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ABSTRACT Colorectal cancer has been one of the leading causes of mortality over the past decade, and
colorectal polyps are the leading cause of this disease. Conventional polyp detection techniques are insuf-
ficient for proper detection; thus, an efficient detection method is indispensable. In this study, we collected
colorectal images from a hospital in Taiwan, annotated the ground truth of polyp locations, and integrated
them with a public dataset to create a colonoscopy dataset. Data augmentation techniques are further used
to increase the training dataset’s diversity to improve the models’ detection performance. By developing
the comparison system based on the recent state-of-the-art methods (i.e., FasterRCNN, SSD, YOLOv3,
and YOLOv4), we compared the measurement metrics and statistically analyzed the performance of the
models to identify the significant statistical difference in models’ performance. Moreover, we developed and
integrated an error handling mechanism with each model to discard the false and null predictions. Finally,
our model comparison system selects and proposes the best performing deep learning model to detect and
classify colorectal polyps. We expect that the proposed model will accurately locate and classify different
types of polyps. Eventually, this approach will ensure a valuable medical aid model.

INDEX TERMS Colorectal cancer (CRC), colorectal polyps, polyp detection, deep learning, data augmen-
tation, error handling.

I. INTRODUCTION
Colorectal cancer (CRC) is one of the most common cancers
worldwide in the gastrointestinal tract. It is well known that
intestinal polyps increase the possibility of intestinal cancer.
Therefore, we need to remove the polyps by surgery to reduce
the risk of cancer when detecting them in our intestines and
diagnosed by a doctor as a precancerous lesion of colorec-
tal cancer. The CRC patients show a rapid increase trend.
According to the American Cancer Society, CRC is the third
most common cancer and the second most common cause
of cancer deaths in the United States [1]. In Taiwan, the
National Health Administration of the Ministry of Health and
Welfare reported in 2021 [2] that CRC’s annual incidence and
mortality rank second and third in all cancer incidence and
mortality, respectively.
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Polyps are the abnormal growth of tissues that look like
tiny mushroom stalks and are most prevalent in the colon.
Polyps are benign or harmless but can become malignant
if not detected in early stage. Polyps can be classified as
hyperplastic (Hp) and Adenomatous (Ad) [3], [4].

In conventional colonoscopy examination, doctors must
rely on a series of medical images to speculate the location
and shape of polyps in the patient’s large intestine (colon)
and use this as the basis for diagnosis and treatment. During
the colonoscopy, a colonoscope, a flexible tube equipped
with a tiny camera at its tip, is inserted into the colon.
Polyps can be removed during the procedure if necessary [5].
However, the colonoscopy examination is time-consuming
and highly labor-intensive. It is common for polyps to be
overlooked during a colonoscopy procedure due to their small
size and visual characteristics [6]. Moreover, the endoscopist
may make an error in diagnosis due to eyestrain or lack of
concentration. Computer science-based methods have been
proposed to assist doctors during colonoscopy to address the
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mentioned issues. These methods use computer technology
to detect polyps called computer-aided detection (CAD).
According to this, most of these methods and systems are
only research-based and not adequately developed for clinical
applications [7]. Therefore, based on these factors, we contin-
uously develop advanced CAD incorporating doctor-assisted
diagnosis for colon polyp image as an effective medical aid.

When delving into the field of medical diagnosis, AI-
based systems can prove advantageous by replicating the
functions of the human brain in simpler tasks and for-
mulating innovative solutions for more complex ones [8].
Artificial Intelligence (AI) significantly reduces errors during
colonoscopy by highlighting the specific polyp region where
the doctor could focus [9]. The rise of AI and machine learn-
ing has laid the basis for profound impact in many areas. The
development of deep learning provides a technical basis for
computer-aided decision-making in medical imaging [10].
AI-based colonoscopy systems can potentially improve the
accuracy of lesion detection during clinical procedures. Most
applications are based on computer vision to analyze videos
and images of the gastrointestinal tract to detect and classify
polyps [11].

Object detection is a computer vision technique that pre-
dicts objects in an image/video and points out the presence
of objects with bounding boxes. It refers to identifying
and localizing objects in an image/video that belong to a
predefined set of classes [12]. Generally, object detection
algorithms can be classified into two categories: one-stage
detection models and two-stage detection models. One-stage
detection model refers to those that skip the region pro-
posal stage of two-stage models and run detection directly
over a dense sampling of locations. These types of mod-
els usually have high inference. By contrast, the two-stage
model works in two phases: object detection and classifica-
tion. The basic principle in the two-stage model is that the
model first proposes a set of regions of interest by select
search or regional proposal network (RPN). The proposed
regions are sparse as the potential bounding box candidates
can be infinite; the classifier will only process the region
candidates.

II. RELATED WORK
Recently, many object detection techniques for polyp detec-
tion have been proposed. Some of them were renewed or
modified from previous works to generate more valuable
abilities. Pacal et al. [13] developed a modified YOLO (You
Only Look Once) algorithm-based automatic polyp detec-
tion system by making architecture changes in the original
YOLOv4. To enhance the model efficiency, preprocessing
and post-processing techniques were adopted. They imple-
mented data augmentation techniques for preprocessing,
including flip, rotate, shear, hue, crop, and mosaic operations.
NVIDIA TensorRT, a C++ library for high-performance
inference on NVIDIA GPUs and deep learning accelerators,
was used as a post-processing technique. After implementing

architecture changes, their model achieved a higher detection
performance.

To prevent overfitting and fine-tuning parameters, deep
learning models require larger datasets to reach their full
potential. Li et al. [14] built a polyp dataset collecting and
integrating all publicly available datasets with the Univer-
sity of Kansas Medical Centre dataset. The images in the
dataset contain polyps from different stages and represent
different types of polyps. To generate a benchmark dataset
for polyp detection, each image was labeled with accurate
polyp locations and categories. Using the developed dataset,
they evaluated and compared the performance of the state-
of-the-art deep learning models for polyp detection and
classification. The experiments demonstrated that deep CNN
models are promising in CRC screening. This work of con-
structing polyp benchmark datasets can serve as a baseline
for future polyp detection and classification research.

Although many algorithms have been developed to
enhance the efficiency of polyp detection, the colon polyp
miss detection rate is still high. Further, few are suitable for
real-time detection due to their limited computing power;
thus, a proposed method [15] used a real-time colonoscopy
with the CNN transfer learning approach to solve the prob-
lems mentioned above. Pacal et al. [16] proposed another
method integrating Cross Stage Partial Network (CSPNet)
into the YOLOv3 and YOLOv4 object detection algorithms
for real-time polyp detection. Data augmentation techniques
and transfer learning were then utilized to improve the per-
formance of polyp detection. The study uses the same data
augmentation techniques as in [14]. To further improve the
performance of polyp detection using negative samples, the
Leaky ReLU and Mish activation functions were substituted
by the Sigmoid-weighted Linear Unit (SiLU) activation func-
tions, and Complete Intersection over Union (CIoU) was
used as the loss function to provide fast convergence rate in
bounding box regression.

Hoang et al. [17] presented a study based on capsule
endoscopy for real-time detection of polyps. The magnetic
capsule is remotely controlled using the electromagnetic
actuation system (EMA) with position recognition and active
locomotion. For real-time polyp detection, YOLOv3 was
integrated with the system. In YOLOv3, on top of Darknet53,
53 more layers were added for proper object detection, mak-
ing it a 106-layer convolutional neural network.

Nogueira-Rodriguez et al. [18] also proposed a deep learn-
ing model for real-time detection based on a pre-trained
YOLOv3 architecture and a post-processing step based on an
object-tracking algorithm to reduce false positives. The devel-
oped polyp detection method replaced the original class of
object in the YOLOv3 model (pre-trained on PASCAL VOC)
with a single polyp class; data augmentation techniques were
then implemented for better polyp detection. Considering the
model’s ability to rapidly process every frame in the video and
the corresponding results, the authors believe the developed
model is valid and can be tested in a real-time environment
and integrated into a CAD system.
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Using AI to imitate human thinking and apply human
intelligence to solve problems, such as deep learning-based
methods, can assist doctors in making better diagnoses and
accurate examinations of disease symptoms. Quan et al. [19]
highlighted the importance of an AI-based polyp detection
system. They presented a clinical evaluation of a CAD system
based on the Single Shot Detector (SSD) model to detect
neoplastic polyps. Elective colonoscopy based on CAD was
performed on 300 patients, and the results were compared
with non-CAD-based colonoscopy. The CAD-based polyp
detection system was observed to have a greater polyp detec-
tion rate than those without CAD systems.

Some literature noted that the chances of missed polyps by
colonoscopy remain high due to the limitations of diagnostic
techniques and data analysis methods. Several approaches
can be adopted to overcome these disadvantages, which
include (1) expanding the polyp database being used; (2)
designing a preprocessing procedure for the image based on
polyp-specific features; and (3) improving the original deep
learning model architecture. To improve the performance
of the automatic polyp detection system, Qian et al. [20]
expanded the training dataset using a Generative Adversarial
Network (GAN) and modified the architecture of YOLOv4
using dilated convolution. The dataset was first expanded
with a GAN, which generates realistic polyp-based images to
add more annotated data. These images were later combined
with the original dataset. Compared to the baseline models,
the proposed model showed better performance regarding
average precision (AP) and detection rate (FPS). Since the
acquired image data may be of poor quality, such as high
noise, low contrast differences, or specular reflections, pre-
processing was suggested to obtain processed images more
suitable for post-processing.

Aside from the above studies, several deliberations are
being done to improve the methods for polyp detection fur-
ther. One research [21] provided a benchmark for polyp
detection, localization, and colonoscopy segmentation on
recent state-of-the-art deep learning algorithms, includ-
ing FasterRCNN, RetinaNet, YOLOv3+SPP, YOLOv4, and
EfficientDet. It compared the execution performances and
the differences between various algorithms on variable polyp
sizes and image resolutions. In addition, the author also pro-
posed the ColonSegNet to achieve a better trade-off between
an average precision and mean IoU and the fastest detec-
tion and localization task. One of the models used in the
study was EfficientDet, which is based on EfficientNet back-
bone architecture. Other models used were Faster R-CNN,
YOLOv3, andYOLOv4. The benchmarking of thesemethods
for real-time polyp detection was also presented.

Qian et al. [22] also presented an enhanced FasterRCNN-
based system used for polyp detection by using preprocessed
data. Specular reflections are one of the causes of false detec-
tion of polyps. Therefore, reflective points caused by specular
reflections were first removed from the images before model
training. Fine-tuning of VGG16 architecture was then per-
formed based on the specific problem. The updated polyp

detection model showed better results compared to the origi-
nal model.

The remaining sections of this paper are organized as
follows: Section III introduces the material and methods;
Section IV explains the concepts of the proposed approach,
which is used to select the proper model; Section V presents
the experiments of the polyp detection; Section VI discusses
the problems encountered in object detection and demon-
strates how to solve them; finally, Section VII reports the
conclusions of this study.

III. MATERIAL AND METHODS
This section contains detailed information about datasets and
data augmentation and briefly introduces four object detec-
tion and classification models used in this study.

A. DATASETS
Two major datasets were employed to train and test the mod-
els: colorectal images from Chang Gung Memorial Hospital
(CGMH) [23] and polyp dataset from Harvard Dataverse
[24]. We first obtained colorectal images from CGMH in
three sets (as shown in Table 1) based on the available
data. These were refined and combined into a single CGMH
dataset of 5,773 images. These images were acquired by
professional radiologists during colonoscopy. Initially, the
dataset comprised 6,436 colorectal images based on the three
obtained sets. Later, the datasets were refined by removing
blur and out-of-focus images, noisy images, and images hav-
ing polyps texture the same as the colonic wall to ensure that
models could be trained more accurately. The dimension of
each image in this dataset is 640× 480. Similarly, polypswith
a tiny pixel size were also removed as they led to detection
errors [12]. Figs. 1 to 3 show the samples of polyp images
from CGMH with the mentioned issues.

FIGURE 1. Polyp texture same as colonic wall.

FIGURE 2. Polyp images with high noise.

The database, including the class and bounding boxes of
the polyps, was annotated with the assistance of endoscopic
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FIGURE 3. Smaller polyp size.

doctors. All images in the datasets were de-identified with-
out revealing the patient information. Therefore, the CGMH
dataset was annotated for ground truth (GT) using the Labe-
lImg tool by generating XML and TXT files for each
image containing polyp dimensions, such as top left, top
right, bottom left, and bottom right positions. Samples from
the CGMH colonoscopy dataset and Harvard Dataverse of
colonoscopy are shown in Figs. 4 and 5, respectively. All
images contain a single polyp, either an adenomatous or
hyperplastic polyp, which professional radiologists took dur-
ing colonoscopy; the image format is tif.

TABLE 1. Details of colonoscopy dataset obtained from CGMH.

The second dataset of colorectal images was obtained from
a publicly available polyp dataset on Harvard Dataverse.
This dataset contains 7,150 images, each of which has been
annotated. The dimension of polyp images in this dataset is
384 × 288, and the image format is jpg. Technical details
about the two experimental datasets used in this study are
shown in Table 2. These two datasets were combined to create
a dataset of 12,923 images.

The more diverse the dataset is, the more likely the model
will learn the meaningful features for object detection. The
detection performance of the model is highly dependent on its
training dataset. Therefore, these two datasets were combined
to enhance the input dataset for high learning and improve the
models’ prediction capabilities. We performed a dataset split
of 80% and 20% for training and testing, respectively. The
training dataset frames were later shuffled before the training
of object detection models.

TABLE 2. Information about colonoscopy datasets used in this study.

FIGURE 4. Four colonoscopy sample images from CGMH.

FIGURE 5. Colonoscopy sample images from Harvard Dataverse of
Colonoscopy.

B. DATA AUGMENTATION
Data augmentation is a technique used to enhance the
dataset’s size and increase the training dataset’s diversity.
Data augmentation is one of the most efficient data prepro-
cessing techniques that can generate promising results [25].
Especially since deep learning-based methods need a vast
amount of data for proper detection. Fig. 6 shows some com-
monly used techniques such as resize, rotation, translation,
scale, reflection, shear, cropping, and color jitter. In this study,
augmented images are little transformed versions of the orig-
inal image which are often undetectable to the human visual
system [26]. The details and parameters are described as fol-
lows. Themagnification factor in resize is selected as 0.1. The
uniform rotation angle of images is randomly selected from
−45◦ to 45◦. The translation is applied to transform image
coordinates. Horizontal/vertical translations are applied with
a uniform random range from −50 to 50. In scaling, the
image was shrunk or enlarged. The scale factor was randomly
selected from 1.2 to 1.5. X and Y horizontal reflections were
randomly applied with uniform probability. The horizontal
and vertical shear in random degrees was applied to a range
of −30◦ to 30◦, and the images were cropped to a resolution
of 200 × 200.

FIGURE 6. Sample images for data augmentation techniques.

In our experiments, three augmentation methods, ran-
dom horizontal flip, random scaling, and color jitter, were
employed. The data augmentation techniques are presented
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in Algorithm 1. Applying these data augmentation techniques
enhanced the training dataset to 31,017 images. Random hor-
izontal flip horizontally flips a given image. Random scaling
refers to the image’s resizing and making the scaling on the
XY axis preserve the original ratio.

Algorithm 1 Data Augmentation Techniques
1: Input: Labelled CGMH Dataset + Harvard Dataverse
2: FunctionDataAugmentation(Input)
3: Repeat
4: Read each image info (no of images, no of color

channels, size, bounding box, labels)
5: If(no of channels == 3)
6: Perform combined data augmentation using the

color jitter function: Contrast, Hue, Saturation,
Brightness

7: End
8: Randomly Flip image: Perform 2d-Affine

transformation (where horizontal reflection is
randomly applied)

9: Randomly X/Y Scaling: Perform scaling of the image
with scale range [1 ∼1.1]

10: Apply Geometric transformation of the transformed
image

11: Warp the resultant image to control the output limits
12: Obtain the boundary box information of the warped

version in the output
13: Update the labeling information
14: If(all bounding boxes are removed after warping)
15: return the original data
16: End
17: Until(the last image is traversed in the input)
18: End Function

The obtained image that gets scaled outside the origi-
nal boundary is clipped. Color jitter randomly changes an
image’s brightness, contrast, and saturation. These three
methods were integrated into one image with a predetermined
probability in our training data set.

Fig. 7 shows the data augmentation experiment. The
images in the left column are the original images, and those in
the three right columns are the augmented images. The range
of optimization values for data augmentation parameters is
shown in Table 3.

C. MODELS FOR DETECTION AND CLASSIFICATION
Four state-of-the-art object detection models were imple-
mented, and their performances were compared in this study.
The following section briefly introduces the object detection
models, i.e., FasterRCNN, SSD, YOLOv3, and YOLOv4.

1) FASTERRCNN
FasterRCNN belongs to the RCNN family networks and
operates in two stages, detection and classification. It is an
updated form of the Fast RCNN model, utilizing a region
proposal network instead of a slow selective search algorithm.

FIGURE 7. The training images obtained by the combination of horizontal
flip, random scaling, and color jitter.

FIGURE 8. The RPN module.

This update enhances the detection rate of FasterRCNN. The
Region Proposed Network (RPN) can be trained for better
detection and to improve the model’s performance. It uses
the same base Convolutional Neural Network as Fast RCNN
[13], [27].

RPN is the first module of FasterRCNN. It proposes
regions for the second module, which are then employed for
object detection. Regions in this research are only considered
rectangular. The RPN takes an image as input to produce
the rectangular object proposals. Each of these proposals
contains an objectness score. The feature maps obtained from
the last convolutional layer are used to generate region pro-
posals by sliding the small network layer, which takes the
n x n spatial window of the convolutional feature map. The
working mechanism of RPN is presented in Fig. 8. The two
fully connected layers, the box regression layer (reg) and box
classification layer (cls) are fed with each sliding window
mapped to a low dimensional feature. The low dimensional
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TABLE 3. Data augmentation parameters optimization.

features are 256-d for the Zeiler and Fergus (ZF) model and
255 for VGG with ReLU.

At each sliding window, multiple region proposals are
predicted, and the maximum number of possible proposals
for each sliding window is represented as k. The cls layer
generates 2k scores, and the reg layer outputs 4k coordinates.

The 2k scores generated by the cls layer are used to
estimate the probability of whether the object exists. The
RPN gets the feature maps extracted by ResNet 101, the
backbone network. These feature maps are also used by the
classification module of the model. In RPN, the operations of
calculating the bounding box locations and object probability
score are performed. K anchor boxes are predicted by sliding
windows for each location. To attain multi-scale learning,
these anchor boxes are based on different sizes and are self-
centered.

Fig. 9 shows the basic architecture of FasterRCNN.

FIGURE 9. FasterRCNN architecture.

While performing tests on the PASCAL VOC dataset,
K40 GPU, and VGG-16 backbone, the inference time is
reduced to 198ms. This improvement is due to the RPN
introduction. FasterRCNN is 10 times faster than the selec-
tive search. This model achieved high computation speed by
reducing the computational time from 1,510ms to 10ms and
can perform the computation of 5fps [19].

2) SSD
Single Shot Detector (SSD) is a single-stage detector, unlike
FasterRCNN. It is based on a simple architecture and utilizes
various sizes of feature maps to generate predictions. In the
initial stage, convolution operation is performed to extract
features from input images [25]. The small convolutional fil-
ters are applied to feature maps to predict category scores for
bounding boxes. The predictions of different scales from fea-
ture maps are generated to achieve high accuracy in terms of
detection. For training purposes, SSD requires input images

with ground truth boxes for each object. The SSD framework
is shown in Fig. 10. Following the convolution style, a small
set of default boxes are evaluated with different aspect ratios
in different feature maps at each location. For each default
box shape, offsets and confidence scores for all categories
are predicted. During the training process, the ground truth
boxes are matched with default boxes. One example is shown
in Fig. 10; a default box is matched with a polyp and is treated
as positive.

FIGURE 10. SSD framework. (a) Input image with ground truth box.
(b) Feature map for the input image. (c) Evaluation for prediction.

The mentioned design features play an essential role in
proper model training with high accuracy, improving the
speed and accuracy and providing a tradeoff of low-resolution
input images. The performance of SSD is evaluated and com-
pared with other models in terms of timing and accuracy after
training on PASCAL VOC, ILSVRC, and COCO datasets.

SSD is an efficient model that has laid the foundation
for other highly efficient object detection models. It uses a
feed-forward approach that generates bounding boxes with
scores for specific classes. The initial stage of the model is
based on the VGG-16 network. The initial network layers
are composed of standard architecture used for high-quality
image classification. Then, the auxiliary structure in the net-
work produces detections based on multiscale feature maps,
convolutional detection predictors, and default boxes and
aspect ratios. The SSD architecture is presented in Fig. 11.

FIGURE 11. SSD architecture.
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The next stage is based on the auxiliary structure to produce
detections that have multiscale feature maps and convolu-
tional predictions for detections, aspect ratios, and default
boxes.

Like the YOLO series, SSD divides the input image in
m x n grids. For each grid, where the kernel is applied, each
class score and bounding box dimension is generated. SSD
can achieve a reasonable detection rate with high accuracy
[28].

FIGURE 12. Bounding boxes with dimension priors and location
prediction.

3) YOLOV3
YOLOv3 is an improvement of YOLO in terms of model size
and accuracy. YOLOv3 makes bounding box predictions by
using dimension clusters as anchor boxes. For each bounding
box, the network predicts 4 coordinates, such as tx, ty, tw, and
th. The offset for the cell from the top left corner is cx and cy,
and the width and height for the bounding box are pw and ph,
respectively. Fig. 12 demonstrates how the predictions can
be obtained. The sigmoid function is an activation function
in an S-shaped curve and is particularly useful for models
where the output needs to be in the range of 0 to 1, making
it suitable for binary classification problems. The logistic
sigmoid function formula is given as,

σ (x) =
1

1 + e−x
(1)

In YOLOv3, logistic regression predicts the objectness
score for each bounding box. If the bounding box prior over-
laps the ground truth object by another bounding box prior,
the objectness score should be 1. However, predictions are
ignored if the bounding box prior overlaps a ground truth
object greater than the threshold value.

For an input image with a dimension of 320 × 320, the
YOLOv3 processes the image with an mAP of 28.2; it is
three times faster than SSD. The significant design changes
not present in the previous versions include a new backbone,
multiple scale prediction, and updated loss function for class
prediction. YOLOv3 architecture is shown in Fig. 13.
YOLOv3 uses a convolutional neural network CNN based

on 53 convolutional layers known as Darknet53, an update of

FIGURE 13. YOLOv3 architecture.

the Darknet 19 used in YOLOv2. Darknet53 uses 3 × 3 and
1 × 1 convolutional layers. Since the backbone is based on
Darknet 53, the neck uses a Feature Pyramid Network (FPN)
to generate feature maps for the head for object detection and
classification. YOLOv3 uses three detection heads to process
the image at different compressions. Its object detection accu-
racy is better than SSD, and has relatively high performance
when it comes to small object detection; however, improve-
ment is required on medium and large objects [29].

4) YOLOV4
YOLOv4 is one of the most efficient and powerful models
in the YOLO series. To achieve improved detection accu-
racy, the bag of freebies and bag of specials are adopted.
The main idea is to achieve better accuracy of the model
without an increase in inference cost. The object detection
models implement the ‘‘bag of freebies’’ concept as data
augmentation. Data augmentation enhances the robustness of
the model by training the model on images obtained from
different environments. The two major data augmentation
techniques used in image processing are geometric distortion
and photometric distortion. Different geometric distortion
operations are performed on images, such as cropping, scal-
ing, flipping, and scaling. Photometric distortions include
brightness, saturation, contrast, and image noise adjustments.

FIGURE 14. YOLOv4 architecture. Backbone {CSPDarknet53}, Neck {SPP,
PAN}, Head {YOLOv3}.

The optimal classification model is not always suitable
for detection. Therefore, the significant requirements for the
optimum functionality of the detector are high input resolu-
tion, a large number of layers to adjust the high input, and
more parameters for the model’s high capacity for multiple
object detection in a single image [30]. YOLOv4 model
architecture is shown in Fig. 14.
As a backbone, CSPDarknet53 is used with an additional

SPP block to increase the receptive field. CSPDarknet53 is a
Darknet version that uses Cross Stage Partial (CSP) connec-
tions [31]. It also separates the most critical context features
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FIGURE 15. A detailed overview of the system architecture, dataset creation, data augmentation, models architecture and integration with error
handling modules, polyp detection and classification metrics analysis and statistical analysis module.

and does not affect the processing speed of the network.
YOLOv3 head and PANet path aggregation are used as the
neck in the YOLOv4 model architecture.

IV. PROPOSED APPROACH
In this section, the proposed approach of our study is pre-
sented to identify the best performing object detection model.
The models’ performances are compared using different met-
rics, and the best performing model is selected. Fig. 15 shows
the complete system architecture, composed of dataset cre-
ation, data augmentation, models integration, and comparison
system to pick the best performing model for polyp detec-
tion and classification. We performed a detailed performance
comparison and analysis using different performance metrics
and statistical analysis to propose the best performing model
for adenomatous and hyperplastic colorectal polyp detection
and classification. The major contributions in this study are
highlighted in green color.

Since object detection models are trained and tested sepa-
rately, we created a new dataset by combining CGMH with
Harvard Dataverse and provided these colorectal images to
the models as input.

Noisy images are removed from the dataset before pro-
viding the colonoscopy images to the models. After refining
and combining the two datasets, data augmentation tech-
niques are applied to the combined dataset. In the initial
stage, to find the most suitable deep learning model among
many state-of-the-art methods, the models (FasterRCNN,
SSD, YOLOv3, and YOLOv4) separately extract features
for training. Then, polyp detection and polyp classification
(adenomatous or hyperplastic) are performed. A confidence

score with a bounding box is evaluated to inspect the polyp
accurately. In the central block of the system architecture, all
four models are shown to depict their main features.

The ROC curve is a widely used performancemeasurement
for classification problems at various threshold settings. It is
a probability curve, and the AUC represents the degree or
measure of separability. The AUC indicates how well the
model can distinguish between classes, with higher values
indicating better performance. The ROC curve is plotted with
TPR against the FPR where TPR is on the y-axis, and FPR is
on the x-axis.

On the other hand, the PR curve shows the tradeoff between
precision and recall for different threshold values. It provides
insights into the relationship between precision and recall,
with precision values on the y-axis and recall values on the
x-axis. In other words, the PR curve represents TP/(TP+FP)
on the y-axis and TP/(TP+FN) on the x-axis.

Although the PR and ROC curves are similar, they serve
different purposes. The ROC curve assesses the model’s
performance without considering class imbalance, while the
PR curve is beneficial for evaluating two-class classifi-
cation algorithms. Both curves offer valuable information
about a model’s performance and assist analysts in mak-
ing informed decisions based on their specific objectives
and needs.

When drawing ROC curves and calculating the AUC,
our approach incorporates specific improvements to address
potential problems in object detection results. Object detec-
tion outcomes often fall into two scenarios regardless of
the model used. First, there may be instances where empty
objects are detected due to parameter or threshold settings.
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Second, multiple objects might be detected within a sin-
gle instance. To account for these situations, our proposed
method introduces specific criteria during evaluation.

In our method, we set a maximum threshold of 5% for
empty object detections within the test dataset. The corre-
sponding records are excluded from the AUC calculation if an
empty object is detected. Furthermore, we consider only the
object with the highest detection score for AUC calculation
when multiple objects are detected.

We employ two main principles to determine the model
with the best performance. Firstly, the model should possess
highly accurate classification capabilities. Secondly, it should
exhibit superior object detection capabilities. The selected
model will have the highest AUC value andmAP correspond-
ing to the performance metrics.

The polyp detection results of the models are also dis-
cussed with colorectal doctors to verify the detected results
for model performance analysis. Based on the performance
metrics, the best performing model is identified. For object
detection, the mAP values are analyzed to pick the best detec-
tion model, and the best classification model for a specific
class of polyp is chosen based on the highest AUC (Area
Under the Curve) value. The overall classification accuracies
of the models are analyzed to select the best classifica-
tion model with the highest kappa value. Precision, recall,
F1-score, AP, and kappa values are presented in Table 11.
Class-wise accuracies and overall detection accuracies are
shown in Table 8, Table 9, and Table 10.

V. EXPERIMENTS
All the algorithmswere implemented inMatlab programming
language. Polyp images provided by CGMH and partial Har-
vard Dataverse of colonoscopy [20] were used as the training
and testing data for the deep learning network. All experi-
ments were executed on a computing system with NVIDIA
GRID V100D-16Q GPU and Microsoft Windows 8 oper-
ating system for polyp detection and performance metrics
evaluation.

We integrated the two datasets to fully utilize deep learn-
ing techniques for object detection. These datasets contain
only two types of polyps, i.e., hyperplastic and adenomatous
polyps. Training a model that can reliably distinguish them
into different classes is vital because adenomatous polyps are
generally considered precancerous lesions requiring resec-
tion, whereas hyperplastic polyps are not.

The experiments consisted of four parts: two-class polyp
detection, classification, calculation of the performance met-
rics and comparison, and performance analysis based on
statistical analysis. Detection of colorectal polyps is an
essential task in colonoscopy. In addition, accurate polyp
classification is required to diminish mortality due to colorec-
tal cancer. Automatic detection of a polyp is, thus, a precious
contribution to radiology and medical imaging.

To validate the suitability of different models in object
detection, we first used the colonoscopy images from the
Harvard Dataverse of colonoscopy to verify the ability of the

models. Four different models, including FasterRCNN, SSD,
YOLOv3, and YOLOv4, were used to examine and compare
the effects of polyp detection. Figs. 16(a) to (h) show the
results of adenomatous polyp detection and Figs. 17(a) to
(h) show the results of hyperplastic polyp detection. It can
be seen that YOLOv4 has the highest confidence score and
extracted both different polyps with much more accuracy
than the other models. In addition to detecting the polyps
from Harvard Dataverse of colonoscopy, we further applied
these methods to the colonoscopy image dataset provided
by CGMH. The detection results for the adenomatous class
from CGMH test images are shown in Fig. 18. Four models
achieved better performance for adenomatous polyps, which
are larger in size; hence, their shape and texture were easier
to distinguish from the colonic wall. The results of CGMH
hyperplastic polyp detection are presented in Fig. 19. The
qualitative comparison showed that the YOLOv4 can detect
the hyperplastic polyp with a more accurate confidence score
than the other three models.

To understand the ability of object detection for ade-
nomatous and hyperplastic polyps, the metrics containing
precision, recall, F1-score, average precision, and kappa
coefficient were used to examine the performance. For com-
pleteness, these metrics are explained as follows.

Precision is the measurement of the percentage of correct
predictions. Correct predictions of polyps are significant in
detecting and treating colorectal cancer. Precision is calcu-
lated using the following equation,

Precision =
TP

TP+ FP
(2)

where True Positive (TP) is a correct prediction of the positive
class, and False Positive (FP) is the incorrect prediction of the
positive class.

Recall is used to measure the ratio of positive predictions
which are correctly identified. It is formulated as,

Recall =
TP

TP+ FN
(3)

where True Positive (TP) is the correct prediction of the posi-
tive class, and False Negative (FN) is the incorrect prediction
of the negative class.

The accuracy of the model is calculated as,

Accuracy =
TP+ TN

TP+ FP+ TN + FN
(4)

The confusion matrix is used to measure the model perfor-
mance by calculating the values of the performance matrices,
i.e., precision, recall, F1-score, AP, and kappa values. All of
these predictive analytics are calculated using Eqs. 4 to 7. The
results obtained in this study are shown in Table 11.

F1-score calculates the test accuracy. It considers precision
and recall to measure the model’s performance using a rela-
tion.

F1 − score = 2 ×
Precision× Recall
Precision+ Recall

(5)
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The average precision is measured as AUC. It measures a
precision-recall (PR) curve into one scalar value between
0 and 1. When maximum precision values are dropped, the
curve is sampled at recall values (r1, r2, . . .).
When p(ri) drops, it is sampled, and AP is computed as the

sum of rectangular blocks. The value for AP can be defined
as

AP =

∑
(rn+1 − rn) pinterp (rn+1) (6)

and

pinterp (rn+1) = maxr∼≥rn+1p
(
r∼

)
(7)

The main purpose of interpolating the precision-recall curve
is to minimize the effect of fluttering in the precision-recall
curve. Both methods will diverge as interpolated points that
do not cover the precision drop.

The kappa coefficient is an index calculated based on the
confusionmatrix to assess themodel’s classification accuracy
[32]. The obtained kappa values for each model are presented
in Table 11. A higher kappa value indicates a higher classifi-
cation accuracy. To calculate the kappa value,

Kappa =
p0 − pe
1 − pe

(8)

where po is the accuracy value, i.e., the sum of diagonal
elements divided by the sum of total matrix elements; pe is
the sum of products of the actual and corresponding predicted
values divided by the total matrix elements.

A. TWO-CLASS POLYP DETECTION AND CLASSIFICATION
Polyp detection models were set to detect and classify
colorectal polyps into two classes, adenomatous and hyper-
plastic, with a confidence threshold value of 0.5. Models
were trained on the combined dataset and tested separately
on unseen images based on the two datasets. The detection
results with the confidence scores are shown in Figs. 16 to 19.
The detection results with a confidence value of over 0.5 are
shown in each frame.

1) DETECTION RESULTS ON THE HARVARD DATAVERSE
Figs. 16 and 17 show the detection and classification results
for the two classes, i.e., adenomatous and hyperplastic when
the object detection models were provided with test images
from Harvard Dataverse.

The detection results demonstrated that the models accu-
rately performed the polyp detection and classification within
the set confidence scores.

To observe the detection and classification performance
of the models, the same test images were provided for each
model. As can be seen in Figs. 16 and 17, YOLOv4 had the
highest confidence score for polyp detection. The detection
and classification accuracies of the models were calculated
to compare and identify the best performing model.

FIGURE 16. Detection results of FasterRCNN, SSD, YOLOv3, and YOLOv4
models for adenomatous polyp with the predicted classes and confidence
scores. (a) and (e) using FasterRCNN, (b) and (f) using SSD, (c) and
(g) using YOLOv3, and (d) and (h) using YOLOv4. Original images were
downloaded from Harvard Dataverse of colonoscopy.

FIGURE 17. Detection results of FasterRCNN, SSD, YOLOv3, and YOLOv4
models for hyperplastic polyp with the predicted classes and confidence
scores. (a) and (e) using FasterRCNN, (b) and (f) using SSD, (c) and
(g) using YOLOv3, and (d) and (h) using YOLOv4. The original images were
downloaded from Harvard Dataverse of colonoscopy.

2) DETECTION RESULTS ON THE CGMH DATASET
Figs. 18 and 19 show the detection and classification results
for two classes, adenomatous and hyperplastic when the
models were provided with the test images from the CGMH
dataset. Similar to the detection and classification results in
Figs. 16 and 17, YOLOv4 obtained the highest confidence
score for both classes, i.e., adenomatous and hyperplastic,
on the CGMH dataset.

It can also be observed that on the CGMH test dataset,
the models showed higher confidence scores than those on
Harvard Dataverse due to higher resolution.

FIGURE 18. Detection results of FasterRCNN, SSD, YOLOv3, and YOLOv4
models for adenomatous polyp with the predicted classes and confidence
scores. (a) and (e) using FasterRCNN, (b) and (f) using SSD, (c) and
(g) using YOLOv3, and (d) and (h) using YOLOv4. The original images were
obtained from CGMH.

B. MODEL COMPARISON AND RESULTS ANALYSIS
The detection results for the two classes were compared and
are presented in Table 11. Adenomatous polyps are generally
easier to identify than hyperplastic polyps due to their larger
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FIGURE 19. Detection results of FasterRCNN, SSD, YOLOv3, and YOLOv4
models for hyperplastic polyp with the predicted classes and confidence
scores. (a) and (e) using FasterRCNN, (b) and (f) using SSD, (c) and
(g) using YOLOv3, and (d) and (h) using YOLOv4. The original images were
obtained from CGMH.

size and distinct visual features. As a result, almost all object
detection models showed promising results for detecting ade-
nomatous polyps. However, hyperplastic polyps present more
of a challenge for object detection models due to their smaller
size and subtle visual characteristics. These features make it
more difficult for themodel to distinguish hyperplastic polyps
with similar visual features. Therefore, developing accurate
object detectionmodels for hyperplastic polyps requiresmore
research and innovation.

From the detection results shown in Figs. 16 to 19, it can
be seen that bounding boxes were precisely placed around
the polyps, which indicates excellent model performance
as it is of high importance during colonoscopy. As indi-
cated in Table 11, YOLOv4 achieved the best detection
performance in adenomatous and hyperplastic with mAP =

88%. Moreover, YOLOv4 outperformed all other models
with a significant margin in the two-class classification of
mean precision, mean recall, mean F1-score, and mAP. After
YOLOv4, SSD yielded the second highest mean precision,
mean recall, and mean F1-score except for mAP, where
YOLOv3 performed second best with 77.4%. For adenoma-
tous detection, SSD also performed second best in the recall,
F1-score, and AP. YOLOv3 outperformed SSD in adeno-
matous precision with 87.5% and hyperplastic recall with
90.4%. Therefore, SSD ranked second compared with other
detectors obtaining the second highest mean precision, mean
recall, and mean F1-score. YOLOv4 obtained a kappa value
of 0.828, making it almost a perfect agreement and taking
the lead among the other object detection and classification
models. SSD ranked second place with a kappa value of
0.628. FasterRCNN and YOLOv3 achieved kappa values of
0.402 and 0.546, respectively.

For training, 80% of the dataset based on CGMH and
Harvard Dataverse was utilized, and the remaining 20% was
used for testing based on the calculation, i.e., (7150+5773) x
20% = 2585. The confusion matrices for FasterRCNN, SSD,
YOLOv3, and YOLOv4 are presented in Tables 4 to 7.

The overall accuracy and class-wise accuracy for Faster-
RCNN, SSD, and YOLOv3 were calculated and then
compared with the accuracy of YOLOv4. The results are
presented in Table 8, Table 9, and Table 10.

TABLE 4. Confusion matrix for FasterRCNN.

TABLE 5. Confusion matrix for SSD.

TABLE 6. Confusion matrix for YOLOv3.

TABLE 7. Confusion matrix for YOLOv4.

C. STATISTICAL ANALYSIS
The class-wise polyp detection accuracies of FasterRCNN,
SSD, and YOLOv3 were compared with the accuracy of
YOLOv4. To observe the statistically significant difference
between the accuracies, two proportion Z-test [33] was
employed. The accuracies for eachmodel were independently
tested. The confidence level of 95% was selected with a
significance level of α = 0.05 (5%), making the critical Z
value +/−1.96. The H0 (null hypothesis) in this analysis (for
each model comparison with YOLOv4) states that both the
accuracies are the same; however, the Ha (alternate hypoth-
esis) states that the accuracies are not the same, and there is
a significant difference between them. When we compared
the accuracies of any of the above models with the YOLOv4,
the null hypothesis was rejected if Z < −1.96 or > 1.96,
and the null hypothesis was accepted if −1.96 < Z < 1.96,
that is, there was no significant difference between the two
accuracies. The Z value calculation formula is given as,

Z =
p̂1 − p̂2√

p̂
(
1 − p̂

) (
1
n1

+
1
n2

) (9)

where p̂1 is the first proportion, p̂2 is the second proportion,
and p̂is the overall proportion. The proportions were sepa-
rately calculated for each class using TP and TN values from
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the confusion matrices. The two proportion Z-test results are
presented in Table 12.

TABLE 8. Comparison of polyp detection accuracies for FasterRCNN and
YOLOv4.

TABLE 9. Comparison of polyp detection accuracies for SSD and YOLOv4.

As shown in Table 12, except for the calculated Z value
between YOLOv3 and YOLOv4 for hyperplastic class accu-
racy, the Z values for both adenomatous and hyperplastic
classes were higher than 1.96, which indicates that there is a
significant difference in the accuracies of the evaluated mod-
els. From this statistical analysis and the above comparative
results, we can conclude that the accuracy of YOLOv4 is
higher than the other three evaluated models.

Two proportion Z test was performed to analyze the signif-
icant difference in accuracy. In adenomatous classification,
the vast difference in accuracy of almost 26% between
YOLOv4 and YOLOv3 was presented with a Z value of
15.89. This shows that YOLOv3 had the lowest adenomatous
polyp detection and classification accuracy. In the hyper-
plastic polyp class, compared to YOLOv4, FasterRCNN
performed with the lowest accuracy, with a difference of
almost 27% and a Z value of 16.5.

This difference is 1%more than between the YOLOv3 and
YOLOv4 adenomatous class detection accuracy, making the

TABLE 10. Comparison of polyp detection accuracies for YOLOv3 and
YOLOv4.

hyperplastic detection by FasterRCNN the overall lowest in
this study. The YOLOv3 performed the second best (after
YOLOv4) with an accuracy difference of only 1.8%. This dif-
ference is depicted in a Z score of 1.67. As the critical Z value
for the positive region was 1.96, and the calculated Z value
was less than 1.96, the null hypothesis was accepted; this
means there is no significant difference between YOLOv3
and YOLOv4 accuracies. The YOLOv3 was the second best
after YOLOv4 in hyperplastic detection.

For adenomatous class detection, SSD came after YOLOv4
with an accuracy difference of 11.2%. The comparison of the
models’ accuracies is shown in Fig. 20.

FIGURE 20. Polyp detection accuracy comparison.

The relevant Z value for this difference was 8.05, which
is significant based on the hypothesis rule. However, in ade-
nomatous detection, SSD was the second best performing
model, with an accuracy of 79.3%. In the models’ overall
detection accuracies comparison, SSD was the second best
after YOLOv4 with 81.4%; the difference was only 10%.

In summary, the results suggest that YOLOv4 is the most
suitable deep learning model for detecting and classify-
ing polyps from colonoscopic images since it achieved the
highest performance in terms of accuracy, precision, recall,
F1-score, AP, and kappa value. In the case of YOLOv4,
it achieved a mAP = 88.0 and an AUC = 0.8709. Based on
these results, we conclude that YOLOv4 is the most efficient
and suitable model for polyp detection.AP, and kappa value.
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TABLE 11. Results for two-class polyp detection.

In the case of YOLOv4, it achieved a mAP = 88.0 and an
AUC = 0.8709. Based on these results, we conclude that
YOLOv4 is the most efficient and suitable model for polyp
detection.

FIGURE 21. YOLOv4 PR curve for adenomatous polyp class.

Figs. 21 and 22 show the PR curves where the AP values
are 0.907 and 0.853 for adenomatous and hyperplastic polyps,
respectively.

The results indicated that adenomatous classification is
more accurate than hyperplastic classification when the
YOLOv4 model is used. The ROC curves for the four models
implemented are shown in Fig. 23. The performance compari-
son was made based on the highest AUC value after acquiring
the respective ROC curves. YOLOv4 achieved the highest
AUC value of 0.8709 (SSD=0.826; YOLOv3=0.801, and
FasterRCNN=0.779).

VI. DISCUSSION
This comparative polyp detection and classification study
concluded YOLOv4 as the best performing model with accu-
racies of 90.5% for adenomatous and 92.1% for hyperplastic.

FIGURE 22. YOLOv4 PR curve for hyperplastic polyp class.

FIGURE 23. Combined ROC curves for the four models, i.e., YOLOv4,
YOLOv3, SSD, and FasterRCNN.

Data preprocessing with image annotations and data augmen-
tation techniques were implemented to enhance the training
dataset to train the models with more features and make
them more robust. Due to proper results, only three data aug-
mentation techniques, i.e., random horizontal flip, random
scaling, and color jitter were adopted to enhance the dataset
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TABLE 12. Statistical analysis for models accuracies comparison.

three times. The other data augmentation techniques were not
adopted due to improper results.

Since the test images were based on both datasets (CGMH
andHarvard Dataverse), it is imperative tomention the causes
of misjudgment in detection that lead to detection errors.
As mentioned in Section III, unclear and noisy images were
manually removed from the CGMH dataset; similarly, while
refining the datasets, another cause that may lead to low
detection accuracy is blur images. In both datasets, images
were acquired from colonoscopy videos; therefore, during the
colonoscopy, the video/image captured in different angles and
positions led to blur frames, as shown in Fig. 24. Other than
polyps with a similar texture as the colonic wall, images with
high noise due to high brightness, small polyps, and images
with unclear polyps (during colonoscope movement) were
also removed before the training process.

FIGURE 24. Samples of colonoscopy images with unclear polyps. These
samples are related to Harvard Dataverse of colonoscopy.

In this study, our objective was to detect and clas-
sify a single polyp class within a single image. However,
we encountered a few issues as we faced only in a few images,
i.e., null value (empty values in class types and confidence
score) and two-class identification in a single image. Deal-
ing with these two significant issues is vital to avoid false
prediction and polyp miss rate. Images with a high level of
noise within the dataset can result in errors when it comes
to detecting and classifying objects. The misidentification of
polyps and classification errors can occur due to non-apparent
polyps and polyp textures that closely resemble those of the
intestinal wall [12].

It is imperative to deal with these two major issues to
avoid false prediction and polyp miss rate. To address these
issues, we developed specific functions that effectively elim-
inate the null values resulting from the detection process.
Additionally, we implemented a mechanism to discard low
probability values in the multi-class probabilities, retaining
only the higher value. These functions are integrated with
each model (fasterRCNN, SSD, YOLOv3, AND YOLOv4)

Algorithm 2 Polyp Detection Errors Handling (Null Value
and Multiple Object Detection in Predicted Images)
1: Input: Predicted images (predicted output data from

each model with the labelled information)
2: Function DataHandling(Input)
3: Repeat
4: Read each image info. in the predicted dataset (no.
of images, bounding boxes, labels)
5: If (no. of Bounding box == 1)
6: If (confidence score >= 0.5)
7: Store information (Confidence score, Polyp

class)
8: Else
9: Count the images with less confidence score and

discard the image
10: End
11: Else If (no. of Bounding box == 0)
12: Count and discard the image
13: Else If (no. of Bounding box >1)
14: Read and compare confidence score information

of bounding boxes
15: Discard the less confidence value (bounding box)
16: If (remaining bounding box confidence score

>= 0.5)
17: Store information (Confidence score,

Polyp class)
18: Else
19: Count and discard the image
20: End
21: End
22: If (no. of discarded images > 5% of the total

predicted images)
23: Retrain the model
24: End
25: Until (the last image is traversed in the predicted

dataset)
26: End Function

as part of the model at the end as a separate module to deal
with the mentioned issues as shown in Fig 15. Algorithm 2
is designed and shown below to illustrate the sequence of
steps followed by the error handling module. These measures
helped us improve the accuracy and reliability of our classifi-
cation results. samples of two-class identification in a single
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image and null detection are shown in Fig. 25 and Fig. 26,
respectively.

FIGURE 25. Two-class identification in single images. These test images
are samples from the CGMH dataset.

FIGURE 26. Samples of null detection. Test images were selected from
the CGMH dataset to test the model’s polyp detection and classification
ability.

VII. CONCLUSION
This study developed, evaluated, compared, and analyzed
the performance of polyp detection systems that can detect
colon polyps with the aim of early resection of colon polyps.
In this research, a large dataset was obtained from a hospital
and combined with the Harvard Dataverse of colonoscopic
images. The CGMH dataset was then refined to remove
noisy, unclear images and similar images. Finally, a diverse
colonoscopy dataset was developed for polyp detection and
classification. Three data augmentation techniques were
applied to the dataset to enhance the models’ training and
prediction performances. Polypswere classified as either ade-
nomatous or hyperplastic. Four state-of-the-art deep learning
models, i.e., FasterRCNN, SSD, YOLOv3, and YOLOv4,
were evaluated using the dataset. Their performance was
finally compared and analyzed in detail using different per-
formance metrics to identify the best performing model for
each polyp class based on the results and analysis. We devel-
oped and integrated a polyp detection error handling module
with each model to avoid false predictions and maintain high
accuracy. A significant statistical difference was observed
between the performances of the object detection models.
In class detection and classification for both polyp classes,
YOLOv4 ranked the best in this study, obtaining the highest
precision, recall, F1-score, AP, kappa score, and accuracy.
It also outperformed all other evaluated models.
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