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ABSTRACT The forward scatter shadow ratio (FSSR), a novel parameter in forward scatter radar (FSR)
systems, has been introduced recently for a plane wave. In contrast to conventional parameters like the
forward scatter cross section (FSCS), FSSR utilizes the total electric field, providing a direct indicator
of signal deviations from the direct path. This study overcomes the limitations of the current FSSR
model by conducting a comprehensive mathematical and numerical analysis for a spherical wave with the
Kirchhoff diffraction formula. By incorporating a point source and moving targets, this approach extends
the application scope of FSSR. A plane wave equivalent model is derived and compared to the point source
model, demonstrating its accuracy in various scenarios. The optimization method for target shadow profile
retrieval in moving targets is discussed using the plane wave equivalent model. It is suggested that employing
dual receivers can eliminate the ambiguity associated with target localization and enhance shadow profile
retrieval precision.

INDEX TERMS Forward scatter radar, forward scatter shadow ratio, shadow profile, diffraction.

I. INTRODUCTION
Recently, a new parameter to describe the target in the
forward scatter radar (FSR) system with a plane wave as
the signal source, namely the forward scatter shadow ratio
(FSSR), was introduced [1], [2], [3]. As a parameter rele-
vant to target detection, size estimation, classification and
shadow profile imaging, FSSR is defined as the ratio of the
total received power density to the direct path signal (DPS)
power density. Differing from the commonly used parameter
of forward scatter cross section (FSCS) [4], [5], which is
adopted from the concept of radar cross-section (RCS) in
mono or traditional bistatic radar, FSSR uses the total electric
field rather than the forward scatter radiation, and is a direct
indicator of how far the total received signal deviates from the
DPS. Unlike FSCS, using FSSR doesn’t require the removal
of the DPS, which is especially challenging in cases involving
passive illuminators of opportunity (IOs) [6], [7], [8].
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We have proposed that FSSR can be used for target shadow
profile retrieval through an optimization method. Repre-
sented by a finite number of rectangular strips, the target
shadow profile can be retrieved using discrete observations
of FSSR [1], [2]. Compared to SISAR [9], this approach only
discretizes the target using rectangular strips but without any
further approximation. It is able to retrieve both the upper
and lower limits of the strips (as opposed to heights only in
SISAR). Furthermore, it is based on an optimization method
and thus can easily accommodate FSSR samples from differ-
ent locations.

There are two main limitations with the current investiga-
tions on FSSR and its application in target shadow profile
retrieval. Firstly, the current definition of FSSR is given
in a model where the incident signal is assumed a plane
wave. The general scenario for a realistic FSR system where
the DPS is from a point source is still to be investigated.
Secondly, the current analyses of FSSR are based on the
Fresnel diffraction formula [10], which is an approximation
of the Rayleigh-Sommerfeld diffraction formula when the
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range of observation is large compared to the target size.
An analysis with the Kirchhoff diffraction formula, in line
with the existing studies of SISAR [11], [12], [13], is needed.
This paper extends the definition of FSSR to spherical

wave, i.e., the transmitter is regarded as a point source. Fur-
thermore, FSSR is analyzed using the Kirchhoff diffraction
formula, in which the target is moving across the transmitter-
receiver baseline. A comparison between the model using
the Fresnel formula and that using the Kirchhoff formula is
given, and a plane wave equivalent model for the point source
model is derived. Let D1 and D2 be the distances from the
target’s projection on the baseline to the point source and to
the receiver, respectively, the plane wave equivalent model
can be summarized as follows:

R =
D1D2

D1 + D2
, (1)

where R is the distance between the target and the receiver in
an equivalent system with a plane wave as the signal source,
under the condition that both the target’s dimension and its
distance from the baseline are significantly smaller than D1
and D2. Using numerical analysis, it is shown that the plane
wave equivalent model generates very marginal errors for
both the far-field and the close to near-field scenarios. With
the plane wave equivalent model, the existing conclusions
using the Fresnel diffraction formula can be applied to FSR
systems with a point source.

The optimizationmethod for target shadow profile retrieval
is discussed within the framework of the new model in which
the target is moving across the baseline. The target shadow
profile, represented by a finite number of rectangular strips,
is retrieved using discrete observations of the FSSR. The
plane wave equivalent model is applied to enable the utiliza-
tion of the nonlinear least-squares algorithm [2]. Different
targets with various sizes and shapes are used to examine the
shadow profile retrieval capability of the proposed method
under both far-field and close to near-field scenarios. The
numerical results indicate that using two receivers instead of
one helps eliminate the ambiguity in locating the target and
improves the accuracy of target shadow profile retrieval.

The rest of this paper is organized as follows. The FSSR
model based on the Kirchhoff diffraction formula is described
in Section II. In Section III, the plane wave equivalent model
is derived and then analyzed numerically. The optimization
method for target shadow profile retrieval with one and
two receivers is described and then numerically analyzed in
Section IV. Finally, Section V concludes this paper.

II. FSSR IN SPHERICAL WAVE
Consider a forward scatter scenario shown in Fig. 1, where a
target is in close proximity to the baseline that connects the
transmitter (TX) with the receiver (RX). The TX is a point
source of a spherical wave. This spherical wave model is the
same as that used in SISAR [9]. Note that the model with a
plane wave closely resembles the spherical wave propagation
when the source is far away from the target [2]. With the

FIGURE 1. An illustration of an idealized forward scatter radar system.

TABLE 1. Normalized values of distances and dimensions.

distance from the source to the target taken into account, the
spherical wave model offers a higher level of accuracy.

Consider a Cartesian system with the transmitter at the
origin and the baseline on the y-axis, as shown in Fig. 1.
A second Cartesian system with target’s center at its origin is
also established, with axes x ′, y′ and z′ in the same direction
with axes x, y and z, respectively. For simplicity, the target
is considered crossing the baseline perpendicularly and the
point of intersection is at point K, which is D1 from the
transmitter andD2 from the receiver. The FSSR (ε) of a target
for specific locations of the transmitter and the receiver is the
ratio of the total received power density (Ptot ) to the power
density (Pinc) of the direct path signal (DPS) measured at the
receiver:

ε(D1,D2)=
Ptot (D1,D2)
Pinc(D1,D2)

=

∣∣Etot (D1,D2)
∣∣2∣∣Einc(D1,D2)
∣∣2 , (2)

in which Etot and Einc are the complex amplitudes of the total
electric field and the direct path electric field at the receiver,
respectively. Note that this definition is compatible with that
in the plane wave introduced in [2] and [3]. The total electric
field is the outcome of the incident electric field interfering
with the forward scattering field caused by the target.

Using Babinet’s principle and replacing the target with
a complementary aperture that has the shape of the target
shadow silhouette on the x ′

−z′ plane, we can apply the
Kirchhoff diffraction formula [10] and obtain the complex
amplitude of the diffraction fieldED when the target is located
at (x,D1, z):

ED (D1,D2, x, z)

=
−i
2λ

∫∫
F
(
x ′, z′

) e2π i(R1+R2)
R1R2

(cosα1 + cosα2)dx ′dz′

(3)

where the imaginary unit is denoted by i, the wavelength of
the signal is denoted by λ, and D1, D2, R1, R2, x, z, x ′ and
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z′ are all normalized with respect to the wavelength, so they
are dimensionless. Some examples of the normalized value
for different wavelengths can be found in Table 1.
The aperture function F

(
x ′, z′

)
is given by

F
(
x ′, z′

)
=

{
1, {x ′, z′} ∈ 6

0, otherwise
(4)

where 6 is the target shadow silhouette on the x ′
− z′ plane,

and

R1 =

√
D2
1 + (x + x ′)2 + (z+ z′)2, (5)

R2 =

√
D2
2 + (x + x ′)2 + (z+ z′)2. (6)

The complex amplitude of the direct path electric field is

Einc(D1,D2) =
1

(D1 + D2)λ
e
2π i(D1+D2)

. (7)

Finally, the complex amplitude of the total electric field is
given by

Etot = Einc − ED. (8)

Although both the expressions for the diffraction field in
(3) and the direct path electric field in (7) have wavelength
λ in them, from (2) we can see that λ will no longer exist in
the ratio of FSSR. From (2) to (8), it can be concluded that
FSSR is not only affected by the target shadow silhouette,
but also the locations of the transmitter, the receiver and the
target. Due to the forward scattering field from a target inter-
fering with the DPS, FSSR deviates from one and changes
in value while the target changes position with respect to the
transmitter and the receiver. If a series of FSSR samples are
measured at the receiver, they can potentially be used for
target detection, classification, size estimation and shadow
profile imaging. In Fig. 2, the numerically calculated FSSRs
on a plane perpendicular to the baseline for two different
scenarios are shown. In Fig. 2(a), the target is a 180 by
120 rectangle, which is on a plane 2 × 105 from the trans-
mitter, and in Fig. 2(b), the target is a circle of diameter 100,
and on a plane 3× 105 from the transmitter. In both cases the
transmitter and the receiver are 4 × 105 apart.

III. PLANE WAVE EQUIVALENT MODEL FOR FSSR IN
SPHERICAL WAVE
In previous studies, the Fresnel diffraction formula [3] for
a plane incident wave was used for the FSSR definition,
where the FSR system in Fig. 3was considered. TheCartesian
system is defined where the receiver is on the y-axis and the
incident wave is in the direction of the y-axis. The projection
of the target’s center on the y-axis is the origin. The Cartesian
system of x ′

−y′ −z′ is defined the same way as that in Fig. 1.
The diffraction field for the target at (x, 0, z) and the receiver
at (0,R, 0) is given by

ED (x, z,R)

=
e2πRi

iR

∫∫
F
(
x ′, z′

)
e

π i
R [(x+x ′)

2
+(z+z′)

2]dx ′dz′ (9)

FIGURE 2. The numerically calculated FSSRs for a plane perpendicular to
the baseline for: (a) a 180 by 120 rectangular target on a plane 200,000
from the transmitter, (b) a circular target of diameter 100 on a plane
300,000 from the transmitter. The receiver is 400,000 from the transmitter
for both cases.

FIGURE 3. An illustration of the forward scatter model where the Fresnel
diffraction formula is used.

in which x, z, x ′ and z′ are also all normalized with respect
to the wavelength. The expression of the diffraction field in
(9) is simpler than that in (3), and wavelength λ is eliminated
in (9). Furthermore, from (2), (8) and (9), the FSSR is given
by [2]:

ε =

∣∣∣∣1 −
1
iR

∫∫
F
(
x ′, z′

)
e

π i
R [(x+x ′)

2
+(z+z′)

2]dx ′dz′
∣∣∣∣2 .

(10)

A. THE PLANE WAVE EQUIVALENT MODEL
First of all, we approximate (3) as follows:

ED (D1,D2, x, z) ≈
−i
λ

∫∫
F
(
x ′, z′

) e2π i(R1+R2)
R1R2

dx ′dz′

(11)

under the condition that

(cosα1 + cosα2) ≈ 2, (12)

which can be interpreted as

L
D

≪ 1, (13)

where L is the longest distance from any point described by
F
(
x ′, z′

)
to the baseline and D is the lesser of D1 and D2.

In other words, compared with its distances to the transmitter
and the receiver, both the target’s dimension and its distance
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from the baseline are significantly smaller. From (8) and (11)
we can obtain

Etot = Einc − ED =
1

(D1 + D2) λ
e
2π i(D1+D2)

+
i
λ

∫∫
F
(
x ′, z′

) e2π i(R1+R2)
R1R2

dx ′dz′.

(14)

From (2) and (14), FSSR is given by

ε =

∣∣∣∣EtotEinc

∣∣∣∣2
=

∣∣∣∣1 +
(D1 + D2) i
e2π i(D1+D2)

∫∫
F
(
x ′, z′

) e2π i(R1+R2)
R1R2

dx ′dz′
∣∣∣∣2
(15)

Note that the condition in (13) can also lead to the second
approximation:

1
R1R2

≈
1

D1D2
(16)

So (15) becomes

ε ≈

∣∣∣∣1 +
(D1 + D2) i
D1D2

e−2π i(D1+D2)

×

∫∫
F
(
x ′, z′

)
e2π i(R1+R2)dx ′dz′

∣∣∣∣2 (17)

We substitute R1 and R2 with (5) and (6), and make the third
approximation as:√
D2
1 + (x + x ′)2 + (z+ z′)2 ≈ D1 +

(x + x ′)2 + (z+ z′)2

2D1

(18)

in which the following condition needs to be satisfied

(x + x ′)2 + (z+ z′)2

D2
1

≪ 1. (19)

Note that (19) is valid as a result of (13). Similarly, we also
have√
D2
2 + (x + x ′)2 + (z+ z′)2 ≈ D2 +

(
x + x ′

)2
+
(
z+ z′

)2
2D2

,

(20)

Consequently, FSSR is given as follows:

ε ≈

∣∣∣∣1+
(D1 + D2) i
D1D2

∫∫
F
(
x ′, z′

)
e
D1+D2
D1D2

π i[(x+x ′)
2
+(z+z′)

2]

dx ′dz′
∣∣2 (21)

Let R defined as (1), (21) then becomes

ε ≈

∣∣∣∣1 +
i
R

∫∫
F
(
x ′, z′

)
e

π i
R [(x+x ′)

2
+(z+z′)

2]dx ′dz′
∣∣∣∣2 ,

(22)

which is exactly the same as (10).

FIGURE 4. The plane wave equivalent models for the FSR systems in
Fig. 2 and the numerically calculated FSSRs for a plane perpendicular to
the direction of propagation.

The analysis above indicates that the FSSR model based
on the Kirchhoff diffraction formula can be approximated as
a plane wave equivalent model, which is based on the Fresnel
diffraction formula. The equivalent model is premised on the
assumption that both the target’s dimension and its distance
from the baseline are significantly less than its distances to the
transmitter and the receiver. This assumption is considered
valid for most FSR applications. A systemwith a point source
can be regarded equivalently as a system with a plane wave,
where the distance between the target and the receiver is given
by (1). The plane wave equivalent model for the setups in
Fig. 2 and the numerically calculated FSSRs using (22) are
show in Fig. 4. Compared with Fig.2, it can be seen that the
FSSRs are essentially the same.

B. NUMERCIAL RESULTS OF PLANE WAVE EQUIVALENCE
FOR TARGET CROSSING THE BASELINE
Consider the far-field parameter S [14]:

S =
2H2

D
, (23)

in which H is the largest dimension (normalized with respect
to the wavelength) of the target.

In Fig. 5, we assume that the target is travelling perpendic-
ularly crossing the baseline in the z direction and examine
the FSSR calculated by the Kirchhoff diffraction given by
(2) to (8) and the FSSR given by the equivalent model in
(22). The distances of D1 and D2 are set at 3 × 105 and
105, respectively, so R in the equivalent model is 7.5 × 104

according to (1). The target in Fig. 5(a) is a circle with a
diameter of 100, so it is a far-field scenariowith S = 0.2. Both
the FSSR by the Kirchhoff diffraction (εK ) and that given
by the equivalent model (εF ) are represented by the same
black curve as they cannot be visually distinguished from
each other. The difference between them (εK − εF ) is plotted
with the red dashed curve. It can be seen that the difference
between εK and εF is in the order of 10−4. In Fig. 5(b), the
target is a circle with a diameter of 200 so it is a close to
near-field scenario where S = 0.8. Compare to (a), the ranges
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FIGURE 5. The difference between the FSSR calculated in the point
source model by the Kirchhoff diffraction formula and that in the plane
wave equivalent model by the Fresnel diffraction formula. (a) The target
is a circle with a diameter of 100. (b) A circle with a diameter of 200.
(c) An isosceles triangle with base 100 and height 150. (d) An isosceles
triangle with base 140 and height 210.

of εK and εF are larger due to stronger shadowing effects,
but the difference between them is still in the order of 10−4.
Fig. 5(c) shows the results of an isosceles triangle target with
base 100 (along the x direction) and height 150 (S = 0.45),
and Fig. 5(d) is for a similar triangle with base 140 and height
210 (S = 0.88). It can be concluded that the plane wave
equivalent model generates very marginal errors for both the
far-field and the close to near-field scenarios. The errors are
generally larger when the target is farther away from the base
line, which can be explained by the condition in (13).

IV. SHADOW PROFILE RETRIEVAL USING PLANE WAVE
EQUIVALENT MODEL
A. OPTIMIZATION METHOD
Here we briefly describe the optimization method for the
model illustrated in Fig. 3. Different from [1] and [2], FSSR
here is a function of the x and z coordinates of the target,
rather than the coordinates of the receiver. As in [1] and [2],
we divide the target shadow into N strips with equal width
and each individual strip p is regarded as a rectangle (Fig. 6

FIGURE 6. The target shadow is divided into strips, one of which is shown
by the shaded area. Each strip is regarded as a rectangle.

for illustration). From (22), we then define

AF (x, z) =

∫∫
F
(
x ′, z′

)
e

π i
R [(x+x ′)

2
+(z+z′)

2]dx ′dz′. (24)

Considering all the strips, the integration in (24) can be
approximated as

AF (x, z) ≈

∑N

p=1
f (a′

p, b′
p, x)Gp (z) , (25)

where a′
p and b′

p are the upper and lower limits of strip p,
respectively, and f

(
a′
p,b′

p, x
)
is given by

f
(
a′
p,b′

p, x
)

=

∫ a′
p

b′
p

e
π i
R (x+x ′)2dx ′

=

√
R
4i

(
erfi

(√
iπ
R
(a′

p + x)

)
− erfi

(√
iπ
R
(b′

p + x)

))
,

(26)

and Gp (z) is given by

Gp (z) =

∫ c′p

d ′
p

e
π i
R (z′+z)2dz′

=

√
R
4i

(
erfi

(√
iπ
R
(c′p + z)

)
− erfi

(√
iπ
R
(d ′

p + z)

))
,

(27)

in which c′p and d ′
p respectively mark the z′ coordinates of

the right and left limits of strip p. Note that in this retrieval
method, the location of the target is assumed known and
the width of the strips are predefined, so c′p, d ′

p and z are
considered known. In (26) and (27), erfi (x) is the imaginary
error function [15].

Let

ap = a′

p + x, (28)

and

bp = b′

p + x. (29)
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Equations (25) and (26) then become

AF (z) ≈

∑N

p=1
f (ap, bp)Gp (z) , (30)

and

f
(
ap,bp

)
=

√
R
4i

(
erfi

(√
iπ
R
ap

)
− erfi

(√
iπ
R
bp

))
.

(31)

Equation (22) then becomes

ε (x, z) =

∣∣∣∣1 +
i
R

∑N

p=1
f (ap,bp)Gp(z

)∣∣∣∣2. (32)

Suppose that there are M observations of the FSSR, each is
denoted by εq for the target at (xq, 0, zq), q = 1, · · · ,M ,
solving (ap,bp) can then be formulated as a nonlinear least-
square problem: (

âp,b̂p
)

= argmin
M∑
q=1

r2q (33)

where

rq = εq −

∣∣∣∣1 −
1
iR

∑N

p=1
f (ap,bp)Gp(zq

)∣∣∣∣2 . (34)

By solving (33), the optimal values for (ap,bp) can be calcu-
lated and thus the shadow profile of the target is retrieved.
Note that ap and bp are respectively the x coordinates of the
upper and lower limits of strip p. Hence, it is convenient to
graph the retrieved shape on the x − z plane.

B. RETRIEVAL WITH ONE RECEIVER
We use the forward scatter radar setup illustrated in Fig. 1
to numerically examine the retrieval of target shadow profile
via the plane wave equivalent model. The distances ofD1 and
D2 are fixed at 3× 105 and 105, respectively, while targets of
various sizes and shapes are tested to cover both the far-field
and the close to near-field scenarios. Since for any 3D shapes
only the shadow silhouette plays a part in the FSSR, in our
analysis we assume that all targets are 2D and located on a
plane (x ′

− z′ plane in Figs. 1 and 3). The targets all move on
the plane perpendicular to the y-axis and in the direction of
the z-axis. The true FSSR is calculated using (2), (3) and (8).
The shadow profile retrieval is achieved by solving the

optimization problem (34), where R is calculated using (1)
from D1 and D2 (R is 7.5 × 104 in this case). We also
assume that a sufficient number of FSSR samples are avail-
able without any errors. As shown in our previous work
[3], the minimum value of the FSSR can provide a good
estimation of the size of the target. For instance, a minimum
value of 0.8 in the FSSR samples corresponds to a circular
target with an approximate diameter of 100 for R = 7.5 ×

104. We quadruple this dimension and uses z = −200 to
z = 200 on the x − z plane as the target retrieval range.
The number of strips covering this range is then set to 40

FIGURE 7. (a) Dimensions and location of the circular target. (b) The true
FSSR is shown by the black curve, and the 90 FSSR samples when the
target is moving in the z direction are marked by the red circles. (c) The
retrieved shadow profile through the plane wave equivalent model.
(d) The sampled FSSR (black circles), the recalculated FSSR (black crosses)
using the retrieved shape and their difference (red squares).

(strip width is 10) so all c′p and d ′
p are known. The non-

linear least-square function (‘lsqnonlin’ in MATLAB) with
the trust-region-reflective algorithm [16] is used to solve the
optimization problem. Once the estimated limits (âp, b̂p) for
the strips are ready, we mark the location of each strip on the
x−z plane only if âp > b̂p. The strip is considered nonexistent
if âp < b̂p.
The first target we use is a circle with a diameter of 100

(Fig. 7(a)). It moves along the line of x = 0, so the projection
of the z-axis on the x ′

− z′ plane overlaps with the z′-axis
(see Fig. 7(a)). The true values of the FSSR when the target
is moving are shown by the black curve in Fig. 7(b). We take
a finite number of samples of the FSSR to retrieve the shadow
profile of the target. In this case, 90 samples (shown by the
red circles in Fig. 7(b)) with a fixed increment in the z-axis
are selected.

The final retrieved target shadow profile is shown in
Fig. 7(c), which shows a high level of agreement with the
true target shape. We also plot the sampled FSSR (ε), the
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FIGURE 8. (a) Dimensions and location of the triangular target. (b) The
true FSSR is shown by the black curve, and the 100 FSSR samples when
the target is moving in the z direction are marked by the red circles. (c)
The retrieved shadow profile through the plane wave equivalent model.
(d) The sampled FSSR (black circles), the recalculated FSSR (black crosses)
using the retrieved shape and their difference (red squares).

recalculated FSSR (ε̂) using (35), and their difference for the
90 samples in Fig. 7(d). It can be seen that the difference
between the FSSRs generated by the true and the retrieved
shadow profiles is in the order of 10−5.

ε̂q =

∣∣∣∣1 −
1
iR

∑40

p=1
f (âp,b̂p)Gp(zq)

∣∣∣∣2 . (35)

The second target is a triangle shown in Fig. 8(a), whose
geometric center moves along the line of x = −50. As a
result, the projection of the z-axis on the x ′

− z′ plane is
at x ′

= 50, shown by the dashed axis in Fig. 8(a). The
dimensions of the triangle suggest that the far-field parameter
S is 0.8, i.e., it is a close to near-field scenario. The true FSSR
is shown by the back curve and the 100 samples used for
retrieval are marked by the red circles in Fig. 8(b).

The retrieved shape represented by the strips is shown in
Fig. 8(c), from which we can see that although the retrieved
strips do display a triangular shape, their center is approx-
imately on the line of x = 50 while the correct position
should be at x = −50. This is because of the inherent
ambiguity induced by observing the FSSR from one receiver.
From Fig. 1, we can see that the observed FSSRs are exactly

FIGURE 9. An illustration of the forward scatter system where two
receivers are used.

the same if the target is moving along x= A and x= −A.
In Fig. 8(d), it can be seen that the difference between ε̂ and
ε is still very small for the triangular target.

C. RETRIEVAL WITH TWO RECEIVERS
The ambiguity in the retrieval can be eliminated when two
receivers are used. Here we consider a system with one
transmitter and two receivers illustrated in Fig. 9. The two
receivers are located on the x − y plane and their lines of
sight towards the transmitter have a small angle of θ . The
target’s projection on the baseline of the second receiver has a
distance of D′

1 from the transmitter and D′
2 from the second

receiver. When the target is moving in the direction of the z-
axis, the movement is always perpendicular to both baselines.
As a result, D′

1 is given by

D′
1 = D1 cos θ. (36)

The second receiver provides us with a second plane equiva-
lent model where

R′
=

D′

1D
′

2

D′

1 + D′

2
. (37)

As angle θ is very small, we can assume that the target has
the same shadow profile from the two different look angles
provided by the two receivers. If the upper and lower limits
for a strip are (ap, bp) for the first plane wave equivalent
model with the first receiver, the upper and lower limits for
the second model with the second receiver are given by

a∗
p = ap − D1 sin θ, (38)

and

b∗
p = bp − D1 sin θ. (39)

With the relation between (ap, bp) and (a∗
p, b

∗
p) established

by (38) and (39), the two plane wave equivalent models are
joined together to form a single least-squares problem of (33)
to optimize (âp, b̂p).
In the following analysis, the second receiver is placed on

the x − y plane with a distance 500 from the first receiver.
The two receivers have equal distances from the transmitter.
Again, the true FSSR is calculated using (2), (3) and (8).
The samples of the FSSR from the two receivers are used to
retrieve the upper and lower limits of the strips. In Fig. 10,
the retrieval for the same target in Fig. 8(a) is shown. The true
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FIGURE 10. (a) The true FSSRs for the first and second receivers are
shown by the black and red curves, respectively. The samples used for
retrieval are marked by the black circles (the first receiver) and the red
crosses (the second receiver). (b) The retrieved shadow profile using two
receivers.

FIGURE 11. (a) Dimensions and location of the rectangular target. (b) The
true FSSRs for the first and second receivers are shown by the black and
red curves, respectively. The samples used for retrieval are marked by the
black circles (the first receiver) and the red crosses (the second receiver).
(c) The retrieved shadow profile using two receivers.

FSSR of the first receiver is denoted by the black curve with
80 samples marked by the black circles in Fig. 10(a). For the
second receiver, the true FSSR is given by the red curve with
80 samples marked by the red crosses. The retrieval outcome
is shown in Fig. 10(b). Compared to Fig. 8(c), it can be
seen that the additional receiver not only corrects the position
of the target but also improves the accuracy of the shadow
profile retrieval.

Two more targets are used to verify the performance of the
retrieval with two receivers. The first target is a rectangle with

FIGURE 12. (a) Dimensions and location of the irregular target. (b) The
true FSSRs for the first and second receivers are shown by the black and
red curves, respectively. The samples used for retrieval are marked by the
black circles (the first receiver) and the red crosses (the second receiver).
(c) The retrieved shadow profile using two receivers.

dimensions shown in Fig. 11(a). Its geometric center moves
along the line of x = 70, so the projection of the z-axis on
the x ′

− z′ plane is at x ′
= −70. In Fig. 11(b), the true and

sampled FSSRs from the two receivers are shown in the same
way as before. The retrieved target shadow profile is shown
in Fig. 11(c). The second target has an irregular shape with
dimensions shown in Fig. 12(a). Its geometric center moves
along the line of x = −30, so the projection of the z-axis
on the x ′

− z′ plane is at x ′
= 30. The true and sampled

FSSRs are shown Fig. 12(b), and the retrieved target shadow
profile is shown in Fig. 12(c). From Figs. 11 and 12, we can
see that the retrieved shadow profiles using the FSR system
with two receivers display a high level of agreement with the
true shadow profiles.

V. CONCLUSION
In this paper, we present an analysis of the forward scatter
shadow ratio using a spherical wave model and the Kirchhoff
diffraction formula. Aiming to overcome the limitations of
previous studies, we build an FSR system model in which
the transmitter is regarded as a point source and the target is
moving across the transmitter-receiver baseline. A compar-
ison between the new point source model and the existing
model based on the Fresnel formula is given, and a plane
wave equivalent model for the new model is derived. Using
numerical analysis, it is shown that the plane wave equivalent
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model generates very marginal errors for both the far-field
and the close to near-field scenarios.

The optimizationmethod for target shadow profile retrieval
is discussed within the framework of the new model. In this
approach, the target shadow profile, represented as a finite set
of rectangular strips, is retrieved using discrete samples of the
FSSR. The plane wave equivalent model is applied to enable
the utilization of the nonlinear least-squares algorithm to opti-
mize both the upper and lower limits of the strips. Different
targets with various sizes and shapes are used to evaluate the
shadow profile retrieval capability of the proposed method
under both far-field and close to near-field scenarios. It is
suggested that incorporating two receivers, as opposed to just
one, aids in resolving the ambiguity associated with target
localization and enhances the precision of target shadow
profile retrieval.
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