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ABSTRACT Traditionally, the grading process of fresh palm bunches has used human observation at palm
trading sites, which is not precise and unreliable due to human bias. Several studies have presented automatic
grading methods based on image processing and machine learning. Unfortunately, these models are not
sufficiently compact to be implemented on trading sites. Therefore, a compact grading model for automatic
grading suitable for implementation at palm trading sites is presented. Two key elements make the model
more compact and efficient. The first element is a reduction in the size of the input dataset. We achieved
this by replacing the multi-dimensional RGB palm bunch image with a one-dimensional hue histogram. The
second element was the core engine of the proposed classifier. It consists of a dual-tree complex wavelet
transform (DT-CWT) connected to the LSTM back end as the front end. The proposed model was proven
using real image datasets of 800 palm bunches of several varieties collected from trading sites. The robustness
of the model was investigated by verifying its accuracy in several noisy environments. Based on the testing
process, the proposed model achieves 91.67% accuracy at 6 dB signal-to-noise ratio (SNR).

INDEX TERMS Feature extraction, deep learning, deep neural networks, modeling.

I. INTRODUCTION

Oil palm has been a key global economic crop plants, and
over 100 million farmers have cropped palm for years. Var-
ious kinds of palm oil products are available, highlighting
this plant’s significant worldwide importance [1]. Hence,
the growing demand for oil palm products is essential for
developing techniques to improve the productivity of oil palm
farmers to produce fresh palm bunches (FPBs). Furthermore,
a procedure or common agreement between buyers and sell-
ers for the quality estimation and pricing of an FPB sample is
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needed at a trading site. Local experts have carried out such
an estimation of FPB ripeness, which is relatively effective
but time-consuming.

To overcome the limitations of the ripeness estimation
approach, this study aims to develop a classification method
for oil palm bunches. A set of FPB images was collected,
pre-processed, augmented, and used to create a model for
classifying the four ripeness levels of FPBs: overripe, ripe,
underripe, and unripe. Ripeness depends on various factors
and has been a challenging research problem, as explained
next.

Color characteristics are of considerable importance when
used to detect the ripeness of FPBs [2]. For instance, raw
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oil palm fruits display a dark purple color, which gradually
changes to orange as color they reach their ripeness peak [3].
Moreover, color indicates the amount of free fatty acids in
palm oil fruits, which significantly impacts the overall quality
of crude palm oil. Identifying the correct stage or level of
ripeness during harvesting is important for determining the
composition of free fatty acids [7].

Based on expert opinions, good-quality FPBs are assessed
by their color, texture, shape, and other factors [1], [2], [3],
[4], [5], [6]. However, color is of paramount importance for
identifying the ripeness of FPBs. In some cases, the skin
color of unripe fruits may differ significantly from that of
ripe fruits. Furthermore, many color spaces need to be consid-
ered when assessing the ripeness of FPBs. For example, the
ripeness of oil palm fruits is classified using a method involv-
ing feature extraction in an RGB (red, green, and blue) color
model [2]. This RGB model can also be transformed into
other color models, such as Hue Saturation and Value (HSV),
CIELAB, CMYK (Cyan, Magenta, Yellow, and Black) and
HIS (Hue, Saturation, and Intensity), which are used to detect
the ripeness of FPBs [4], [5], [6]. Similarly, [8] applied a com-
bination of three models, RGB, HSI, and L*a*b, to classify
FPBs. In [5] and [9], a machine was developed to classify
FPBs, but the implementation of necessarily closed cabinets
is required.

As described previously, this study presents a model for
classifying the ripeness levels of FPB images. As part of the
model construction, the issue of noise in the images must be
considered and discussed.

The noise level in realistic surroundings has various effects
on the quality of the implemented color model. Wavelet
transform has been extensively utilized across various dis-
ciplines to effectively decompose noise signals and extract
nonstationary features [10]. Moreover, the performance of
the wavelet-based transform method for one, two, and three
dimensions is better than that of the competing techniques
[11]. The dual-tree complex wavelet transforms (DT-CWT)
have been proposed for image denoising, fault detection,
medical science, and electroencephalograph (EEG) signal
recognition [12], [13], [14], [15].

Image denoising has been a widely recognized and active
topic in the field of image processing. The primary objective
is to preserve essential image details while decreasing the
effect of noise. This image denoising can then reconstruct
the original image from its corrupted version. The work in
[16] presents three image denoising techniques: DT-CWT,
Stationary Wavelet Transform, and Discrete Wavelet Trans-
form. The experimental results in [16] show that the DT-CWT
technique could restore images with a higher peak signal-to-
noise ratio (SNR) and lower Mean Square Error (MSE) than
the other two methods. The system consists of two paral-
lel Discrete Wavelet Transforms utilizing isolated low-pass
and high-pass filters [17], called real-tree and imaginary-
tree, respectively. Additionally, it generates an analytic signal
based on the fundamentals of Fourier transforms. The signal
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illustrates a smooth, non-oscillating magnitude, nearly invari-
ant based on phases, reduced aliasing effects, and directional
wavelets in higher dimensions.

The primary stages are necessary for ordinary noise classi-
fication and consist of data collection, data pre-processing,
and model classification. Additive white Gaussian noise
(AWGN) is a widely implemented technique in data pre-
processing for transforming the hue channel into RGB
images. Nevertheless, the implementation of this FPB grad-
ing application using RGB images in real-world scenarios
may have an impact in terms of processing time and grading
accuracy. From the signal theory aspect, the hue channel
is a one-dimensional (1-D) signal; hence, the 1-D long
short-term memory (LSTM) proposed grading of FPBs from
environmental noise. On the other hand, traditional sig-
nal classification problems are mainly divided into feature
extraction and pattern classification. Support vector machines
(SVM), random forests (RF), nearest neighbors (NN), recur-
rent neural networks (RNN), long short-term memory, and
convolutional neural networks are used in the feature extrac-
tion of one-dimensional signals [18], [19], [20]. In the
experiment, the general grading of FPBs at real trading sites
was approximately four. The hue data was transformed from
the RGB image, where the four trading sites were collected.
The RGB image transforming to a one-dimensional hue and
mixing AWGN will lead to the overfitting of model learn-
ing. The simulated noise was mixed using signal-to-noise
ratio (SNR). A fast and accurate FPB classification method
is required to identify trading site operations effectively.
An essential component of a real-time application is imple-
menting large datasets and learning millions of parameters
that affect the impact of high latency [21], [22], [23].

In this paper, we propose a DT-CWT combined with
LSTM for grading oil palm bunches. The proposed pre-
processing method based on wavelet transform can reduce
noise and extract features from a one-dimensional hue chan-
nel. To improve the detection accuracy and time of the model,
the main contributions of this paper are as follows:

e DT-CWT was proposed for pre-processing. The
DT-CWT decomposes the required signal and noise,
causing the key feature to appear prominently.

e An LSTM model is implemented to obtain a high accu-
racy and fast FPB grading technique.

Il. METHODOLOGY

This section describes the methodology used in the proposed
FPB classification. Fig. 1 shows the sequence of methods
used to construct the classification model, starting from data
collection, pre-processing and augmentation, deep learning
model development, and model evaluation. Details of each
method are provided below.

A. DATA COLLECTION
Data used in this research were collected using mobile equip-
ment called “PalmSnap” [24] at four trading sites in the
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FIGURE 2. Examples of FPB image datasets.

South of Thailand for three months, from August to October.
The RGB (Red, Green, Blue) images of the FPBs were
recorded in a bmp format with a size of 1,920 pixels x
1,080 pixels. Fig. 2 illustrates the examples of the collected
data. Next, local experts classified these images into four
categories according to a ripeness level criterion, commonly
used in the oil palm industry. These categories were A, B, C,
and R, corresponding to the ripeness levels of overripe, ripe,
underripe, and unripe, respectively. The FPB in category R is
generally undesirable and likely to be rejected at most trading
sites.

B. PRE-PROCESSING AND AUGMENTATION

After the data collection described in the previous subsection,
the RGB image files were preprocessed and augmented
before classification. Specifically, the color model in these
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files was converted to the Hue, Saturation, Value (HSV)
color model, and only the hue component of this model was
used. The Hue is an angle from 0° to 360°, representing the
three primary colors (red, blue, and yellow) and the three
secondary colors (orange, green, and violet) in the color
wheel. Equation (1) shows the numerical representation of
the primary colors or H used for the three primary colors in
this study. The Hue channel is a one-dimensional signal with
an 8-bit data point.

60 x| ————— )mod 6, Cuex =R
(Cmax_cmin) e
. ( B —R ) /
H=160 x([——)+2,  Cuux=G (1)
Cmax_cmin e

60’ ( R-G ) +4, ¢ B
X | —mm , =
Cmax - Cmin e

Hue is the fundamental attribute that illustrates the color
the human visual system recognizes. The measured span of
the hue channel was 360°, with red at 0°, green at 120°,
and blue at 240°. The hue color space can be modified to
include a wider spectrum of colors such as orange, yellow,
cyan, magenta, pink, and brown. The hue data consisted of a
one-dimensional signal with 360 data points. The signal data
will be different owing to the color space in the level ripeness
of the FPBs when transforming to a hue channel.

At trading sites, factors such as camera quality and sur-
rounding light can impair the quality of images taken by
mobile equipment. Thus, images may contain ‘noise’ interfer-
ing with the FPB classification model. AWGN was added to
the pre-processed data in our experiment to simulate a similar
environment. The SNR in decibels is defined in (2), where Py
is the power of the input signal, and P, is the power of the
input noise.

P
SNR = 10log g — )
Py,

Data augmentation is commonly performed when the
amount of data in each category in the dataset is limited
imbalanced. Augmentation aims to avoid an overfitting prob-
lem during the learning phase of deep learning. In this study,
the synthetic minority over-sampling technique (SMOTE)
was deployed for data augmentation to address this problem.
Furthermore, the dataset of all grades is 800 images, with
each grade comprising 200 images. All images were also
subjected to data pre-processing, as described above.

C. DUAL TREE COMPLEX WAVELET TRANSFORM

Based on the Fourier transform, DT-CWT has gained
much interest for denoising and extracting features from a
one-dimensional hue. The DT-CWT incorporates a direc-
tional analysis component suitable for nonstationary signals
demonstrating directional characteristics or features depen-
dent on orientation. Moreover, the DT-CWT can extract
important features from nonstationary signals, which can
be useful for numerous applications, such as image pro-
cessing, audio analysis, and biomedical signal processing,
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FIGURE 3. Two-level DT-CWT decomposition operation [30].

including electroencephalography and electrocardiography
signals [26], [27]. DT-CWT was also used to extract features
from electroencephalography (EEG) and electrocardiogra-
phy signals for classification applications [28], [29]. It is
generally known that the window size for the DT-CWT
should be chosen appropriately. Although applying FFT to
time-varying nonstationary signals allows the extraction of
one-dimensional components, it does not provide statistical
information on the temporal development of these compo-
nents. Therefore, a one-dimensional DT-CWT was proposed
for denoising and feature extraction.

The basic structure of the DT-CWT shown in Fig. 3 con-
sists of two isolated trees, namely trees a and b, which
represent real and imaginary components. DT-CWT decom-
poses an input real signal into complex wavelet coefficients
using real and imaginary trees. Each tree comprises of several
filter banks depending on the number of levels. The diagram
in Fig. 3 shows the structure of a one-dimensional DT-CWT
with two levels. The low-pass filter coefficients of level i
for the real and imaginary components are denoted by hg)
and gg ), respectively, whereas the high-pass filter coefficients
of level i for the real and imaginary components are denoted
by h{” and g\".

The wavelet function of one-dimensional DT-CWT is
shown in (3) and (4). Two real wavelet functions were used
as a plural form expression’s real and imaginary parts. The
Hilbert transform of the real part approximates the imaginary
parts.

@ () = @n (1) +jog (1) 3
@g (1) = H {gn (1)} “

where H{.} where is the Hilbert transform operator. The
algorithm analyzes the input signal and synthesizes a
series of complex wavelet coefficients that characterize
both the real and imaginary components of the signal.
The wavelet and scale coefficients of tree a are given by
following:

d® (n) = 25 / O gt =y, G=1,2,.0) ()
ake (ny = 212 / - x (1) op(2't — n)dt (6)
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where J is the total number of decomposition layers, and the
wavelet and scale coefficients of the tree b are:

dj”" (n) = 2% /

alm (n) = 2 /

e¢]

x () po(Pt —mydt, (G=1,2,.J) (7)

e ¢]

x (1) 9g2"t — n)dt ®)

D. LSTM MODEL

LSTM represents an important development over recurrent
neural networks (RNNs), originally designed for predict-
ing sequence activities, owing to its effective reduction of
the stability limitation, commonly referred to simply as the
vanishing gradient problem. The gating function with state
dynamics in LSTM was improved for nonlinearity [31]. The
LSTM network comprises multiple memory blocks that con-
nect through layers. Each layer includes multiple sets of
memory cells that communicate recurrently. In addition to
three multiplicative units known as the input, forget, and out-
put gates [21], input and output gate functions are employed
to regulate the transmission of input and output signals from
the memory cell to the remaining components of the network.
Furthermore, a forget gate is incorporated into the memory
cell, facilitating the transmission of output information with
significant weights from the preceding neuron to the subse-
quent neuron. Retaining information in memory is contingent
upon the outcome of high activation; specifically, if the input
unit exhibits high activation, the information is stored in a
memory cell. When the activation level of the output unit
is high, it transmits information to the subsequent neuron.
Alternatively, data with significant weights are stored in the
memory cells.

The LSTM network computes the mapping between the
input sequence X = {X (1),X (2),...,X (n)}, where X(¢)
and the output sequence h = {h(1),h(2),...,h(n)}. The
other parameters are given by:

igate = sigmoid(WiX (1) + Uih (t — 1) + b;) )
Seate = sigmoid(WyX (¢) + Urh (t — 1) + by) (10)
Ogare = Sigmoid(WoX (t) + Uoh (t — 1) + by) (11)
C, = tanh (WX (1) + Uch (t — 1) + b) (12)
Cr = feate * C (t = 1) + igare - G (13)
hy = 0gaze - tanh C; (14)

Wi, Wy, Wy, We, U;, Ur, UyU. and b;, by, b,b. represent
the weight associated with the hidden state, the input and bias
variables of the three gates, and a memory cell, respectively.
where h(t) and C (¢) are the hidden and cell states, respec-
tively. After processing (13), C (¢) is transformed into the
current memory cell unit. Equation (14) shows the element-
wise multiplication of the prior hidden unit outputs and the
previous memory cell units. This is the nonlinearity on top
of the three gates in the form of tanh and sigmoid activation
functions, shown in (9) to (14). Here, t — 1 and ¢ are the
previous and current time steps, respectively.
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The LSTM model comprises an input layer, LSTM layer,
batch normalization layer with activation function, global
max pooling layer, dropout layer, fully connected layer, and
an output layer with SoftMax. The one-dimensional hue’s
input dimension (180,1) entered the model, input to the
LSTM layer, and implemented the input parameter with a
hidden size of 500 units. After batch normalization with
the Relu function and global maximum polling, the offset of
the hidden unit was reduced, thereby improving the accuracy
of the training. Global max-polling was integrated through a
convex combination, wherein a single weighting parameter
was utilized. This parameter can either be randomly selected
or trained based on local features, as indicated in the network
[33], [34]. The fully connected network expands all the data
and maps the learned ““distributed features representation’ to
the labeled sample space through the multilayer full connec-
tion layer with dropout. Finally, the classification results are
presented using SoftMax.

E. EVALUATION METRICS

In the pretraining, we used data augmentation to increase
the SNR set in the one-dimensional hue. The datasets were
split into three groups: training, validation, and testing, which
used a shuffled dataset at every epoch to avoid bias. The
proportions of the three groups were 70%, 25%, and 5% for
training, validation, and testing, respectively. After pretrain-
ing, the performance of the model was evaluated using seven
indicators. The indicators used in this research included accu-
racy, precision, recall, F1-score, area under the curve (AUC),
and total classification cost (TCC). Moreover, the testing
procedure was used to evaluate the statistical significance of
the performance differences among the models in different
situations.

Various evaluation metrics such as accuracy, precision,
recall, and F1-score were investigated to evaluate the classi-
fication framework’s effectiveness. The metrics of accuracy,
precision, and recall were derived from the total number of
true positives (TP), false positives (FP), true negatives (TN),
and false negatives (FN). The performance of the model
was evaluated using six metrics: accuracy (Acc.), precision
(Pre.) Sensitivity (Sen.), and specificity (Spec.), Fl1-score and
the area under the ROC curve (AUC). These metrics were
computed using TP, FP, TN, and FN [35], [36]. The metrics
are defined as follows:

TP + TN
Acc. = (15)
TP+ FP+ TN + FN
TP
Pre. = —— (16)
TP + FP
TP
Sen. = ——— a7
TP + FN
S = N (18)
P = TP+ IN
2 . X Sen.
Flscore = Zx pre. x oen. (19)
Pre. + Sen.
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FIGURE 4. Architecture of LSTM [32].

An ROC curve, referred to as a receiver operating char-
acteristic curve, is a visualization that illustrates the perfor-
mance of a classification model across various classification
thresholds. The plotted curve represents the relationship
between two parameters, specifically the true positive rate
(TPR) and false positive rate (FPR). TPR, commonly referred
to as recall, is typically defined as follows:

TP
TPR = ——— (20)
TP + FN
where FPR is defined as follows:
FP
FPR= —— 21
FP+ TN

AUC, which has recently gained significant popularity,
additionally encountered challenges because of the possi-
ble utilization of various misclassification cost distributions
across different classifiers [37]. Moreover, in application-
oriented research, the model is challenging to implement
in real-time applications because of the model size or
testing time of resource overload. The Training Cost Calcu-
lator (TCC) is an excellent productivity-enhancing tool for
machine learning projects. In this field of research, the param-
eters of the model are limited to the objective of obtaining
the optimal sample processing speed and the highest level of
accuracy.

IIl. EXPERIMENTAL RESULTS

In this section, the experimental results for the classifica-
tion model are presented. First, one-dimensional hue datasets
were demonstrated with different SNRs, as shown in Fig. 5.
Image data transformation from RGB to HSV space was
performed initially. This was performed using the “rgb2hsv”
MATLAB function. One-dimensional hue data were obtained
with the x-axis referring to the color degree and the y-axis
indicating the corresponding intensity levels. A normalization
technique was applied to reduce the data along the y-axis.
This technique scales intensity to a uniform range, thereby
improving the accuracy and robustness of the model. The
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one-dimensional hue illustrates the color characteristics of
the FPBs for each grade. Fig. 5 shows the initial segment
of the x-axis, which ranges from 10° to 90°, referring to
the illustration of ripeness features correlated with the red or
orange hues. The y-axis shows a noticeable peak value within
the 50° to 70° range. Second, in the 120° to 180° range the
degree of likelihood may be used to measure the unripe in
some varieties of FPBs.

Noise-added data were prepared to evaluate the robust-
ness of the model in actual environments. In addition, data
augmentation was performed to avoid overfitting and under-
fitting. Fig. 6 illustrates the one-dimensional hue datasets for
various SNR values ranging from 0 to 20 dB. The x-axis
indicates the degree within the( to 360°, whereas the y-axis
represents the normalized intensity within the range of 0.0 to
1.0. The peak values occurred at 50° to 60° for a no-noise
environment. At 0 dB, the peak at 60° vanished; at 5 dB,
a spurious peak appeared at 10°. These two elements can
be recognized in the graph, and noise is introduced, which
modifies the visual representation of the hue intensity plot.

In the third stage, the DT-CWT technique is implemented
using the “dualtree” MATLAB function. We propose imple-
menting a one-level DT-CWT; hence, the output data size is
half the size of the DT-CWT input. The dimension of the input
dataset is 1 x 360, so the dimension of the decimator cascaded
with a digital low-pass filter is 1 x 180. The summation of
the real and imaginary channels was applied to highlight the
important features with enhanced clarity, as shown in Fig. 7.

At 0 dB SNR, the peak at 30° occurred, as shown in
Fig. 7. Before using the DT-CWT method, noise contam-
inates the features in a particular range of approximately
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TABLE 1. Comparison of six model performances.
Parameter Training ~ Model Testing
number Layer  time Sizes times
(million) (s) (MB) (s)
AlexNet 60 26 2,406 216.41 0.23
Mobile
Net-V2 35 155 1,454 12.71 0.97
?gSNe" 25.5 178 1,746 91.04 141
Mult1— 15.5 86 181,214 91.52 1.36
nput
ConlD 4.6 20 827 16.82 0.15
LSTM 3.2 12 955 12.49 0.026

60°, as illustrated in Fig. 6. However, it is obvious that the
frequency ranges from 100° to 180° presents an unusual
amount of noise when increasing the SNR within the range
of 0 to 5 dB. A possible impact of This may influence the
complexity of the training process. Hence, it is necessary to
perform data augmentation by adding a noise component that
remains at a threshold of less than 10% of the original signal.
This can be achieved by implementing an SNR range of 10 to
20 dB throughout the data augmentation.

The output of the DT-CWT is applied to the LSTM.
Initially, the development of an LSTM model began with uti-
lization the “‘deep network designer” and ““dinet” functions
in MATLAB. This function describes the number of learn-
able layers in which the total number of learnable elements
will impact both the processing time and the model’s size.
The LSTM model was compared with five other deep learn-
ing models: AlexNet, MobileNet-V2, ResNet-50, Multi-input
[24], and ConlD [32]. The model’s development process
comprised three parts: training, validating, and testing. The
ratios of the train-validation-test split of the datasets were
70%, 25%, and 5%, respectively. These ratios were obtained
through a separate optimization. Utilization of the “‘train-
ingPartitions” function, which aims to improve the natural
bias among the datasets, is provided. Additionally, the opti-
mization technique was implemented in stochastic gradient
descent with momentum (SGDM) configuration.

The performance results are listed in Table 1. The perfor-
mance of the parameters and time training process describes
the development of all networks compared to the learnable
parameters, layer, training time, model sizes, and testing
times. As shown in Table 1, the LSTM model outperformed
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(f) LSTM™.

the other models for all parameters except the training time.
The number of learnable parameters was 3.2 million, the
number of layers was 12, the training time was 955 s, the
model size was 12.49 MB, and the average testing time
was 0.026 s. The ConlD model was the second-best model.
It achieved the lowest training time, a comparably small
model size (16.82 MB), and a very short testing time. The
Conl1D model consisted of 20 layers [32]. Another compact
model is mobileNet-V2, which contains 3.5 million parame-
ters and requires 12.71 MB for model storage. The number of
layers is 155 higher than that of Con1D and LSTM. Hence, its
training and testing times are longer than the other two best
models.

Table 2 presents the training process, wherein the perfor-
mance is compared based on various measurements, such
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TABLE 2. Training performances of models.

Model Training Validation Validation Epochs
loss loss accuracy (%)

AlexNet 0.0001 0.245 93.62 40
VibileNet o001 0.3228 90.37 6
ResNet-50 0.0009 0.2813 92.44 5
Multi-input 0.0534 0.4699 90.26 200
ConlD 0.0303 0.0264 99.23 90
LSTM 0.0354 0.3891 99.51 100

as training loss, validation loss, validation accuracy, and the
number of epochs achieved by different models.

The validation accuracy describes the accuracy of the
model after completing the training process. Hence, the
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FIGURE 9. Confusion matrix obtained from (a) AlexNet, (b) MobileNet-V2, (c) ResNet-50, (d) Multi-input, (e) Con1D, and (f) LSTM.

model presents an important degree of accuracy in its classifi-
cation capability. The gap between the training and validation
loss curves indicates overfitting or underfitting. Table 2
presents the training performance results. The LSTM model
achieved a small gap of approximately 0.0028 between the
training and validation of the loss. This resulted in a high
validation accuracy of 99.66% with 100 epochs. Although
the epoch numbers of MobileNet-V2 and RestNet-50 are very
small compared to those of LSTM, their validation accuracy
values are much lower, as shown in Fig. 8.

A comparative evaluation of the classification perfor-
mances from the six deep learning models is presented,

141452

TABLE 3. Comparison of classification performance of six deep learning
models.

Model Acc. Pre. Sen.  Spec. Flscore AUC
AlexNet 9481 9470 9471 9829 94.81 99.40
MobileNet-V2 ~ 90.72  90.81  90.94 9690 90.72 97.88
ResNet-50 90.19 90.03 90.03 96.75 90.01 98.05
Multi-input 90.26 89.86 96.72 89.54 89.69 96.94
ConlD 99.42 9943 9938 99.81 99.42 99.99
LSTM 99.62  99.60 99.65 99.87 99.62 99.98

highlighting key metrics, as shown in Table 3. The LSTM
model offered the best efficiency, that is, 99.62% accuracy,
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FIGURE 10. Performances of LSTM (blue) compared with Con1D (red) for
different SNRs.

99.60% precision, 99.65% sensitivity, 99.87% specificity,
99.62% F1-score, and 99.98% AUC. The highest area under
the highest AUC (99.99%) was obtained using the ConlD
model.

The ConlD model was the second-best model for these
key metrics. It achieved an accuracy of 99.42%, precision of
99.43%, sensitivity of 99.38%, specificity of 99.81%, and F1-
score of 99.42%.

This section illustrates the primary purpose of the con-
fusion matrix, which visually represents the relationship
between actual and predicted labels. We used a confusion
matrix as shown in Fig. 9 to demonstrate the model per-
formance for classifying the four grades of FPBs. In our
experiments, a total of 144 datasets were utilized in the
testing process. These datasets were randomly determined
and independent of the trained and validated datasets. The
LSTM model achieved the highest accuracy of classification
at 97.22%. In contrast, the Con1D model was second best,
achieving a lower accuracy of 95.83%.

Upon evaluating the model performance in terms of accu-
racy and processing time efficiency, the LSTM and ConlD
model demonstrated the highest level of accuracy and the
shortest testing time. Next, the robustness of the model to
noise was tested in several SNR environments, as shown in
Fig. 10. The x-axis describes the various implemented SNR
collection values between 0 dB and 9 dB. This is because the
minimum noise power represents the actual scenario in which
a noisy environment can be applied. The x-axis illustrates
the accuracy of the testing in the evaluated datasets. The
y-axis represents the accuracy of the test process. We set
the accuracy threshold to approximately 90%. In particular,
the robustness of the proposed work was shown in Fig. 10.
The performance of the LSTM model was represented by the
blue circle points, whereas that of the ConvlD model was
illustrated by the red square points.

Figure 10 illustrates that the accuracy performance of both
the LSTM and Con1D models dropped when SNR decreased.
Very high accuracy of 94.44%, 96.53%, and 97.92% at SNR
levels of 7, 8, and 9 dB are achieved from the LSTM model.
The LSTM is superior in both accuracy and noise robustness.
It is shown that the LSTM model achieves 91.67% at 6 dB
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SNR while the Con1D model requires more than 7 dB SNR
for the same accuracy.

IV. DISCUSSION AND CONCLUSION

This study converted the image datasets to a one-dimensional
hue histogram, and DT-CWT was utilized for denoising.
An LSTM model was proposed. In particular, the proposed
model accuracy was evaluated and compared to other models.
The results indicated that the classification accuracy of the
LSTM model achieved about 99.6% without any noise intro-
duced to the experiment. Moreover, this model achieved an
accuracy as high as 91.67% when the SNR was at 6 dB. With a
limited number of parameters and layers in the computational
transformation within the LSTM model, the utilization of
processing resources is comparatively low. Therefore, the
proposed model required less computation time while achiev-
ing a higher accuracy performance. In particular, this LSTM
model used only 12 million parameters, resulting in a model
size of 12.49 MB and a testing time of only 0.026 sec-
onds while the other pre-trained models contain 60 million
parameters, 216.41 MB, and 1.41 seconds per sample for
testing. Though the proposed model is a promising solution,
it is not ready to install and use since the model is pro-
grammed with MATLAB™ which requires a legal license.
Therefore, we plan to implement the system in a cheaper com-
puting device and programming with Python language. It is
important to remember that platform resource consumption
is a significant challenge. The practicality of the platform is
complex and limited. When selecting a trading system, it is
essential to carefully evaluate the inclusion of applications
that provide capabilities such as low maintenance require-
ments, cost-effectiveness, and minimal installation spaces.
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