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ABSTRACT Sleep habits are strongly related to health behaviors, with sleep quality serving as amajor health
indicator. Current approaches for evaluating sleep quality, namely polysomnography and questionnaires, are
often time-consuming, costly, or invasive. Thus, there is a pressing need for a more convenient, nonintrusive,
and cost-effective method. The applications of deep learning (DL) in sleep quality prediction represent a
groundbreaking technique for addressing sleep-related disorders. In this aspect, the article offers the design
of a Modified Bald Eagle Search Algorithm with Deep Learning-Driven Sleep Quality Prediction (MBES-
DLSQP) for Healthcare Monitoring Systems. The MBES-DLSQP technique combines the strengths of
a DL model with a hyperparameter tuning strategy to provide precise sleep quality predictions. At the
primary stage, the MBES-DLSQP technique undergoes data pre-processing. Besides, the MBES-DLSQP
technique uses a stacked sparse autoencoder (SSAE)-based prediction model, which can extract and encode
high-dimensional sleep data. TheMBES-DLSQP incorporates MBESA-based hyperparameter tuning which
assures its optimal configurations to further boost the efficiency of the SSAE model. The experimental
outcome of the MBES-DLSQP algorithm is tested on the sleep dataset from the Kaggle repository. The
experimental value infers that the MBES-DLSQP technique shows promising performance in sleep quality
prediction with a maximum accuracy of 98.33%.

INDEX TERMS Sleep quality prediction, healthcare monitoring, deep learning, parameter tuning, artificial
intelligence.

I. INTRODUCTION
The significance of sleep is paramount to health. Lack of
sleep may affect emotional, mental and physical well-being
[1]. This causes many health complications like high blood
pressure, insulin resistance, metabolic syndrome, cardiovas-
cular disease, mood disorders (anxiety or depression), and
reduced cognitive function for judgement and memory [2].

The associate editor coordinating the review of this manuscript and

approving it for publication was Qiang Li .

Numerous indicators of sleep quality are available but sleep
efficiency (SE) is more important [3]. Poor SE causes a
lack of sleep which is a major health problem like obesity
and diabetes. In addition, sleep behavior is found to be an
effect on adolescent health. In the present scenario, most
people pay attention to their quality of sleep [4]. Moreover,
to enhance individual sleep quality, they want to distinguish
the accurate condition of their sleep; that is they require
techniques to observe their sleep conditions. The latest and
novel technologies produced the most convenient methods
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for individuals to monitor themselves as well as boost sleep
in their everyday lives [5]. Sleep quality can be evaluated by
behavior perception and objective physical indicators.

Many types of sleep are accessible in the sleep cycle [6].
Stages 1 and 2 called light sleep and stages 3 and 4 called
dream sleep, are classified into non-rapid eye movement
(NREM) and rapid eye movement (REM) sleep. During
the sleep cycle, the sleep processes include light sleep,
wake condition, deep sleep, and REM which are frequent
numerous times at night time and sometimes each cycle
is crossed by short-term wake situations [7]. In addition,
there are many kinds of sleep disturbances such as awak-
ening in the early morning, maintaining sleep and difficulty
falling asleep [8]. For evaluating sleep in clinical studies,
Polysomnography (PSG) has been usually employed but
it has numerous disadvantages intrusive, time-consuming,
expensive and impractical. Smart bracelets and Smartphones
are utilized for sleep activity observation [9].
Moreover, these kinds of devices are prominent as well as

clumsy because while sleeping the user needs to put or wear
them to their body [10]. Additionally, these techniques are
only used to extend people’s sleep quality that are asleep,
making it tiresome to function in some conditions [11]. For
instance, these methods cannot be able to employ in physical
checks of the common population [12]. Machine Learning
(ML) is a commonly utilized methodology that has become
an effective core technology of artificial intelligence (AI)
and data science [13]. Concerning sleep data and other kinds
of clinical data, many researchers have employed ML in
order to create prediction techniques for a range of sleep
disorders [14]. Some researchers have proven that DL and
long short-term memory (LSTM) were effective tests for the
prediction of a range of sleep disorders [15].
The article offers the design of a Modified Bald Eagle

Search Algorithm with Deep Learning-Driven Sleep Quality
Prediction (MBES-DLSQP) for Healthcare Monitoring Sys-
tems. The MBES-DLSQP technique integrates the benefits
of the DL algorithm with a hyperparameter tuning strategy
for providing accurate sleep prediction results. At the pri-
mary stage, the MBES-DLSQP technique undergoes data
pre-processing. Besides, the MBES-DLSQP technique uses a
stacked sparse autoencoder (SSAE)-based prediction model,
which can extract and encode high-dimensional sleep data.
To further boost the efficiency of the SSAE model, the
MBES-DLSQP incorporates MBESA-based hyperparameter
tuning which assures its optimal configurations. The stimu-
lation outcome of the MBES-DLSQP technique is tested on
a sleep dataset from the Kaggle repository. In short, the key
contributions of the study are summarized as follows.

• TheMBES-DLSQP technique offers a novel method for
predicting sleep quality, leveraging data preprocessing,
SSAE-based prediction, and MBESA-based hyperpa-
rameter tuning for extensive sleep data to provide a
more accurate and efficient solution. To the best of our
knowledge, the MBES-DLSQP technique never existed
in the literature.

• The MBES-DLSQP technique contributes to healthcare
monitoring systems by enabling the accurate evalu-
ation and prediction of sleep quality, with potential
applications in the early detection and management
of sleep-related disorders and their impact on overall
health.

• The integration of hyperparameter tuning through
MBESA enhances the efficiency and performance of the
SSAE model, improving the accuracy of sleep quality
predictions.

II. RELATED WORKS
The author in [16], a new attention-based DL architecture
called AttnSleep is developed. The feature extraction is
mainly executed by utilizing Adaptive Feature Recalibration
(AFR) and multi-resolution convolutional neural network
(MRCNN). The Temporal Context Encoder (TCE) is the next
model which influences a multi-head consideration device.
This organizes causal difficulties to perfect the sequential
relations in the input features. In [17], developed a new archi-
tecture for predicting the existence of apnea from single-lead
electrocardiogram (ECG) by using a Deep recurrent neural
network (DRNN). ECG R-R intervals and R-peak amplitudes
are removed and then arranged by employing influence spec-
tral analysis. The recurrent DL methods are mainly designed
to abstract the predictive ECG feature and estimate the event
of apnea.

In [18], a novel model was developed to identify differ-
ences in the sleep habits of the person. This technique is
mainly based on generating a novel database of patients. Then
it is divided into five dissimilar habits. Next, this dataset
was employed to verify the classification of the patient by
utilizing the mean-shift clustering methodology. Lastly, the
AE model is made to detect the anomalies. The research can
able to attain satisfying results by using the AE AE-based
LSTM system. John et al. [19] developed a new technology
for apnea detection from ECG signals attained from wearable
devices. This innovation branches from the high perseverance
of apnea recognition. Then, this is accomplished by executing
a one-dimensional convolutional neural network (CNN) for
the detection and feature extraction of sleep apnea actions.

In [20], an effective CNN framework (SleepFCN) method
is developed. The design of SleepFCN contains two main
parts for removal of features and sequential series encod-
ing like residual dilated causal convolutions (ResDC) and
multi-scale feature extraction (MSFE). The implementation
of the developed technique is executed by employing datasets
of Sleep-EDF and sleep heart health study (SHHS). Yang
et al. [21] present an effectual attention-based lightweight
DL technique named LWSleepNet. A depthwise CNN is
proposed in order to examine the input mapping features
and seizure features at many frequencies by utilizing two
various-sized convolution kernels.

A programmed sleep stage scoring network with a
patch-type wearable electroencephalogram (EEG)
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sensor-based DL technique was developed in [22]. The pre-
sented method is easy to use, inexpensive, and lightweight.
The method applied a model based on the modern DL tech-
nique for the training framework and specifically projected
for automatic sleep performance. The model is learned and
verified on the leave-one-out and cross-validation model.
Hilal et al. [23] mainly emphasise the strategy of Compet-
itive Multi-verse Optimization with the based Sleep Stage
Classification (CMVODL-SSC) method. Initially, the data
preprocessing is executed to renovate the actual information
into the normal format. In addition, the cascaded LSTM
(CLSTM) technique is used to execute the detection proce-
dure. Lastly, the proposed approach is employed for tuning
the hyperparameters optimally which is difficult in the
CLSTM method.

III. THE PROPOSED MODEL
In this manuscript, we have established the automated sleep
quality prediction using the MBES-DLSQP technique for
Healthcare Monitoring Systems. The MBES-DLSQP tech-
nique integrates the benefits of the DL algorithm with a
hyperparameter tuning strategy for providing accurate sleep
prediction results. The data preprocessing, SSAE-based pre-
diction, and MBESA-based hyperparameter tuning are the
three major processes of the MBES-DLSQP technique. The
overall working process of the MBES-DLSQP model is
demonstrated in Fig. 1.

A. PRE-PROCESSING
In the initial phase, the MBES-DLSQP method undergoes
data preprocessing. The data collected by smartwatches do
not estimate sleep onset latency (time required to reduce
sleeping after in time bed). For example, wake-up time is
recorded by the watch as 34 minutes, and the next is con-
sidered to be 17 minutes.

B. PREDICTION USING THE SSAE MODEL
Next, the MBES-DLSQP technique applied the SSAE-based
prediction model. Consider X = (x (1) , x (2) , . . . ,x (N ))T

as the series of unlabelled initial face image features for
training [24], where x(k) ∈Rdx and the features number is
represented as N , and the amount of pixels in an image is dx .
Next, the l-layer learning feature was calculated by Eq. (8)
with k th features. Hidden unit and existing layer l are used
during the computation of dh.

hl (k) =

(
hl1 (k) , hl2 (k) , . . . ,hldh (k)

)T
(1)

Now, hidden units and neurons are described by the sub-
scripts and superscripts. h(1)i is the 1st hidden layer (HL) of
ith units, HL l process x and h(l) amount of features to detect
the output values. The encoder has an x input layer and an h
hidden layer that calculates the output. In these processes, the
optimum parameter is used to decrease the deviation between
the outcomes. The variation is decreased to minimise the

FIGURE 1. The overall flow of the MBES-DLSQP algorithm.

reconstructed output.

LSAE (θ ) =

[
1
N

N∑
k=1

(
L

(
x(k), dθ̂

(
eθ̃ (x(k))

)))]

+

α

n∑
j=1

KL
(
ρ∥ρ̂j

) +

[
β∥W∥

2
2

]
(2)

In Eq. (2), the sum of the mean-squared error (SMSE)
of idioms that describe the contradiction amongst rebuild-
ing x̂(k) and incoming x(k) is the overhead of the overall
data sequence. Moreover, eθ̃ (·) maps incoming x∈Rdx to the
latent representation h∈Rhx , which is calculated by h =

eθ̃ (x) = s (Wx + bh), where bh∈Rdh where bias bh and W
are the weight of dh×dx matrices. The encoder is denoted
by θ̃=(W , bh) whereas decoder d

θ̂
(·) plots the outcoming

hidden illustration h into the reconstructed space x̂. x̂ = d
θ̂

=

s
(
W T h+ bx

)
, where bx∈Rdx is described as biased and W T

is a dx×dh represented by the weight matrix. An activation
function is indicated as s(·); now, s(z) =

1
1+e−z , is used

as an activation function for z neuron [25]. Thus,
(
W T , bx

)
as the decoder. The transition of weight matrix W leads to
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weight matrixW T . The AE reduces the matrix of weight. The
pre-activation of the output layer of theAE,=(W , bh, bx), can
be expressed as y = W T s(Wx+ bh)+ bx using 3 parameters.
Thus, the reconstruction of the decoder, X , is defined by =

s (y). The training of AE aims to minimize the reconstructed
error at the initial part while improving the parameter =

(W , bh, bx).
The index j is the second idiom which represents the total

hidden units of the network and the number n to characterize
the amount of units in KL(ρ|

∣∣ρ̂j ) is the KullbackLeibler (KL)
divergence amongst ρ̂j, which describes the mean activation
of jth hidden units and desired activation ρj, expressed as:

ρlog
ρ

ρ̂j
+ (1 − ρ) log

1 − ρ

1 − ρ̂j
(3)

The weight decay is a third idiom that applies Eq. (4) to
decrease the weight magnitude and helps to prevent over-
fitting:

||W ||
2
2 = tr

(
W TW

)
=

nl∑
l=1

sl−1∑
i

sl∑
j

(
w(l)
i,j

)2
(4)

In Eq. (4), wi,j shows the connection among the ith neurons
at l − 1 along with jth neurons at l. Moreover, the amount of
layers is nl and the amount of neurons in layer l is sl . The SAE
is nl = 2, and s1= 1680 for the OLR dataset and s1= 5280
for the Extended Yale-B dataset, s2= 1200.
The SSAE includes multiple SAE layers with the out-

put connected to the subsequent input layers: a deep neural
network (DNN). The two important SAEs are fused to gen-
erate 2 layers of SSAE. The SSAE generates the function:
Rdx→Rdh (2) that transforms the input pixel for the initial
features into a new feature illustration as h(2) = f (x) ∈Rdh(2) .

C. HYPERPARAMETER TUNING USING THE MBES
ALGORITHM
Finally, the MBES-DLSQP incorporates MBESA-based
hyperparameter tuning which assures its optimal configura-
tions of the SSAE model. BES is a new method that searches
for emulating the hunting performances of bald eagles (BEs)
for the collative work of hunting [26]. This method is divided
into 3 parts that define the BE’s hunting performance namely
Search, Swooping, and Selection. In the selection step, the
BE recognizes and selects the optimum region under the
searching space chosen but it hunts its prey. Eq. (5) defines
this step:

Pnew, i = Pbest + α.r (Pmeon − Pi) (5)

The term ‘‘Pbest’’ represents the existing search area rep-
resented by the BE, but the better position can presented
by referencing the earlier recognized optimum place. The
parameter ‘‘pmean’’ represents the model that the eagle com-
bines insights in the preceding position.

During this stage, the BE approach integrates a control
variable that manages the extent of place alterations and spans
an interval of [1.5-2]. Simultaneously, an arbitrary number r ,

Algorithm 1 Pseudocode of BES Algorithm
Randomly produce NPi solutions.
Compute the cost function for the population initialization.
Define the optimum location: Pbest and the mean Pmean
While (The condition for ending are not met)
Stage 1: Selection stage
For (Each single point i of the population)
Compute the newest solution, Pnew Eq. (5)
Update the solution’s location:
If f (Pnew) < f (Pi) then Pi = Pnew
Update the optimum solution’s location:
If f (Pnew) < f (Pbest) then Pbest = Pnew
End If
End If
End For
Stage 2: Search process
For (Each point i of the population)
Compute the newest solution Pnew Eq. (6)
Update the solution’s location:
If f (Pnew) < f (Pi) then Pi = Pnew
Update the optimum solution’s location:
If f (Pnew) < f (Pbest) then Pbest = Pnew
End If
End If
End For
Stage 3: Swooping stage
For (Each point i of the population)
Compute the newest solution, Pnew Eq. (7)
Update the solution’s location:
If f (Pnew) < f (Pi) then Pi = Pnew
Update the optimum solution’s location:
If f (Pnew) < f (Pbest) then Pbest = Pnew
End If
End If
End For
End While

interval of [0-1] is employed. During this phase, this method
pinpoints a region dependent upon the data collected from the
previous stage. Afterwards, the eagles progress to arbitrarily
choose another proximate searching region in the preceding
one. By leveraging the average and the optimum location,
a primary phase considerably bolsters the possible candidate
solution [27].

In the search phase, BE looks for the target in the selected
hunting region and moves in dissimilar directions in the
search space to improve the search range. The optimum dive
location is defined as follows:

Pi,new = Pi + y(i).(Pi − Pi+1) + x(i).(Pi − Pmeon)

x (i) =
xr (i)

max (|xr|)
, y(i) =

yr(i)
max (|yr|)

x(i) = r(i).sin (θ (i)) , yr(i) = r(i).cos (θ (i))

θ (i) = a.π.rand

r (i) = θ (i) + R.rand, (6)
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FIGURE 2. Steps involved in BESA.

In Eq. (6), ‘a’ is a number that ranges from 5 to 10.
The parameter ‘R’ ranges from 0.5 and 2. The procedure of
Branch and Eliminate Spiral (BES) extends the search range
as we tweak ‘a’ and ‘R’. This prevents from getting trapped
in local solution. Fig. 2 depicts the steps involved in BESA.

The third phase is eagle shifts its focus towards the prey
can be defined as follows:

Pi,new = rand .Pbest + x1 (i) . (Pi − c1.Pmean) + y1 (i)

x1(i) =
xr(i)

max(|xr|)
, y1(i) =

yr(i)
max(|yr|)

xr (i) = r (i) .sinh [θ (i)] , yr(i) = r(i).cosh [θ (i)]

θ (i) = a.π.rand

r (i) = θ (i) , (7)

The MBES model is derived by using chaotic con-
cepts. The MBES algorithm is a nature-inspired optimization
algorithm that draws inspiration from the predatory hunting
behaviour of bald eagles in a chaotic environment. It incorpo-
rates chaos theory to introduce randomness and diversity into
the search process, enhancing its ability to explore complex

TABLE 1. Details on database.

FIGURE 3. Classifier outcome (a-b) Confusion matrices, (c) PR curve, and
(d) ROC.

search spaces efficiently [28]. The chaotic sequences intro-
duced by MBES during the perturbation phase help diversify
the search, while the exploration and exploitation steps bal-
ance the exploration of new regions and the exploitation of
promising solutions. The MBESA’s strength lies in its ability
to handle complex, multimodal optimization problems by
harnessing the chaotic dynamics and adaptively adjusting the
search strategy. The fitness selection is a major factor which
influences the efficacy of the MBES method. The hyperpa-
rameter selection approach includes the solution encoding
process to assess the performance of the candidate solution.
Here, the MBES technique considers accuracy as the primary
criterion to design the fitness function (FF) that is given
below.

Fitness = max (P) (8)

P =
TP

TP+ FP
(9)

where the true and false positive values are TP and FP.

IV. RESULTS AND DISCUSSION
The proposed model is simulated using the Python 3.8.5 tool
on PC i5-8600k, GeForce 1050Ti 4GB, 16GB RAM, 250GB
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TABLE 2. Sleep quality recognition outcome of BES-DLSQP technique at
80:20 of TRP/TSP.

FIGURE 4. Average of BES-DLSQP technique at 80:20 of TRP/TSP.

SSD, and 1TB HDD. The parameter settings are given as
follows: learning rate: 0.01, dropout: 0.5, batch size: 5, epoch
count: 50, and activation: ReLU. The sleep quality prediction
outcomes of the MBES-DLSQP method are tested using
a Sleep dataset [29] including 400 samples and 4 classes
as shown in Table 1. The dataset includes 4 classes with
100 samples under all the classes and 8 attributes. For exper-
imental validation, we have used 80:20 and 70:30 of the
training/testing dataset.

The classifier performance of the ABCFS-OHML method
under 80:20 of the Training phase (TRP)/Testing phase (TSP)
is shown in Fig. 3. The confusion matrices presented by
the ABCFS-OHML method are exhibited in Figs. 3a-3b.
The outcome indicated that the ABCFS-OHML system has
accurately recognized and categorized all 4 class labels.
At the same time, the PR outcome of the ABCFS-OHML
technique is illustrated in Fig. 3c. The stimulation value
indicated that the ABCFS-OHML technique has achieved
the highest precision-recall (PR) values in 4 classes. Finally,
Fig. 3d validates the Receiver operating characteristic (ROC)

FIGURE 5. Accuy curve of BES-DLSQP technique at 80:20 of TRP/TSP.

FIGURE 6. Loss curve of BES-DLSQP technique at 80:20 of TRP/TSP.

examination of the ABCFS-OHML method. The outcomes
indicated that the ABCFS-OHML technique has resulted
in promising outcomes with the maximum ROC values on
4 class labels.

The sleep quality detection outcomes of theMBES-DLSQP
method on 80% of TRP and 20% of TSP are portrayed
in Table 2 and Fig. 4. The experimental outcome denotes
that the MBES-DLSQP system effectually recognizes the
sleep classes. On 80% of TRP, the MBES-DLSQP system
offers average accuy, precn, recal , Fscore, and Gmeasure of
97.50%, 95.19%, 94.99%, 95.07%, and 95.08%, correspond-
ingly. Additionally, on 20% of TSP, the MBES-DLSQP
technique offers average accuy, precn, recal , Fscore, and
Gmeasure of 97.50%, 93.96%, 95.61%, 94.63%, and 94.70%,
correspondingly.

As demonstrated in Fig. 5, we have generated accuracy
curves for the TRP and TSP to compute the effectiveness of
the BES-DLSQPmodel at 80:20 of TRP/TSP. This curve pro-
vides essential insights into the model’s learning progress and
its generalization capability. A noticeable improvement in TR
and TS accuracy curves becomes evident as we increase the
number of epochs. This enhancement indicates the model’s
capability to better identify patterns within both the TR and
TS datasets.
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FIGURE 7. Classifier outcome (a-b) Confusion matrices, (c) PR curve, and
(d) ROC.

TABLE 3. Sleep quality recognition outcome of BES-DLSQP technique at
70:30 of TRP/TSP.

Fig. 6 also demonstrates an overview of BES-DLSQP
method loss values throughout the training process. The
decreasing trend in TR loss over epochs denotes that the
model continually refines its weights to diminish the predic-
tive errors on TR and TS datasets. These loss curves reflect
how well the model fits the training dataset. Particularly, the
TR and TS loss consistently decrease, indicating the model’s
effective learning of patterns present in both datasets. Fur-
thermore, it portrays the model’s adaptation in minimalizing
discrepancies between predictions and the original training
labels.

Fig. 7 shows the classifier performances of the
ABCFS-OHMLmethod under 70:30 of TRP/TSP. Figs. 7a-7b
depicts the confusion matrices provided by the ABCFS-
OHMLmodel. The outcome indicated that theABCFS-OHML

FIGURE 8. Average of BES-DLSQP method at 70:30 of TRP/TSP.

FIGURE 9. Accuy curve of BES-DLSQP method at 70:30 of TRP/TSP.

technique has accurately identified and categorized all 4 class
labels. Simultaneously, Fig. 7c exhibits the PR investigation
of the ABCFS-OHML technique. The outcome indicated that
the ABCFS-OHMLmodel has obtained the highest PR values
in the 4 classes. Finally, Fig. 7d shows the ROC inspection
of the ABCFS-OHML method. The experimental outcome
indicated that the ABCFS-OHML technique has resulted
in promising outcomes with the highest values of ROC on
4 class labels.

In Table 3 and Fig. 8, the sleep quality recognition out-
comes of the MBES-DLSQP system on 70% of the TRP and
30% of the TSP are portrayed. The outcomes show that the
MBES-DLSQP method effectually detects the sleep classes.
On 70% of TRP, the MBES-DLSQP method offers average
accuy, precn, recal , Fscore, and Gmeasure of 96.07%, 91.93%,
91.97%, 91.93%, and 91.94%, respectively. Additionally,
on 30% of TSP, the MBES-DLSQP technique offers average
accuy, precn, recal , Fscore, and Gmeasure of 98.33%, 96.51%,
96.76%, 96.57%, and 96.61%, correspondingly.

As illustrated in Fig. 9, we have generated accuracy
curves for the TRP and TSP to compute the efficiency of
the BES-DLSQP model at 70:30 of TRP/TSP. This curve
provides essential insights into the model’s learning progress
and its generalization capability. A noticeable improvement
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FIGURE 10. Loss curve of BES-DLSQP technique at 80:20 of TRP/TSP.

TABLE 4. Comparative outcome of MBES-DLSQP methodology with
existing algorithms.

in TR and TS accuracy curves becomes evident as we
increase the number of epochs. This enhancement signifies
the model’s capacity to better identify patterns within the TR
and TS datasets.

Fig. 10 presents an overview of the BES-DLSQP model
loss values throughout the training process. The decreas-
ing trend in TR loss over epochs indicates that the model
continually refines its weights to diminish predictive errors
on TR and TS datasets. These loss curves reflect how well
the model fits the training dataset. Notably, the TR and TS
loss consistently decrease, illustrating the model’s effective
learning of patterns present in both datasets. Additionally,
it shows the model’s adaptation in minimizing discrepancies
between predictions and the original training labels.

Table 4 and Fig. 11 exhibit the sleep quality classifica-
tion outcomes of the MBES-DLSQP method with existing
techniques [30]. The experimental result indicated that
the MBES-DLSQP method accomplishes enhanced classi-
fication performance. Based on accuy, the MBES-DLSQP
technique offers an increased accuy of 98.33% whereas the
MWHMSQP-ODL, MLP, CNN, LR, RNN, and LSTM mod-
els obtain decreased accuy of 97.50%, 92.46%, 92.01%,
92.21%, 93.08%, and 91.67%, respectively.

Moreover, based on precn, the MBES-DLSQP tech-
nique offers an increased precn of 96.51% whereas the
MWHMSQP-ODL, MLP, CNN, LR, RNN, and LSTM mod-
els obtain decreased precn of 95.36%, 92.53%, 91.39%,
91.79%, 92.39%, and 92.33%, respectively. Furthermore,
based on Fscore, the MBES-DLSQP technique offers an
increased Fscore of 96.57% whereas the MWHMSQP-ODL,

FIGURE 11. Comparative outcome of MBES-DLSQP algorithm with
existing methods.

MLP, CNN, LR, RNN, and LSTMmodels obtained decreased
Fscore of 95.02%, 92.40%, 91.69%, 92.31%, 91.33%, and
92.79%, respectively. The experimental outcome showed the
superior performance of the MBES-DLSQP approach on the
sleep quality prediction process.

V. CONCLUSION
In this manuscript, we have established the automated sleep
quality prediction using the MBES-DLSQP technique for
Healthcare Monitoring Systems. The MBES-DLSQP tech-
nique integrates the benefits of the DL algorithm with a
hyperparameter tuning strategy for providing accurate sleep
prediction results. To further boost the efficiency of the
SSAE model, the MBES-DLSQP incorporates MBESA-
based hyperparameter tuning which assures its optimal
configurations. By harnessing the capabilities of deep learn-
ing and innovative hyperparameter tuning strategies, this
technique provides cost-effective, nonintrusive, and accurate
techniques for assessing an individual’s sleep quality. The
experimental outcomes, with a high accuracy of 98.33%,
highlight the potential and promising performance of the
MBES-DLSQP method. It characterizes a valuable contri-
bution to the field of sleep-related health monitoring and
holds great promise in enhancing the well-being of indi-
viduals suffering from sleep-related disorders. Future work
for the MBES-DLSQP method may include improving its
adaptability for real-time sleep monitoring and extending its
applicability to diverse healthcare contexts. Furthermore, the
incorporation of advanced data sources and the development
of user-friendly interfaces could further enhance its effective-
ness and practicality.
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