power generated variability at bus 5; thus, further charging
and discharging of the ESS could not be allowed when the
SOC hit its limit. An infeasible starting point was used for the
next control process so that the rest of the RESs, which are
dispatchable, can be curtailed. The fixed droop gain yielded a
fast response but rapidly reached the SOC constraint; this is to
be expected because the confidence level was not considered.
A value of p= 0.9 indicates a larger forecast error than when
p = 0.6. Thus, a slow response is recommended for better
SOC management. After time step 5, a small 1P occurred at

FIGURE 13. 1P at substation, ESS active power. and SOC in case 1.

the substation, as shown by the gray line, but the ESS rapidly
reached SOCmax with the fixed droop strategy. However, with
the proposed adaptive droop control strategy, the droop gain
was changed to Dmin. Better SOC management was achieved
while a slow d-axis current response was injected into the
grid. This is because the ESS received confidence level infor-
mation from the RMS, as depicted in time steps 4–8.5. The
proposed strategy allowed for effective SOC management
whilemaintaining a reserve for abrupt changes in solar power.

FIGURE 14. 1P at substation, ESS active power. and SOC in case 2.

2) CASE 2: LOW CONFIDENCE LEVEL
In case 2, the binary signal S was switched to zero because
ramp-rate control was introduced after time step 0.75. Then,
the confidence level p= 0.05 was transmitted from the RMS,
and droop gain was set to Dmax because a large 1P with a
low forecast error was expected. Thus, a fast response was
recommended to suppress variability from the solar power.
These actions are depicted by the pink square box in Fig. 14.
With the fixed droop gain strategy,1P due to changes in solar
power greatly exceeded the standard Rs after time step 1.4,
as shown by the red line. With the proposed adaptive droop
control strategy, 1P was greatly reduced at bus 5 because
a fast d-axis current response was injected into the grid,
as shown by the blue line. The volatility of the solar power
output was suppressed to themaximum extent, and there were
no stability issues during this period. These results demon-
strate that the proposed strategy can reduce RES curtailment
and help stabilize grid operation. New ESS control strategies
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outside the scope of this study can also be integrated with the
Korean RMS for further RES penetration.

V. CONCLUSION
This paper presents a comprehensive framework for the
Korean RMS and operation of an ESS. The presented frame-
work offers improved forecasting for large-scale grids, real-
time stability assessment, the generation of RES penetration
scenarios for grid planning, and a novel ESS control strategy
to reduce RES curtailment. Simulation results demonstrated
that the proposed strategy yields a low-RES curtailment
level in grids with high RES penetration and improved
ramp-rate control while satisfying operational constraints.
Future research will focus on demonstrating the integration
of ESSs with the Korean RMS.
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