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ABSTRACT Chaotic path planners are a subset of path planning algorithms that use chaotic dynamical
systems to generate trajectories throughout an environment. These path planners are imperative in
surveillance tasks in the presence of adversarial agents which require the paths to be unpredictable while
at the same time guaranteeing complete coverage of the environments. In the online coverage of unknown
terrain, the chaotic path planning algorithms can work without the need of the environment map and the
designer has additional control over the generated paths relative to other heuristic coverage path planners
such as random-walk algorithms. Although chaotic path planners have been studied over the past two
decades, there has not been an updated survey on the advances. This paper presents an up-to-date review
by providing: an introduction of commonly used chaotic systems and methods for their manipulation;
an overview of obstacle avoidance methods used by chaotic path planners; and a discussion on other
applications, challenges, and research gaps.

INDEX TERMS Autonomous robots, chaos, path planning, nonlinear dynamical systems, robot motion.

I. INTRODUCTION
Chaos is all around us. From weather [1], [2], [3] to
population growth [4], [5], the unpredictable nature of
chaos prevents predicting any phenomenon associated with
it. Chaos can be defined as highly unpredictable behav-
ior induced by extreme sensitive dependence on initial
conditions [6]. In certain nonlinear systems, this sensitive
dependence creates a set of rich dynamical behaviors
that are critical to numerous fields, including Biomedical
Engineering [7], Nursing [8], and Psychology [9]. Robotic
engineering is also one field that has been influenced by
chaos theory. The application of chaos theory to robotic path
planning has been studied over the past two decades.

Path planning is the task of constructing a collision free
path between two points in a workspace [10], [11]. For the
purpose of this paper, the path planning methods are broadly
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classified into two categories: point-to-point path planning
[12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22],
[23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33],
[34], [35], [36], [37], [38], [39], [40], [41], [42] and coverage
path planning [43], [44], [45], [46], [47], [48], [49], [50],
[51], [52], [53], [54], [55], [56], [57], [58], [59], [60], [61].
The point-to-point path planning problem involves finding a
collision-free trajectory from some starting position to a goal
or final position. Sampling-based planning [62], [63], [64],
[65], [66], [67], [68], kinodynamic planning [69], [70], [71],
[72], [73], and manipulation planning [74], [75], [76], [77],
[78] are among the methods used in studies to find a direct
path that connects two points in space.

Coverage path planning [79], [80], [81], [82], [83], [84],
[85], [86], [87], [88], [89], as implied by the name, involves
finding a path that passes through all points in an area.
The robots must completely cover the area while avoiding
any obstacles and minimizing overlapping or repeating paths
in an optimal manner [90]. The coverage problem is an
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NP-hard problem as it encompasses finding a collision-free
path while simultaneously ensuring that every space has been
covered, preferably only once. In terms of adaptability to
unknown environments, CPP algorithms are classified into
offline algorithms and online algorithms. Offline algorithms
[91], [92], [93], [94], [95], [96], [97], [98], [99], [100], [101],
[102], [103], [104], [105], [106] need full knowledge of the
map and any obstacles in the space must be stationary. The
assumption of a priori known environments will usually lead
to more efficient coverage, but this assumption is not appli-
cable to many dynamic real-world situations. Conversely,
online algorithms [107], [108], [109], [110], [111], [112],
[113], [114], [115], [116], [117], [118], [119], [120] do not
require full knowledge of the map in advance; they make
use of advancements in collision detectors and real-time
measurements to ensure full coverage of the reachable
target space [90]. Online CPP algorithms are well suited to
automated mobile robots and their numerous applications.
In terms of algorithm complexity and sensory needs, the
online CPP algorithms can be divided into two classes:
complete and heuristic [80]. According to [80], the complete
CPP algorithms mostly use cellular decomposition methods,
either explicitly or implicitly, to generate deterministic simple
paths that cover the target environment to achieve complete
coverage. Both explicit and implicit complete CPP algorithms
require a robot with localization capabilities. Alternatively,
heuristic CPP algorithms, such as random CPP or chaotic
CPP, can generate unpredictable paths to cover completely
unknown spaces without any localization capabilities. Com-
pared to the cellular decomposition methods, the random and
chaotic CPP use algorithms with less explicit programming,
leading to a reduction in required computational power and
complexity. However, both random and chaotic algorithms
cannot guarantee complete coverage if they are not tuned
properly to the operational environment(s). This issue can be
fixed in case of chaotic planners. Unlike random planners,
chaotic planners generate unpredictable but yet deterministic
paths. This determinism allows the system designer to control
the chaotic paths and develop approaches to guarantee the full
coverage of an unknown space.

The first paper on chaotic path planning was published
in 2001 by Nakamura and Sekiguchi [121]. Subsequently,
chaotic path planners became a subject of interest because of
their rich array of applications ranging from domestic uses,
e.g. vacuum robots, to military applications, e.g. autonomous
surveillance robots. For a path planning algorithm to be
classified as a chaotic path planning algorithm, it must rely
on a chaotic dynamical system (CDS) or maps for generating
robotic trajectories in the environment. A dynamical system
is chaotic if it displays sensitive dependence to initial
conditions [122], [123] and topological transitivity. Sensitive
dependence implies that a minuscule change in the initial
conditions of the dynamical system lead to drastic changes
in the trajectories of the dynamical system. The topological
transitivity characteristic implies that the domain of the
dynamical system cannot be subdivided into isolated regions.

Any trajectory in the dynamical system that starts in one
region of the domain will always end up in a different
region of the domain. Chaotic path planners will in some
way use dynamical systems with these two characteristics
to generate trajectories in the robot’s operating environment
e.g., projecting a three dimensional chaotic dynamical system
into a two dimensional room that a robot is exploring. While
the topological transitivity property can be used to guarantee
complete coverage of the entire environment over time by
some chaotic CPP, it does not normally ensure the uniformity
and efficiency of the robot’s coverage. In the absence of
control over chaotic paths, the generated paths might lead
to repetitive coverage that would significantly increase the
coverage time. This paper will explore various manipulation
methods aimed at improving the uniformity and efficiency of
chaotic paths.

Chaotic path planning has the potential to reinvigorate
the field of robotics for online coverage of unknown
environments. However, only a limited number of studies
explore aspects of chaotic path planners for this task such
as [124] which reviewed various applications of chaos in
robotics and only briefly discusses chaotic path planning.
This current study aims to conduct a thorough survey of the
previous works specifically done on chaotic path planners to
provide a starting point for future investigations within this
area. The following sections of this work are structured to
provide brief overview of non-chaotic coverage algorithms
for context on the coverage task before introducing chaotic
dynamical systems with manipulations and applications
found in previous works. Section II is the overview of
non-chaotic coverage path planning methods proceeding
section III which explores the various chaotic path planning
algorithms that have been used in previous work. Section IV
explores various chaos manipulation strategies which seek
to improve the uniformity and efficiency of coverage while
section V describes other applications of chaotic dynamical
systems for path planning apart from CPP. In section VI,
the key topic of obstacle avoidance will be introduced and
analyzed. Lastly section VII explores current problems facing
chaotic path planning applications before recommendations
for future studies and a brief conclusion given in section VIII.

II. OVERVIEW OF NON-CHAOTIC PLANNERS
This section gives a brief overview of popular non-chaotic
CPP algorithms as an introduction to the coverage task and
its intricacies. Both complete and heuristic CPP are reviewed
in the following section.

A. COMPLETE CPP – CELLULAR DECOMPOSITION
METHODS
Complete CPP algorithms are coordinated methodical efforts
to cover an area. They mostly use cellular decomposition
methods that decompose the free space into non-overlapping
cells. These cells are considered simple to cover since they
do not contain any obstacles. The complete coverage is
achieved once the robot visits all the cells. The previous

134918 VOLUME 11, 2023



F. Ahuraka et al.: Chaotic Motion Planning for Mobile Robots

works [80], [90] present a comprehensive review of the
studies on cellular decompositionmethods. This section is not
intended to be an exhaustive overview of the advances made
in this area; it is rather a brief review of some of the important
methods to enable comparison with chaotic algorithms.
Cellular decomposition approaches can be classified into
three categories [80]: 1) approximate decomposition; 2) semi-
approximate decomposition; and 3) exact decomposition.

1) APPROXIMATE CELLULAR DECOMPOSITION
The approximate methods break down the target space into
fine and uniform grid cells such that the collection of these
cells approximates the shape of the target space. The cells
are the same size of the robot’s physical footprint so that
when a robot enters a cell, the cell can be considered visited.
The most popular algorithms proposed under this category
include: 1) the wavefront algorithm [94], [125]; 2) spanning
tree covering (STC) [107], [110], [126], [127]; and 3) neural
network [111], [112], [128], [129], [130], [131]. In all these
methods, the algorithm is recursively called to select an
unvisited neighboring cell for the robot to visit next. Their
primary difference lies in the methods used to prioritize
and rank the unvisited neighboring cells. The prioritization
attempts to improve the energy and time efficiency by
reducing the path length and/or the number of turns. For
instance, the wavefront algorithm propagates a distance wave
front, through the free space, from an arbitrary point in the
space called the ‘‘goal’’. The wave front travels around the
obstacles and assigns a number to each cell, proportional to
their distance from the goal. The robot prioritizes visiting the
neighboring cells which lie the furthest away from the goal
as shown in Fig. 1a.

Alternatively, STC selects the next neighboring cell by
moving along both sides of a spanning tree. Two different cell
sizes are used, a large and a small cell size although the large
cells are sometimes referred to as mega cells. Small cells are
obtained by dividing the large cells into four parts, with each
small cell being the size of the robot’s footprint. The spanning
tree is constructed incrementally using the onboard sensors
and by connecting the centers of adjacent free mega cells.
Using this algorithm, the robot never visits any of the small
cells twice except for the starting cell as can be seen in Fig. 1b.
Lastly, the neural network algorithm selects the next cell to
visit based on comparing the ‘‘neural’’ activity of the current
cell i.e., neuron, and that of the neighbors. The neighbors
with the largest neural activity are selected as the next cell
to be visited. In the context of a cleaning robot, the unclean
cells i.e., unvisited cells, have the highest neural activitywhile
obstacles have the lowest. This high neural activity will attract
the robot, leading to the complete coverage of the space.

2) SEMI-APPROXIMATE CELLULAR DECOMPOSITION
The semi-approximate cellular decomposition algorithms
differ from approximate cellular decomposition algorithms
in that the semi-approximate algorithms do not need a prior

information about the environment [113], [132], [133]. These
path planners will decompose the space into vertical slices
of the identical width with the top and bottom boundaries
of these slices, or cells, having any shape. The robot starts
from an arbitrary point in the space and zigzags along
the grid lines created by the cells to cover the area. This
zigzagging might miss covering some smaller areas, called
inlets, or cover them twice. The algorithm would detect those
inlets as well as inlets within inlets and cover them through by
calling the same zigzag procedure recursively. Fig. 2 shows
the robot’s path when it uses the semi-approximate cellular
approximation algorithm suggested by [113].

3) EXACT CELLULAR DECOMPOSITION
Whereas approximate and semi-approximate cellular decom-
position methods attempted to use a grid structure or regular
pattern to partition an environment into cells, exact cellular
decomposition uses the obstacles in the environment to form
cells. The exact cellular decomposition methods divide the
free space into connected cells and store the decomposition
as an adjacency graph with two cells considered adjacent
if they share a common boundary. The cells are generated
by sweeping a slice through the space with cell boundaries
formed when the sweeping slice encounters some event, i.e. a
change in its connectivity due to emergence or disappearance
of an obstacle. After all the sweeps are complete, the path
planning algorithm will compute a sequence of cells to be
visited through the adjacency graph. Following this sequence
will guarantee the complete coverage as the robot will visit
each cell exactly once. Once the robot enters a cell, the
algorithm will generate a specific zigzag path for it to cover
that cell.

Over the years, researchers have proposed three major
versions of exact algorithms: 1) trapezoidal decomposi-
tion; 2) Boustrophedon decomposition; and 3) Morse-based
decomposition. The difference between these algorithms
lies in the configurations of the cells as well as the type
of the environments (and obstacles) that each algorithm
can handle. As the name would suggests, the trapezoidal
decomposition algorithm creates only trapezoid-shaped cells
and is well suited to only handle planar, polygonal, and
a priori known spaces. As shown in Fig. 3a, the trapezoidal
decomposition can only create convex cells which can result
in some inefficiencies. Many of the cells formed by the
trapezoidal algorithm can be merged to have more efficient
coverage paths. The Boustrophedon algorithm [134], [135]
was developed to address this issue by allowing creation
of non-convex cells which reduces the number of cells as
observed in Fig. 3b. Similar to trapezoidal decomposition,
Boustrophedon decomposition is classified as an offline
method and can only handle polygonal obstacles within the
environment.

To address these limitations, [136] generalized the
Boustrophedon decomposition using the critical points of
Morse functions [137] and developed the Morse-based
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FIGURE 1. Coverage of a space using approximate cellular decomposition with obstacles shown as filled rectangles. (a) Wavefront algorithm with path
shown as dashed line. (b) STC with path shown as solid blue line.

FIGURE 2. Robot’s path generated using the semi-approximate cellular
decomposition. The robot identifies and covers inlets I0 and I1.

FIGURE 3. Robot paths generated using (a) trapezoidal and
(b) Boustrophedon algorithms.

decomposition. The critical points are located on the bound-
ary of an obstacle where the surface normal vector of the
obstacle is perpendicular to the sweep line. The connectivity
of the sweep line will change when it meets a critical point

as shown in Fig. 4a and 4b. As the sweep line intersects the
obstacle at the first critical point, its connectivity changes
from one to two and therefore two new cells are formed.
The appearance of the second critical point indicates the
emergence of an obstacle-free region and therefore the two
cells are closed, and one new cell is created. In spaces
unknown at the start of the coverage task, the robot can
use its sensors to detect the critical points of the obstacles
[138], [139] and efficiently determine the cell boundaries.
However, the sensors can only detect these points when their
distance from the robot is minimal. This takes place only
when the sweeping direction is parallel to the normal to the
obstacle surface, i.e., the robot is following the obstacle wall.
Therefore, to ensure detection of the critical points, the robot
should start following the obstacle walls as soon as it detects
an obstacle, and it should continue doing so until either the
sensors detect a critical point, or it reaches the next strip [136]
as shown in Fig. 4c.

B. HEURISTIC CPP – RANDOM
The CPP algorithms discussed in Section II-A use determin-
istic algorithms which have the drawback of requiring either
an offline path generation or a large amount of memory to
store long paths in vast environments. In contrast, the robot
can heuristically cover an area by simply selecting random
directions to travel within the search space at specified steps
or distances. This concept forms the basis of random search
methods (also known as random-walk), that do not require the
memory resources to store previous trajectory of the robot.
Random-walk (RW) methods can either be uncorrelated
walks where the direction of travel chosen independent of
the previous directions or correlated walks with the walk
direction biased towards a preferred direction or a given target
[140]. In robotics applications, uncorrelated RW methods
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FIGURE 4. (a,b) Cellular decomposition using the Morse algorithm and (c) rectangular cycles within path enable detection of critical points.

FIGURE 5. Paths generated using (a) Brownian motion and (b) Lévy flight to explore an enclosed space over a finite time interval. The paths have
the same starting point but different ending points .

such as Brownian motion (BM) and Lévy flight (LF) are
commonly used [141], [142]. Comparing the two methods,
the BM method takes small steps which are more efficient
for local search as shown in Fig. 5a whereas the LF method
is more successful in global search as it allows the agent to
take occasional long steps and visit remote locations as shown
in Fig. 5b. In ecological examples, animals foraging for food
in food sparse environments resemble LF methods [143] but
when the food is abundant, the simple BM method proves to
be sufficient [144], [145].
Unlike the cellular decomposition methods, random search

strategies do not guarantee complete coverage although ran-
dom searches do not need localization sensors or as high of a
computational capability. The cost of providing sophisticated
navigation capabilities for agents with coordinated search
can be prohibitive particularly for robotic swarms in remote
and/or adversarial environments where there is a higher
possibility of losing robotic agents. References [145] and
[146] argue that if the cost of building agents with advanced
navigation capabilities is higher than the price paid for the
reduced performance, then it may be beneficial to use the
random search strategies.

One major shortcoming of the random search is the lack
of continuity in the robot’s motion; the generated paths
often result in sharp turns and uneven density of coverage
across the space. While utilizing teams of robots can help

alleviating the coverage density issue, strategies should be
used to distribute the agents evenly across the space and
improve search efficiency of the RW methods. Studies have
used variety of approaches to realize this capability such
as: 1) use of pheromones for the agents to communicate
with each other [147], [148]; 2) combining the RW with
an artificial potential field to disperse neighbouring robots
[149]; and 3) adaptively switching between LF and BM
[150] to cover the area both locally and globally. Regardless
of the methods used to improve the coverage density, the
discontinuous nature of RW when determining directions to
travel means that sharp angular turns cannot be avoided.
The chaotic path planners can present a simple solution to
this issue. Continuous chaotic systems have the capability
to generate trajectories with smooth turns and more uniform
coverage compared to RW methods. In addition, chaotic
search can also be implemented on low-cost robots in case
of limited sensing and computational resources in much the
same way as random CPP.

III. CHAOTIC SYSTEMS
Since the first applications of chaotic dynamical systems
in path planning tasks, several dynamical systems with
chaotic behaviors have been explored. Some of these
systems, as will be explored in this section, display chaotic
properties exclusively under certain subset of parameters.
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FIGURE 6. The standard two-wheeled mobile robot traveling in a plane
along a path r (t) with a vehicle speed V and velocity inclination θ .

These systems are tested for chaos using bifurcation diagrams
or the system’s maximal Lyapunov exponent (MLE). The
bifurcation diagram presents the qualitative changes in the
system dynamics as parameters vary [151] while the MLE
measures the sensitivity of the dynamical system to initial
conditions. A dynamical system is considered chaotic if it
falls within the chaotic regions of the parameter space in the
bifurcation diagrams or if the MLE of the system is positive
[6]. Once a dynamical system with appropriate parameters
is selected, this chaotic dynamical system can be used to
generate chaos in either the robot’s controller behavior or in
the robot’s trajectory within the environment. The standard
mobile robot used for simulation in most previous studies is a
twowheel differential drivemobile robot.While this platform
selection often restricts the environment to two dimensions,
there have been studies involving application of chaotic
dynamical systems in three dimensional environments [152].
Fig. 6 illustrates such a two wheeled differential drive robot
comprised of two active fixed wheels and one passive caster
wheel. The kinematics of the two-wheeled robot are subject
to a non-holonomic constraint that prevent transverse motion.
To directly induce chaos into the selected robot’s dynamics,
one or more coordinates of the dynamical system are often
used to perturb or control the robot’s velocity orientation.
The result is that the robot steers in an unpredictable motion,
traversing the environment.

The chaotic systems most commonly studied for use in
CPP found within the literature include: 1) the Arnold system
[153]; 2) the Lorenz system [154]; 3) the Chen and Ueta
system [122], [155], and the Chen and Lü System [156];
4) Chua’s electrical circuit [157], [158]; and 5) the Logistic
map [6]. A recent study [159] proposed as well a new
chaotic system, though the paper was more focused on
describing dynamic properties of this system rather than CPP
performance. In the following sections, we will be describing
the aforementioned commonly used chaotic systems by
giving the equations governing the dynamical systems,
some parameters that produce chaotic behaviors, and finally,
a comparison between some of the systems. Throughout the

FIGURE 7. Chaotic Arnold 3D flow using the parameters A = 1, B = 0.5,
and C = 0.5.

section, there will be various plots of attractors where the
system is simulated by a numerical method from an initial
condition to generate points of the trajectory with the
final point marked on the plot.

A. ARNOLD SYSTEM
One of the most researched and tested chaotic equations, the
Arnold system is a nonlinear continuous dynamical system
that was first used by [121] to realize chaotic path planning.
Consequently, [121] developed amethod of imparting desired
chaotic motion into a mobile robot’s controller by directly
using one of the Arnold system state variables as the heading
angle turning rate. The Arnold system is defined with
parameters A, B, and C which are constants in (1).

ẋ = A sin z+ C cos y
ẏ = B sin x + A cos z
ż = C sin y+ B cos x

(1)

The dot in (1), as well as the following equations, denotes
differentiation of the states x, y, and z with respect to
time. The Arnold equation describes a steady solution to
3D Euler Eqs. (2) and (3) which express the behavior of
noncompressive perfect fluids on a 3D torus space.

∂vi
∂t

+

3∑
k=1

vk
∂vi
∂xk

= −
1
ρ

∂p
∂xi

+ fi (2)

3∑
i=1

∂vi
∂xi

= 0 (3)

where xi and vi denote the position and velocity components
of a particle. p, fi and ρ denote the pressure, external force,
and density, respectively. It has been observed in the literature
that the Arnold system displays periodic behavior asC or any
other constants tend towards 0, and displays chaotic behavior
when C is large. An example chaotic trajectory of the Arnold
system is shown in Fig. 7. In addition to [121], other studies
have used the Arnold system for path planning in 2D [160],
[161] and 3D [152], [161] environments.
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FIGURE 8. Lorenz attractor displaying chaotic behaviours under
parameters σ = 10, r = 28, b = 8/3 [162].

B. LORENZ SYSTEM
The Lorenz system is a set of nonlinear first-order differential
equations originally published by American mathematician
and meteorologist Edward Lorenz in 1963 [1]. Lorenz is a
simplified mathematical model used to describe atmospheric
convection. The equations modeling the Lorenz system are
shown in (4) and are parameterized by σ , r , and b, which are
all positive. 

ẋ = σ (−x + y)
ẏ = rx−y−xz
ż = −bz+ xy

(4)

The equations describe the behavior of a two-dimensional
fluid layer, subject to uniform heating from below and
cooling from above. They detail the temporal evolution
of three distinct properties: x corresponds to the rate of
convection, y represents horizontal temperature variation,
and z is associated with vertical temperature variation.
The constants σ , r , and b are system parameters that are
proportional to the Prandtl number, Rayleigh number, and
specific physical dimensions of the layer. As observed in Fig.
8, Lorenz exhibits double-scroll attractors. Edward Lorenz
realized that for σ = 10, b = 8/3, the system behaves
chaotically whenever the Rayleigh number r exceeds the
critical value of 24.74, meaning that almost all solutions
appear to be sensitive to initial conditions. For this reason,
studies [162], [163] interested in using the Lorenz system for
chaotic path planning, considered the parameter tuple used to
generate Fig. 8. For parameter values of r < 1, all solutions
of the system will approach the equilibrium point located at
the origin. However, as r gradually increases through 1, the
eigenvalue situated at the origin becomes positive, causing
the origin to transform into a saddle with a stable surface that
spans two dimensions and an unstable curve. When r = 1,
two equilibria are born and diverge from the origin as r
increases.When r > 1, not all solutions converge towards the
origin. However, it can be observed that these initial solutions,
which are located at a considerable distance from the origin,
gradually become closer to it over time [164].

FIGURE 9. 3D Chen and Ueta attractor displaying rich chaotic behaviours
with parameters a = 35, b = 3, c = 28.

FIGURE 10. 3D Chen and Lü attractor displaying rich chaotic behaviours
with parameters a = 36, b = 3, c = 20.

C. CHEN SYSTEMS
The Chen system which is another nonlinear continuous
first-order dynamical system has two variations that are used
in the CPP literature: Chen and Ueta [155] and Chen and Lü
[156] systems expressed by (5) and (6), respectively.

ẋ = a(−x + y)
ẏ = (c− a)x−xz+ cy
ż = −bz+ xy

(5)


ẋ = a(y− x)
ẏ = −xz+ cy
ż = xy− bz

(6)

In the equations, x, y, and z are the state variables and a, b,
and c are parameters that control the behavior of the systems.
These parameters can be adjusted to produce different types
of behavior, such as periodic or chaotic. In the standard
formulation of the Chen and Ueta system, these values are
set to a = 35, b = 3, and c = 28, which produce chaotic
behavior shown in Fig. 9. The parameter values a = 36,
b = 3, and c = 20 in Chen and Lü system will similarly
produce chaotic behaviours displayed in Fig. 10. Similar to
the Lorenz system, the Chen and Ueta system and Chen and

VOLUME 11, 2023 134923



F. Ahuraka et al.: Chaotic Motion Planning for Mobile Robots

FIGURE 11. 3D Chua’s circuit attractor displaying chaotic behaviours
under parameters α = 10, β = 14.87, a = −1.27, b = −0.68, c = 1.

Lü system have two attractors that will attract trajectories
before expelling them although the attractors are not as
co-planar as in the Lorenz system.

To the authors’ knowledge, the only study that used Chen
and Ueta for chaotic path planning has been [165] which
combined Chen and Lorenz to enable monitoring of arbitrary
points of interest using chaotic trajectories. A recent study
[166] employed the Lü and Chen system for CPP tasks.
The study focuses on ascertaining the optimal range for the
parameter c while keeping the other two parameters fixed at
a = 36 and b = 3. Upon investigating the system’s chaotic
properties using bifurcation diagrams and measures such as
Lyapunov exponents, they determined the optimal range for
c to be [20, 28]. Within this range, c = 24 corresponded to
highest randomness and at the same time delivered the highest
coverage rate.

D. CHUA CIRCUIT AND MULTI-SCROLL SYSTEMS
The Chua circuit, invented in 1983 by American engineer
and computer scientist Chua [167], is a non-linear circuit that
has been studied extensively for its application to chaos and
chaotic path planning. By utilizing Kirchhoff’s circuit laws
to study the circuit, it is possible to precisely simulate the
behavior of Chua’s circuit through a set of three nonlinear
ordinary differential equations (with state variables x, y,
and z) that describe the voltages across capacitors, as well
as the electric current in the inductor. Much like the Lorenz
system, the Chua circuit exhibits double-scroll chaotic
attractors and period-doubling bifurcation route to chaos as
shown in Fig. 11. The differential equations governing the
system are listed in (7).

ẋ = α(y−x − f (x))
ẏ = x−y+ z
ż = −βy
f (x) = bx + (a− b)(|x + c| − |x − c|)/2

(7)

The nonlinear resistor’s electrical characteristics are
depicted by the function f (x), where a, b, and c are

geometric factors. The values of the circuit components
determine the parameters α and β. Several studies have
used either Chua system [168], [169] or multi-scroll systems
inspired by the Chua circuit system [170] to generate chaotic
paths. Chua-based multi-scroll chaotic systems resulted in
higher performance compared with the double scroll Chua
system. Unlike the double-scroll systems, path planners
using the multi-scroll system do not generate unnecessarily
dense trajectories [170]. In addition to Chua based systems,
studies have utilized chaotic double-scroll and multi-scroll
systems based on saturated function series to either directly
generate deterministic yet unpredictable paths [171] or to
create random number generators (RNG) that can produce
trajectories with the statistical properties of a random
sequence [169], [172]. Reference [173] used a combination of
hyperjerk chaotic system and a modulo operator to determine
the next direction for the robot. The input to modulo operator
is the generated point by the hyperjerk system and the output
is the next robot direction chosen out of the 4, or 8, possible
options.

E. DISCRETE SYSTEMS
While the continuous systems discussed previously are
defined by a differential equation, discrete systems utilize
iterative functional mappings to generate the system states
at each time index. The Logistic map shown in (8) and
the Hénon map shown in (9) are the two popular systems
used in chaotic path planners. The logistic map is a
second-degree polynomial function that is commonly cited
as a classic instance of how seemingly straightforward
nonlinear dynamical equations can give rise to intricate
chaotic behavior. The biologist Robert May brought the
logistic map to public attention through the study [174] which
presented the map as a discrete-time demographic model.
In Eq. (8), xn ∈ [0, 1] is the ratio of existing population to
the maximum possible population. The nonlinear difference
equation reflects two key factors influencing population
dynamics: reproduction and starvation. At low population
sizes, reproduction causes the population to increase at
a rate proportional to the current population. However,
at higher densities, the growth rate decreases in response
to the concept of carrying capacity, which represents the
maximum population that the environment can support. This
reduction in growth rate is proportional to the difference
between the carrying capacity and the current population
and is often referred to as density-dependent mortality or
starvation. The parameter r ∈ [0, 4] and its variations can
significantly influence the system behavior. When r ≈

3.56995, the system starts to exhibit chaotic behavior,
however, islands of stability still exist where the system
shows non-chaotic behavior. While the chaos attractor for
the one-dimensional Logistic map does not exist due to its
inherent one-dimensional nature, we can readily observe the
chaos attractor for the two-dimensional Hénon map system in
Fig. 12. Similar to Logistic map, the Hénon map operates in

134924 VOLUME 11, 2023



F. Ahuraka et al.: Chaotic Motion Planning for Mobile Robots

FIGURE 12. Hénon map system attractor with parameters a = 1.4,
b = 0.3.

discrete time, meaning that it progresses through a sequence
of distinct steps. In practical terms, the Hénon map takes
a point situated on the plane, identified by its coordinates
(xn, yn), and transforms it into a new point. The behavior
of the Hénon map is determined by two specific parameters,
known as a and b. In the standard formulation of the Hénon
map, these values are set to a = 1.4 and b = 0.3, which
produce the chaotic behavior. However, by modifying the
values of a and b, the map can display various types of
behavior such as intermittent dynamics or convergence to a
periodic orbit. To gain an understanding of the different types
of behavior exhibited by the map at various parameter values,
one can examine its orbit diagram.

xn+1 = rxn(1 − xn) (8){
xn+1 = yn + 1−ax2n
yn+1 = bxn

(9)

When integrated into the differential wheeled robot’s
heading controller, both systems tend to drive the robot in
only one direction which can be problematic in applications
related to coverage of bounded environments. This can be
addressed through applying a phase shift to the robot’s angle
and directing it to move in the opposite direction when it
comes close to any boundary in the space. As an alternative
to the robotic heading control, several studies have used the
generated points by the Logistic map for direct or indirect
coverage of the environment. In the direct method, the
points generated by the chaotic system are used unaltered
to cover the environment [175]. In contrast, the indirect
method will apply a simple modulo operator to the Logistic
map point sequence to determine the next direction for the
robot to travel from a set of 4 or more possible choices.
References [176], [177], [178], [179], and [180] use this
indirect approach combined with a memory technique to
improve the uniformity of the coverage relative to the direct
approach. The memory technique allows the robot to recall
the last few places visited and avoid revisiting those places in
the near future. In addition to coverage tasks, these discrete
systems are useful in generating direct chaotic paths to travel

between two specific points as implemented in [160] and
[162]. They can be used as well to produce unpredictable
paths in the vicinity of a closed contour for boundary
surveillance missions. The study [181] demonstrated the use
of the Hénon map system to generate such paths.

The final discrete chaotic dynamical system discussed
in this section is the Taylor-Chirikov, also known as the
standard map. This map is used by [182] to directly generate
trajectory points for the coverage task. The results showed
similar desirable performance to the results of a RW path
planner although the RW path planner results varied over
different simulation runs. It should be noted that other
discrete dynamical systems can be used for path planning,
such as the Chebyshev map discussed in Section IV or
Memristive Map [183], but the Logistic and Hénon maps are
the most prevalent within the literature.

F. SYSTEMS COMPARISON
The difference between chaotic systems can be summarized
in their coverage density and coverage extent which are
directly related to their coverage time and rate. Some systems,
e.g. Lorenz system [162], tend to generate locally dense
trajectories and have difficulty extending their paths globally,
particularly in large environments. Thus chaotic CPP using
the Lorenz system tend to have relatively high coverage
times. Other systems, e.g. the Arnold system [160], can better
extend their paths to distant regions and generate less dense
trajectories.

The level of randomness in trajectories is another distin-
guishing factor for chaotic path planners. To ensure that the
generated trajectories exhibit the statistical characteristics of
a random sequence, certain studies [177], [180], [184], [185],
[186], [187] have designed pseudo-random bit generators
(PRBGs) based on discrete systems such as the Logistic
map. These PRBGs produce random sequences that pass
various randomness tests and will be subsequently employed
to generate motion commands in discrete directions.

Some chaotic path planning literatures [188] and [189]
present comparisons of well-known chaotic equations. These
comparisons are performed to establish which equations are
better applicable to various testing conditions judging by
their coverage rate. The chaotic equations are simulated
with parameters that are carefully selected to produce the
best possible coverage. Reference [189] presents a study
on the trajectory of guiding signals of the Chua’s attractor
and the Arnold’s attractor, and draws a conclusion that the
trajectories from Chua’s attractor cover more areas than that
of Arnold’s attractor. Reference [190] compares the Chua
circuit, the Lorenz equation, and the Volos, Kyprianidis and
Stouboulos (VKS) system [191] for their coverage rates. The
results from [190] show that the VKS has better coverage
rate due to the nature of double-scroll chaotic attractors
produced by VKS. To date, the coverage rate has remained
a widely used criterion for the determination of the selection
chaotic equations for chaotic path planners although the
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selection is still highly dependent on the task and algorithm
implementation. For example, if the task is to move between
two specific points using a direct but unpredictable path, the
Henon map or Logistic map have been shown to be good
chaotic systems for these tasks [160], [162]. Alternatively,
if the task is to completely search an area, the designers
should consider the requirements of a coverage task such
as the target coverage density and coverage extent. Some
systems like Lorenz generate points with higher density but
they have difficulty expanding the paths to distant areas,
so they might not be efficient in terms of coverage time
for covering a large environment unless we use some chaos
control techniques discussed in Section IV.

Table 1 summarizes the performance of all the different
methods/systems used by the studies. The Table presents
various important parameters in chaotic path planning
including coverage time (CT ), total area covered (ATC ), robot
detection area (AD), robot velocity (v), coverage rate (CR),
obstacle occupancy Obso, and the number of robots used
for coverage (NR). We also categorized the works based on
the type of study they performed, namely, Simulation (Sim.)
or Experiment (Exp.). Many of the studies included various
versions of their method in different environments and among
those, this survey selected the ones with the best performing
parameters to present in the Table.

The studies on CPP, listed in Table 1, aimed at achieving
one or more of the following objectives:

1) Developing techniques for manipulating chaos to
enhance the coverage rate and improve the coverage
uniformity.

2) Utilizing chaos synchronization techniques to facilitate
multi-robot cooperative path planning tasks.

3) Focusing on covering more complex maps cluttered
with obstacles, including large obstacles that have
minimal impact on chaotic paths and densely packed
small obstacles that can significantly affect CPP
coverage.

4) Developing methods for manipulating chaotic systems
to achieve rapid and complete coverage of large maps.

5) Presenting a new chaotic system for coverage path
planning and analyzing its properties. These works
explore various system characteristics, such as funda-
mental dynamic patterns, bifurcations, and routes to
chaos, using analytical or computational methods.

To enable a more effective comparison between the
methods/systems, this paper has defined the following dimen-
sionless parameter that encompasses all the above-mentioned
parameters in the coverage chaotic path planners:

PM = e−αCR (
vt

√
ATC

)β︸ ︷︷ ︸
Parameter #1

(
NR

√
AD

√
ATC

)γ︸ ︷︷ ︸
Parameter #2

(10)

This measure penalizes methods with low coverage rates
and adjusts the performance metric PM of multi-robot
references by a factor of the number of robots involved

(NR). Lower PMs correspond to a better performance. When
attempting to cover a given map, achieving a higher coverage
rate will require more time compared to a lower coverage
rate. For instance, it may take an infinite amount of time
to fully cover 99% of a map, while covering 10% of a
map may only take a second. In order to establish the exact
nonlinear relationship between the coverage rate (CR) and
its corresponding coverage time (t), this study calculated
the time required to cover a range of rates from 0% to
100% for all the systems detailed in Section III. It then
identified the model that fits the data for each system with
a high goodness-of-fit (R2 > 92%). The results of this
analysis are illustrated in Fig. 13. As observed, there is a
strong exponential relationship between CR and t for these
systems. The PM formula (10) captures this relationship.
In addition, we divided other parameters in (10) into two
parts: Parameter #1 which holds the greatest relevance to the
robot itself, is taken to the power of β, and Parameter #2
which pertains mostly to the environment and has a power
of γ . The values of α, β and γ depend on the objective of
the comparison task. In this study, we use α = 0.42, β = 1,
and γ = 1. β = 1 and γ = 1 indicate the same significance
for environment and robot related parameters. However, these
values can be adjusted based on the desired weight for these
properties. Assuming β = 1 and γ = 1, the value of α is
determined by establishing the correlation between CR and
PM by taking the natural logarithm of (11) from both sides
which leads to set of equations described by (12). The values
for parameters appearing in (12) were extracted from the
papers listed in Table 1 which results in 28 useful data sets.
The papers associated with incomplete data were excluded
from the analysis. The variable y in Eqs.11 and 12 is an
n-dimensional column vector. Solving Eq. 12 yields the
value of α. It should be noted that the obtained α is only
one of several possible solutions, given the limited size
of the database. Therefore, the parameters can be adjusted
according to the desired objectives.

(
vt

√
ATC

)β (
NR

√
AD

√
ATC

)γ︸ ︷︷ ︸
y

= eαCR × PM (11)
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1 0 . . . 0 CR1
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...

...
. . .

...
...

0 0 . . . 1 CRn

 ×


lnPM1
lnPM2

...

lnPMn
α

 (12)

The last column of Table 1 displays the PM values calcu-
lated for each study using the parameter values mentioned
above. This column excludes studies that did not provide all
the necessary variable values for (10).

IV. CHAOS MANIPULATION
Although the equations described in Section III possess the
desired characteristics of chaotic motion, they are mostly
limited in functionality due to poor coverage of the search
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TABLE 1. Performance comparison between chaotic coverage path planners.
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FIGURE 13. The relationship between Coverage Rate and Coverage Time
for different Chaotic Systems. : Logistic System, : Arnold
System, : Chua Circuit System, : Hénon System, : Chen
and Ueta System, : Chen and Lü System, and : Lorenz System.

environment. Consequently, several works in the literatures
[160], [162], [165], [170], [175], [194], [195], [200], [201],
and [202] have innovated numerous means of improving the
functionality and chaotic properties in processes collectively
known as chaos manipulation. Chaos manipulation involves
the adjustments of chaotic algorithms by methods such as:
1) combining two or more chaos equations; 2) transforma-
tions of the chaotic and/or environment states; and 3) adding
of points of interest into or partitioning the robot search
environment. These manipulations are done to increase
the performance of the chaotic CPP with regards to the
coverage time and the path density. Various methods of chaos
manipulation are described in the following subsections.

A. ARCCOSINE AND ARCSINE TRANSFORMATION
Reference [194] describes the use of trigonometric trans-
formations such as arccosine and arcsine transformations
to increase the coverage rate and coverage distribution of
the Chebyshev map for special missions. The Chebyshev
map (13) is a simple dynamical system that bounds the
chaotic state xn in the range -1 to 1.

xn+1 = f (xn) = cos (k · arccos xn) (13)

where k denotes the order of the map. The Chebyshev
map displays uneven distribution at the extreme values
thereby implying poorly dispersed coverage. Reference [194]
uses arccosine and arcsine transformations to induce higher
topological transitivity for more even coverage of the range.
The transformations of the Chebyshev maps and the corre-
sponding plots are shown in Fig. 14. Reference [175] also
makes use of these transformations to solve a similar problem
of concentrated coverage at the boundaries when using
the Logistic map system for the coverage task. However,
it combines the arcsine and arccosine transformation to
create an improved path planner with better uniformity and

randomness using less iterations than the untransformed
Logistic map system.

B. PLANNED SUB-GOALS, POINTS OF INTEREST (POIS),
AND AFFINE TRANSFORMATIONS
Another method of chaos manipulation involves the use
of planned sub-goals or points of interest. Reference [200]
proposes a fusion iteration strategy using affine transfor-
mations to impart the standard chaotic algorithm onto the
robot controller. The chaotic trajectory produced by the
robot controller in this strategy has intermediate adjacent
points with large distances between them, which are therefore
difficult for the robot to track. Consequently, they created
an algorithm that enhances the robot’s navigation. The
algorithm creates sub-goals between adjacent points, divides
the environment into large regions, and further divides those
into small grids. To realize the fusion iteration strategy, the
code uses functions to judge if each small grid has been totally
covered, and, if not, starts up the small grid iteration cycles till
complete coverage of the grid is achieved, before moving on
to an adjacent small grid using the large iteration cycle. Using
this manipulation method, the algorithm is able to reduce the
distance between the adjacent points. However, the coverage
rate and time of the manipulated chaotic CPP is not indicated
in [200].

Reference [165] discusses another robot navigation
enhancement strategy using points of interest (POIs) rather
than planned sub-goals. In some specialized chaotic path
planning applications, there is a need to monitor specific
POIs; therefore, the goal of [165] is to create a chaotic
system for monitoring an arbitrary number of specified
locations, consequently proposing a methodology to impart
both real and synthetic POIs to the robot controller. The
real POIs are chosen as targets/goals to be monitored by the
robot, and synthetic POIs are chosen strictly to induce more
unpredictability of the path. After the POIs are established,
the next step involves the formation of cells to contain
the points of interest. Consequently, a schedule is created
to impart the robots planned time in each cell, and then
the local Cartesian coordinate system inside each cell is
established. Finally, trajectory segments are generated inside
each cell. The chaotic trajectory used by this study comes
from a combination of Lorenz and Chen equations. The study
used affine transformations to transfer the twin equilibrium
points of Lorenz and Chen to POIs and thereby transfer
and form the chaotic systems’ trajectories around these
points. The affine transformation includes a rotation and a
scaling transformation. The simulation of the derived system
shows dense trajectories around the points of interest, thereby
achieving the goal of this study which is demonstrated
in Fig. 15. However, unlike other studies such as [160],
[162], and [163], this work did not use a dynamical system
coordinate to perturb the robot’s orientation and impart chaos
into the robot’s controller. Instead, the two coordinates of the
mobile robot are just a simple transformation of coordinates
of the dynamical system. As a result, the appearance of
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FIGURE 14. Trajectory distribution of Chebyshev map with k = 6 showing: (a) unequal distribution at both ends, (b) arcsine transformation with more
dispersed distribution, (b) arccosine transformation with more dispersed distribution.

FIGURE 15. Lorenz and Chen system monitoring two points in an
environment with obstacles from [165]. Obstacles in the environment are
shown as rectangular blocks with POIs marked by the black circles placed
at (−5, 0) and (5, 0). Figure was adapted with permission from [165].

obstacles in the path might degrade the chaotic trajectories
and turn them into periodic paths as illustrated in Fig. 16.
To solve this issue, [165] used synthetic POIs to re-establish
the chaotic behavior of the Lorenz equation when obstacles
exist on the trajectory.

C. CHAOS SYNCHRONIZATION
The next chaos manipulation method to be explored is the use
of chaos synchronization to develop more complex chaotic
systems in a multi-robot application. Chaos synchronization
is used to harmonize and create identical trajectories to
achieve effective cooperation in a multi-robot chaotic system.
This process involves forcing two or more chaotic systems to
follow identical paths by ‘‘locking’’ all systems to one system
i.e., the drive system. Chaotic systems are known to resist
synchronization due to their positive Lyapunov exponents;
nevertheless, when both systems share information in a very
particular manner, synchronization is possible [201], [203].
This is depicted in [195] and [196], where the robot’s chaotic
motions are implemented in such a way that there is a leader

FIGURE 16. Lorenz chaotic trajectory forced to become periodic [165].
Obstacles in the environment are shown as rectangular blocks with POIs
marked by the black circles placed at (−5, 0) and (5, 0). Figure was
adapted with permission from [165].

robot imparted with the chaos equations, and the other robots
are synchronized to it. The four robots used in [195] all have
the same kinematic conditions but different initial positions,
dispersed to all four edges of the workspace. The robots
traverse the workspace to accomplish important targets pre-
viously imparted on the controller, while the synchronization
and obstacle avoidance control logic keeps the robots from
colliding with each other or with the workspace boundary.
The synchronization method used by [195] shows that chaos
synchronization achieves better coverage in a multi-robot
system than unsynchronized robots or random-walk robots.
The study also showed that after 200 iterations, the syn-
chronized system achieves 48.35% coverage as compared to
41.55% and 42.10% coverage in an unsynchronized and a
random-walk coverage planning, respectively, under the same
kinematic and workspace conditions.

D. PARTITIONING, ORIENTATION CONTROL, AND
SCALING
The map partitioning method, known as map zoning, first
proposed by [160] and [162], aimed to increase the uniformity
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and reduce the repetitiveness of the robot’s path, and thereby
reduce the coverage time. To achieve these objectives, the
methods involve dividing the environment into both small
and large cells to track the coverage in two different levels.
The small cells, each corresponding to a region no larger
than the robot’s sensing range (SR), monitor the coverage
status of these small areas to ensure the desired environment
coverage. The large grid cells, or map partitions, aim to track
the status of coverage of large portions of the environment.
This utilization of small and large cells is reminiscent of
the methods, particularly STC, discussed in Section II. The
methods in [160] and [162] use a combination of a continuous
and a discrete chaotic system for the chaotic path planner.
The continuous system is used to cover the smaller cells with
a dynamical state being used to directly control the robot’s
steering angle. The discrete system is used to move the robot
to a new large cell as soon as repetitive coverage is detected.
Overall, the method helps the robot to expand trajectories to
remote regions.

The orientation control is another manipulation technique
proposed by [160] and [162]. The method allows to
dramatically change the robot’s direction and drive it to cover
more of adjacent grid cells, thereby preventing dense local
trajectories. This is done through switching the dynamical
system coordinate that determines or perturbs the robot’s
heading angle. Finally, the last method proposed by [160]
has been the system scaling. The technique applies a factor to
scale the robot’s trajectories, allowing the algorithm to adjust
the coverage density based on the robot’s detection range.
At the same time, the method provides the capability to vary
the coverage extent based on the environment size. Overall,
the technique increases the adaptability of chaotic systems
to changes in the sensing range and environment size. Lack
of adaptability to different robot/environment conditions
has been a practical limitation of chaotic path planners.
The combination of the above-mentioned three techniques
helped to significantly reduce the repetitive coverage and the
coverage time, making the performance comparable to that
of optimal CPP methods discussed in Section II. However,
the robot requires localization capabilities for successful
implementation of the map zoning and orientation control
techniques which deviate from purely chaotic trajectories in
[121] or the random-walk methods.

V. OTHER APPLICATIONS OF CHAOTIC SYSTEMS IN
ROBOTIC PATH PLANNING
In addition to their wide applications in CPP algorithms,
chaotic equations have been used as well for finding the
optimal collision free path between two points. The study
[204] introduces an improved Moth-Flame Optimization
algorithm called Opposition-Based Learning and Cauchy
MutationMoth-Flame Optimization (OLTC-MFO), designed
for intelligent point-to-point route planning for UAVs. While
the Moth-Flame Optimization Algorithm (MFO) shows
promises in the field of intelligent optimization for path plan-
ning, it struggles to handle real-world disturbances, which

FIGURE 17. Arnold with all three chaos control techniques from [160] at
robot sensing ranges of (a) 4 meters and (b) 1 meter. The black squares
are obstacles and red circles indicate the zone midpoints. Figures were
adapted with permission from [160].

can compromise the accuracy of the resulting route. Within
the optimization landscape, chaotic mapping techniques have
become increasingly popular in intelligent algorithms, due to
their unique characteristics such as ergodicity, randomness,
and nonlinearity. The study has used twowell-known variants
of chaotic maps, namely, the Logistic map and the Tent
map. The former excels in global ergodicity but falls short
in local searches, whereas the latter compensates for these
limitations with its strong disturbance capabilities. The paper
proposes a fusion of these maps, called Logistic-Tent Chaos
Mapping (LT), to enhance the MFO algorithm’s global
search abilities by leveraging the potential of Logistic and
Tent maps in generating chaos-driven disturbances to the
flame position. It also incorporates a Cauchy mutation
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operator and a probability operator to perturb the optimal
flame position. These modifications allow the algorithm to
accept the current optimal solution with a certain probability,
while also providing a mechanism to escape local optima.
Reference [11] used a chaosmodified genetic algorithm (GA)
to find an optimal path to send goods from a warehouse to a
customer while avoiding static obstacles in the environment.
The optimal path in this task is calculated by finding the
shortest distance between the point sequences of an abstract
3D model of the environment. The genetic algorithm uses the
theory of genetics and evolution to find optimal solutions to
path planning by varying and patching the best performing
paths from a collection of candidate paths. However when
GA is applied to nonlinear systems, the algorithm presents
various shortcomings such as lack of a global convergence
guarantee. A chaotic dynamical system, a Logistic map
in [11], is combinedwith the GA because its ergodic tendency
helps the GA avoid the path search from attraction towards
local optimum paths rather than the true global optimum path.
The improved chaotic GA is proven to be effective in large
environments that necessitate both a global and a local search.

Another example of using chaos to find an obstacle-free
path between two points is [205] that introduced a path
planning equation. This continuous time differential equation
uses chaos and the virtual force field (VFF) method to find a
collision-free path while considering robot’s dynamics,

m
[
ẍ
ÿ

]
+ d1 sinωt

[
ẋ
ẏ

]
+ d2

[
ẋ3

ẏ3

]
= Ft + Fa + Fr (14)

where m is the mass, d1 and d2 are parameters influencing
the maximum magnitude of time-varying equilibrium points,
Ft is the total virtual force, Fa is a virtual attractive force,
and Fr is the resultant repulsive force of all virtual repulsive
forces in the circular active window. The attractive force pulls
the robot towards the goal while the repulsive force pulls
it away from obstacles and boundaries in the environment.
This force can become zero and remain zero if the robot is
trapped in the local minima. This results in zero velocity for
the robot and prevents it from reaching the goal position.
To solve this problem, a nonlinear friction, the second and
third components in the right-side of (14), is introduced into
a chaotic neuron. The resulting instability in the equilibrium
point of null velocity enables the robot to escape the local
minima and to continue its path toward the goal.

Several other examples of chaotic dynamical systems
being used formodifying existing shortest path algorithms are
prevalent within the literature: 1) Chaos optimized artificial
potential field [206]; 2) chaotic particle swarm optimization
[207], [208], [209], [210]; 3) chaotic artificial bee colony
optimization [202], [211]; and 4) chaotic Cuckoo search
methods [205]. Reference [182] also proposed using a
combination of Logistic mapping and Ulam-von Neumann
mapping to solve a nonlinear constraint optimization problem
to find an optimal path for a mobile robot. Chaotic systems
may also be employed in path planning for more tailored
purposes such as boundary surveillance [212]. Reference

[181] proposes a path planning methodology using the
Hénon discrete system to focus on boundary surveillance.
The objective is to design a computationally simple chaotic
system that exhibits chaotic trajectories when in proximity
of any arbitrarily chosen closed contour. The methodology
involves first selecting a closed contour and choosing the
robot evolution vicinity in a 2D space, and then using affine
transformations to impart the Hénon chaotic system onto
the chosen path to construct the new chaotic trajectory. This
new trajectory roughly follows the boundaries being surveyed
but any adversarial agent hoping to sneak past the patrolling
robot would have a difficult time predicting the position and
trajectory of the patrolling robot.

VI. OBSTACLE AVOIDANCE IN CHAOTIC SYSTEM
Obstacle avoidance constitutes an important part of the path
planning literature as an addition to finding a path from the
starting point to an end point, it is also important for the
robot to avoid colliding with any obstacles or boundaries in
the space. Several methods of obstacle avoidance have been
explored for various path planning algorithms and some of
these methods involve the use of a relatively large number
of sensors [109], [123]. In addition to localization or target
detection, multi-purpose sensors can also alert the vehicle or
robot of its closeness to any object, thereby informing the
vehicle or robot of the need to change the path to avoid the
obstacles.

Sensors for obstacle avoidance are also used in chaotic path
planners. The sensor configuration of the robot determines
the actions that the robot takes after sensing an obstacle in
its path. These avoidance actions hold significant importance
as they showcase the robot’s level of autonomy. Robots with
limited autonomymay be forced to stop and wait for direction
from a human operator once within a range of any object,
while more autonomous robots will realize the presence of an
obstacle and independently decide on a suitable course of
action. In [197], these two approaches are used as a means of
obstacle avoidance for a robot equipped with sensors. Once
the robot is less than 20 cm away from an obstacle, the
robot either stops and requires a command, or turns right and
continue the motion. Although the latter option increases the
complexity of the robot’s motion, the former option shows
a slightly better coverage rate. Reference [165] also use a
similar method of obstacle avoidance, whereby the robot uses
ultrasonic sensors to detect the distance to an obstacle. This
method is similar to the method in [197] where the robot
would rotate left until the obstacle is out of view before
continuing on the chaotic path if the obstacle was found to
be too close to the chaotic path.

Mirror mapping is another popular method used in the
literature. In this method [195], [199], [213], the object moves
away from a boundary with the reflection angle equal to
the incident angle as though it is reflected by the boundary,
as shown in Fig. 18. Mirror mapping allows for arbitrary
turning angle from obstacles rather than the prescribed
turning angle methods of [165] and [197].
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FIGURE 18. Obstacle avoidance using mirror mapping technique (filled
circle: robot; dashed circle: robot sensing range).

All the methods discussed in this section rely on relatively
simple implementations within the chaotic path planners
which allows for minimal alterations to the original CPP
algorithms. However, they do not necessarily correspond to
smooth trajectories and often lead to many instances of sharp
turns. To address these issues, a recent study [161] proposed a
new obstacle avoidance technique which uses a quadtree and
a cost function to generate smooth and continuous trajectories
around obstacles in real-time applications. The quadtree is
created from descritized map data, enabling fast retrieval of
coordinates within the occupancy grid map that represent
the free space. The cost function is then employed to find
a favorable replacement coordinate for non-viable trajectory
points, using the information provided by quadtree.

VII. ENDURING LIMITATIONS OF CHAOTIC PATH
PLANNING AND FUTURE WORK
One of the multiple reasons that make chaotic path planning
worth studying is the potential solutions it can provide
to myriads of robotic engineering problems that desire
unpredictability and autonomy. Chaotic equations provide
the unpredictability feature by nature but autonomy for
chaotic CPP systems has been rarely discussed in the related
literature. In some applications, there is a need for the
interference of a human operator, which undermines the
ability for the robot to achieve full autonomy. Additionally,
although the coverage area is often discussed in chaotic
literature and there are various methods created to manipulate
and increase the area covered by the robot, there are
comparatively fewer studies that discuss the coverage time,
i.e. the time required to achieve this coverage. Consequently,
the autonomy and coverage time of the chaotic mobile robot
are aspects of path planning that pose the largest limitations
to chaotic path planning as discussed in the following
subsections.

A. AUTONOMY AND REAL-LIFE IMPLEMENTATIONS
In highly complex applications of chaotic path planning
such as some military applications, there is a need for
robots to be highly autonomous and intelligent. This implies
the ability of a robot to navigate an environment without
needing the influence of a human operator. In much of the

chaotic path planning literature, the autonomy of the robot
is rarely taken into consideration. Moreover, the methods of
chaos manipulation used by some studies induce a reduction
in the robot’s level of autonomy. For instance, the chaos
manipulation methods used by [165] made it necessary to
compute points of interest to ease the robot navigation. They
also made it important that a human controller creates a
schedule of time that the robot needs to spend in each cell
for the manipulated chaotic algorithm to be fully functional.
A fully autonomous machine implies that the robot can
solve problems encountered during navigation without the
presence of a human operator. Semi-autonomous robots are
largely incapable of handling uncertainties associated with
real-life situations.

Ensuring autonomy and desirable performance would
require implementing the chaoticmethods on physical mobile
robots or aerial vehicles and in realistic environments that
has been rarely done by the literature. The studies have
been mostly limited to examining the chaotic algorithms in
simulated environments using simple differential wheeled
robots. Use of real robots and sensors for chaotic coverage
will require formulating a more sophisticated obstacle avoid-
ance approach since the current common use mirror-mapping
technique causes sharp angles in the paths close to bound-
aries/obstacles that might be difficult to follow by a physical
robot. Moreover, the focus of literature has been so far on
avoiding static obstacles within an environment with a known
map. More research should be focused towards environments
with dynamic obstacles and uncertain maps, particularly
when developing new obstacle avoidance techniques.

There are also additional challenges towards real-world
implementations such as simulating the continuous chaotic
systems discussed in Section III. As the systems are chaotic,
the system states evolution through time needs to be
solved numerically which leads to chaotic degradation [214].
Chaotic degradation is the rise in error of the simulated
trajectory in chaotic dynamical system from a true trajectory
given any initial state. This is inevitable due to the numerical
methods used and the chaotic nature of the system with
positive MLE. The magnitude of the trajectory error is
dependent on the selection of the chaotic system, the
numerical scheme, and the time step selected. Given the
robotic platform specifications, this may limit the choices
available to the system designer but the influence of chaotic
degradation ultimately depends on the task being undertaken.

B. COVERAGE TIME
A very important criteria for chaotic path planning analysis
is the coverage time which has been overlooked in the
chaotic literature. Ideally, a chaotic path planning method can
achieve full coverage if allowed to run infinitely. However,
it is unreasonable to expect or desire an infinite amount
of time for the robot to cover the environment for real-life
path planning applications. Thus the coverage time should
be considered in addition to considerations for the coverage
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of any area in the environment. The very few chaotic path
planning papers discussing coverage time display outcomes
that may be impractical in real-life applications. In [121],
it takes more than two hours for the robot to achieve what
is presented as full coverage of a 25 m × 25 m space
moving at a velocity of 1 meter per second on a chaotic
path. Repetitive coverage is one of the factors contributing
to poor coverage time. The results of [197] show that the
robot has covered some cells 18 times, while there are
cells that remain untouched. Only recently has [160], [162]
paid particular attention to the coverage time and developed
methods to enhance it while comparing the results with the
time taken by an optimal simple planner to cover the same
environment. Numerous previous works have concentrated
on simulated environments while simultaneously advocating
for more research and exploration into enhancing real world
applications and further reduce the coverage time. Using
advanced obstacle methods appears to be the most practical
avenue of progress towards achieving this goal as advanced
methods would reduce repetitive coverage near the obstacles
or boundaries.

C. FUTURE WORK
The future research should prioritize enhancing the real-life
applicability and performance of the chaotic path planning
algorithms and further integrate them with physical robotic
systems. This entails addressing real-world constraints such
as time limitations, sensing range restrictions, and vehicle
motion constraints. Additionally, it involves developing
methods for fast real-time computation of sensory data and
making instantaneous decisions regarding system parameters
and specifications.

The integration of machine learning (ML) into CPP algo-
rithms can facilitate real-life applications through enhancing
performance across various aspects. These include improving
coverage uniformity, reducing coverage time, increasing
coverage rate, enhancing adaptability to unfamiliar cluttered
environments, and ensuring scalability to maps of different
sizes and shapes. One promising application area is utilizing
ML to guide CPP algorithms in selecting suitable chaotic
systems or combinations thereof and determining optimal
parameters based on task requirements and environmental
characteristics. This aids in achieving the desired coverage
rate, time, or level of unpredictability. These ML algorithms
can also be trained to predict optimal system parameters to
create a balance between overall coverage performance and
level of unpredictability of the trajectories. Reinforcement
learning (RL) algorithms offer a means to enhance the
real-time performance of chaotic agents. RL can be harnessed
to train agents, enabling them to navigate cluttered envi-
ronments smoothly while maintaining kinematic efficiency
and mitigating disruptions to chaotic paths and preserving
their smoothness in the presence of both static and dynamic
obstacles. RL can as well enable the agents to make
real-time decisions on system parameters to better disperse
the trajectory points.

VIII. CONCLUSION
The simple stated primary goal of chaotic coverage path
planning research is to create an autonomous mobile
robot chaotic system that can fully cover any environment
containing static and/or dynamic obstacles under a given
realistic operational time constraint. Chaos has a unique
power in realizing unpredictable and, at the same time,
deterministic path planning, which is otherwise impossible
using other types of path planning methods. After surveying
the research done on several chaotic equations including
Arnold, Lorenz, Chen, etc., it is fair to conclude that there has
not been much progress with using these chaotic dynamical
systems for a real-life robot undertaking a coverage task.
Although manipulation of these chaotic systems often leads
to favourable coverage outcomes, e.g. in the trigonometric
transformation of Chebyshev maps, it is difficult to conclude
that these favourable outcomes can be realistically applied
to real-life robotic applications because they were not
evaluated based on real-life constraints such as including
time limitations, sensing range limitations, and vehicle
motion constraints. This illuminates a huge research gap
that needs to be explored in more depth. Furthermore, since
multi-robots offer more versatility in real-world chaotic
coverage and task assignment applications, more testing and
research on applying any progress made in chaotic path
planning to multi-robot systems must be done. To this end,
the fully autonomous application of chaotic path planning
calls for more research to address challenges associated
with autonomy and coverage time. Realizing intelligent
chaotic robots will enable effective online coverage of
fully unknown and uncertain environments desired in many
real-life applications, particularly in applications involving
adversarial agents.
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