Received 27 October 2023, accepted 27 November 2023, date of publication 28 November 2023, date of current version 6 December 2023. Digital Object Identifier 10.1109/ACCESS.2023.3337651 # Investigating Knowledge Structure and Future Directions in IT-Based Business Methods Using Hierarchical Main Path Approach SEJUN YOON[®]1, NAGARAJAN RAGHAVAN[®]2, (Member, IEEE), NGUYEN-TRUONG LE³, AND HYUNSEOK PARK[®]1 ¹Department of Information System, Hanyang University, Seoul 04763, South Korea Corresponding author: Hyunseok Park (hp@hanyang.ac.kr) This work was supported in part by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government [Ministry of Science and ICT (MSIT)] under Grant 2023R1A2C2006962, and in part by Hanyang University under Grant HY-202200000001578. **ABSTRACT** Business method (BM) has been recognized as a key factor for business innovation. BM patents are widely used to analyze and understand BM domains. However, previous studies have not considered the significant characteristics of the BM domain and patents, such as relative weight for knowledge flows and various knowledge interrelations among sub-domains. This study employed a hierarchical main path analysis that considered the relative difference in knowledge inheritances and identified the knowledge structure in the BM domain. In addition, the knowledge unconventionality metric was adopted to optimize knowledge diffusion in the last layer for forecasting further developmental directions. The empirical analysis showed that the BM domain consists of eight sub-domains, and each sub-domain has a high interrelationship with other sub-domains. Most dominant knowledge was invented based on different types of knowledge in different sub-domains. In particular, the overall trajectories and future directions were analyzed according to the changes in relative importance of sub-domains. The dominant patents, trajectories, and future directions for each sub-domain were analyzed based on the high knowledge persistence and end-node information of the main paths. **INDEX TERMS** Business method, business model, hierarchical main path, knowledge inheritance, knowledge structure, knowledge trajectories, patent citation network. # I. INTRODUCTION Information and communication technology (ICT) is one of the most significant drivers for change and evolution in the business environment [1], [2], [3], [4], [5]. The emergence of ICT-based business methods (BMs) has enabled new types of businesses and business models [6], [7], for example, Airbnb. Airbnb, one of the largest companies in the hotel and hospitality sector, offers accommodations to travelers. However, this company does not own any lodging properties but only operates an online rental platform. Airbnb's business model is completely different from traditional business models in the The associate editor coordinating the review of this manuscript and approving it for publication was Davide Aloini. hotel sector, and ICT, as an enabler for business communication, processing, and transactions, makes this possible [4], [8], [9], [10], [11]. As ICT has become an essential component for BMs, BMs have been considered patentable subject matter since 1998 [12], [13], [14], [15], [16] and widely applied to various industries, including service sectors such as finance, retailing, and entertainment [17]. In fact, many significant Internet business operations, such as online auctions (e.g., Priceline.com), online one-click ordering (e.g., Amazon.com), and online shopping carts (e.g., Open Market), are also covered by specific BMs. BM patents - software-based commercial techniques for conducting business using computers, the Internet, mobile devices, and so on [18] - have been used as useful ²Engineering Product Development Pillar, Singapore University of Technology and Design, Singapore 487372 ³Fraunhofer Institute for Industrial Engineering IAO, 70569 Stuttgart, Germany data to analyze and understand business model innovations and evolutions [19], [20]. Unlike other technology domains (TDs), BM patents have different characteristics that need to be carefully considered. First, BM patents generally inherit a great volume of knowledge for later development [8], [16], [21], [22]. Therefore, equal weighting for every knowledge flow can cause inappropriate identification of major knowledge streams, necessitating the need to calculate the relative inheritance weight of knowledge flows. Second, the knowledge interrelationships among the sub-domains within the BM domain are much higher than those of other TDs [23]. Each BM patent concerns a software-based method or process for a specific function. Even a single business or service operation requires multiple sub-functions. Software-based methods can easily be applied to other applications for various purposes. Therefore, sub-domains within the BM domain are highly interrelated, and considerable knowledge is transferred across the subdomains [23], [24]. Because knowledge recombination is the fundamental mechanism for new knowledge creation [25], [26], [27], [28], [29], [30], [31], [32], knowledge flows among different sub-domains are often key clues to understanding further developments and should be carefully analyzed. In particular, the BM domain has various complex knowledge flows across sub-domains; thus, hierarchical knowledge structuring (or knowledge decomposition) is essential for investigating BM patents. Some studies have analyzed knowledge flows, diffusions, or trends in the BM domain using BM patents. Chang et al. [33] analyzed BM patents to identify basic patents and explain knowledge diffusion situations in the BM domain. No et al. [16] suggested a framework for investigating knowledge flows in BM patents using patent citations and textual information. Lee and Sohn [3] analyzed emerging trends in financial BM patents using a topic-modeling technique. However, most studies did not consider the knowledge structure under the BM domain to understand knowledge combinations/diffusions among sub-domains and the relative difference in knowledge inheritance. Therefore, this study employed the hierarchical main path approach [24] to objectively understand the underlying knowledge structure, dynamic developmental flows, and future directions in the BM domain. The hierarchical main path approach automatically decomposes a TD into an optimized number of sub-domains and generates technological trajectories from the overall TD perspective and each sub-domain perspective simultaneously. In addition, the hierarchical main path analysis is based on the concept of knowledge persistence – the metric to measure how much knowledge of a patent is retained and its technological contributions to recent development and inventions – and forward-backward path analysis for minimizing searching paths [34]. Thus, the method can consider different weights for each knowledge flow and show the knowledge interrelations among sub-domains with minimized network complexity [24]. In particular, this study used the knowledge unconventionality (KU) metric [35] to minimize knowledge diffusions usually occurring in the last layer of the generated hierarchical main paths and to characterize future developmental directions. The remainder of this paper is organized as follows. Section II reviews the background knowledge for this research. Section III describes the method, Section IV describes the results and implications of the empirical analysis, and finally, Section V concludes the paper. # **II. THEORETICAL BACKGROUND** #### A. BUSINESS METHOD PATENTS The business model is the design of the organizational structure and rationale for generating a firm's profits. It explains how companies create, deliver, and capture value in the context of market economies and society [2], [4], [13], [15]. Because a substantial number of business models have been implemented by ICT in the recent digital era, BM patents have been considered significant data for analyzing and understanding business models and innovation. BM patents can be defined as methods of administering, managing, or operating an organization, and techniques used in conducting business [2]. Although a business model cannot be protected by a patent, specific BMs for the business model are patentable. BM patents have a long history with the patent system (Table 1), but it has not been long since BM patents were considered common and regular patentable inventions. The actual root of BM patents lies in the State Street Bank and Trust Company vs. Signature Financial Group, Inc. case in 1998. The Federal Circuit decided that a software patent for valuing mutual funds was valid; BMs have been patentable since then [36]. Unlike other technology domains, BM patents are directly linked with business and service fields; thus, BM patents are a valuable data source for identifying opportunities for technology-based services [9]. **TABLE 1.** Early business method related patents (www.uspto.gov, Business methods white paper). | Patent number | Filling date | Title | |---------------|--------------|---------------------| | US 209,827 | 1878.11.12 | Ticket printing and | | | | recording machine | | US 915,090 | 1909.03.16 | Cash register | | US 1,710,691 | 1929.04.30 | Combined sorter and | | | | tabulator | | US 2,594,865 | 1952.04.29 | System for making | | | | reservation | In patent classification systems, BM patents are classified into relatively clear classes and sub-classes. International patent classification (IPC) or Cooperative patent classification (CPC) G06Q and United States patent classification (USPC) 705 are the classifications for BMs; IPC/CPC G06Q is defined as "Data processing systems or methods, specially adapted for administrative, commercial, financial, TABLE 2. Patent classification for business methods. | Patent | | Sub-class | | |--------|-------|---
--| | system | Class | (or Main | Definition | | СРС | G06Q | group) | Data processing systems or methods, specially adapted for administrative, commercial, financial, managerial, supervisory or forecasting purposes; systems or methods specially adapted for administrative, commercial, financial, managerial, supervisory or | | | | | forecasting purpose | | | | G06Q-
10/00 | Administration; Management | | | | G06Q-
20/00
G06Q- | Payment architectures, schemes or protocols Commerce | | | | 30/00
G06Q-
40/00
G06Q-
50/00 | Finance; Insurance; Tax strategies;
Processing of corporate or income taxes
Systems or methods specially adapted
for specific business sectors | | | | G06Q-
90/00 | Systems or methods specially adapted
for administrative, commercial,
financial, managerial, supervisory or
forecasting purposes, not involving | | | | 9069 | significant data processing | | | | G06Q- | Subject matter not provided for in other | | | | 99/00
G06Q- | groups of this subclass Business processing using | | | | 2220/00 | cryptography | | | | G06Q- | Voting or election arrangements | | | | 2230/00
G06Q- | Transportation facility access | | | | 2240/00
G06Q-
2250/00 | Postage metering systems | | USPC | 705 | | Data processing: financial, business practice, management, or cost/price determination | | | | 705/1.1 | Automated electrical financial or
business practice or management
arrangement | | | | 705/50 | Business processing using cryptography | | | | 705/80 | Electronic negotiation | | | | 705/400 | For cost/price | | | | 705/500 | Miscellaneous | | | | 705/901 | Digital rights management | managerial, supervisory or forecasting purposes; systems or methods specially adapted for administrative, commercial, financial, managerial, supervisory or forecasting purposes" with 11 sub-classes, or main groups in the CPC system (Table 2). USPC 705 is defined as "Data processing: financial, business practice, management, or cost/price determination" with six subclasses (Table 3). Although both patent classification systems for BMs seem to have clear structures, almost all BM patents are generally classified into multiple subclasses under CPC G06Q or USPC 705; thus, each subclass, or even lower-level class, cannot be a specific group representing a homogeneous service or operational function. The defined classes, or lower-level classes, are difficult to use directly, and a clustering method for effectively isolating the sub-domains is required to identify meaningful knowledge flows within the BM domain. In addition, BM patents have a much larger volume of knowledge flow than other technological domains. Patent citations are widely considered to be knowledge flow or inheritance from citing to the cited patent [34], [37], [38]. The number of backward citations of BM patents is far greater than that of other TDs. The simple statistics of the average number of backward citations clearly show that the average number of backward citations of BM patents is 31.05, while that of other patents, except software- and healthcare-related patents, is 13.95 (tested by authors using the entire U.S. patents from 1976 to 2020). Thus, knowledge flows can be critical information for analyzing the BM domain; however, careful consideration of the peculiar characteristics derived from complex and vast knowledge flows is essential. Therefore, this study adopts the hierarchical main path approach to consider the characteristics of BM patents. # B. HIERARCHICAL MAIN PATH ANALYSIS Hierarchical main path analysis is a method for identifying the overall and specific knowledge trajectories within a TD by structural decomposition. Main path analysis, which reduces network complexity and identifies the major knowledge streams, has been widely used in various studies on technological innovation. Hummon and Doreian [39] first suggested search pathbased metrics, such as search path link count (SPLC), search path node pair (SPNP), and node pair projection count (NPPC), to identify the main path in a large citation network. Although a search path-based main path approach has been applied to many innovation studies [39], [40], [41], [42], [43], it has some critical limitations for analyzing "technological" domains: singular trajectory, high network complexity, and omission of key knowledge. In order to solve these limitations, Park and Magee [34] suggested a knowledge persistence-based main path approach. This approach is based on knowledge recombination theory and the characteristics of knowledge inheritance. Novel knowledge is created by a recombination of existing knowledge; thus, a proportion of knowledge in the cited patent is incorporated in the citing patent. Based on this concept, knowledge persistence (KP) quantifies how much of a patent has been retained in recent developments based on the structural and topological position of the patent in a citation network [34]. KP-based main paths first identify high KP patents as key nodes for main paths, and then the backward-forward path analysis [34] chooses the nodes with the highest KP among nodes directly linked to the key nodes. The KP-based main-path approach generates multiple main paths and significantly reduces network complexity without omitting any key patents. However, this approach cannot consider the hierarchical structure under a TD; therefore, manual work is required to determine and define the knowledge structure of sub-domains. Recently, Yoon et al. [24] suggested a hierarchical main path approach to solve the drawbacks of KP-based main paths. The hierarchical main path approach automatically analyzes the hierarchical structure under a TD and identifies the optimal number of sub-domains. This approach generates the main paths for the entire TD and each sub-domain, and then integrates them into hierarchical main paths. The advantages of this approach are that significant knowledge at each sub-domain level can be identified, the relative importance or popularity of sub-domains over time can be analyzed, and complex knowledge flows among sub-domains can be explicitly evaluated. However, hierarchical main paths, including all KP-based main paths, may produce many divergent paths in the last layer [24]. Because each path in the last layer can be potential main paths, knowledge divergence patterns should be minimized to characterize future directions. Therefore, this study adopts the KU metric [35] to concentrate and identify the most possible knowledge streams in the last layer. ## III. METHOD We applied hierarchical main path analysis to discover knowledge flows in the BM domain. First, we collected a patent dataset using a patent classification system-based method. Second, we divided the collected patent dataset into sub-domains based on technological similarity. To define a classified sub-domain, domain-specific terms were extracted. Third, a KP-based main path analysis was applied to identify the knowledge flow for sub-domains and the entire domain. Fourth, each generated knowledge flow was integrated based on the entire domain knowledge flow. Finally, the KU metric was used to optimize and minimize the technology corresponding to the endpoint in the knowledge flow. FIGURE 1. Process for hierarchical main path analysis. # A. DATA SET CONSTRUCTION Dataset construction is an important step in a data-driven analysis. In previous studies, a keyword-based patent search was performed to construct a patent dataset; however, there were many limitations. First, specific keywords related to TDs were also used for unrelated TDs. Therefore, it contains many noisy patents (noise patents in Fig 2). In particular, it includes many patents for applications based on the TD. Second, if a patent is related to a TD but does not include a keyword, it is omitted from the dataset. The newly created TD corresponds to this case. Based on the innovation theory of knowledge generation [25], [26], [27], [28], [29], [30], [31], [32], a new TD was developed based on previous technological knowledge. Therefore, it is necessary to include technology that incorporates prior knowledge of the patent or technology analysis of TD. To solve these problems, this study constructs a patent dataset using the classification overlap method (COM) [44], [45], which is based on the structure of the patent classification system. FIGURE 2. Patent collection by keyword searching vs. COM [46]. Notes: (a) patents only identified through keyword searching but indirectly related to the focal TD; (b) patents identified through overlap between keyword searching and USPC and related to applications using the focal TD; (c) patents identified through overlap between keyword searching and CPC and related to applications using the focal TD; (d) patents identified through overlap among keyword searching. USPC and CPC and directly related to the focal TD; (e) patents identified through overlap between USPC and CPC and directly related to the focal TD, but they do not include relevant keyword; (f) patents identified only through USPC but not directly related to the focal TD; and (g) patents identified only through CPC but not directly related to the focal TD. In this study, the COM for patent data collection generates a combination of other patent classification systems to obtain a patent dataset. Benson and Magee suggested COM to find specific TDs. The method's result of data relevance was an average of 86% from 28 TDs [22]. The procedure for COM is as follows. First, the method collects an initial patent dataset with several TD-related keywords. Second, key CPC and UPC were selected from the initial patent dataset, and a patent search was performed with the
selected codes. The results of the patent search were used to evaluate mean precision-recall (MPR) as follows: $$MPR = \frac{(precision + recall)}{2},$$ where precision, which is identified as the proportion of relevant patents within the pool of searched patents, is calculated as the quotient of the number of patents from the first patent dataset that fall under the patent classification code divided by the total count of patents that belong to the patent classification code. Recall, described as the fraction of the aggregate number of relevant patents that were actually explored, is determined by dividing the number of patents from the first patent dataset that align with the patent classification code by the sum of all patents gathered in the first patent dataset. Third, we chose CPCs and UPCs combinations which showed the most elevated MPR value to establish a TD search query. # B. TECHNOLOGY STRUCTURING BY TECHNOLOGICAL SPACE DECOMPOSITION We created a minimum overlap classification (MOC) [46] to divide the BM domain into sub-domains. MOC consists of the deepest class combinations of different patent classification systems. Thus, MOC is the most specific technological space created by the classification overlaps. Hierarchical clustering was applied to find groups of meaningful size and independence as sub-domains. Hierarchical clustering is performed based on knowledge distance, and the knowledge distance is calculated using the patent overlap-based distance (PODist) and class hierarchy-based distance (CHDist) [46]. Because a patent includes multiple classification codes rather than a single classification code, MOCs that include the same patent can be determined as a similar technology space. The PODist converts MOCs into vectors and calculates the distances between the MOCs: CostDist $$(MOC_i, MOC_j) = 1 - \frac{MOC_i \cdot MOC_j}{\|MOC_i\| \|MOC_i\|}$$ where MOC_i is a vector of MOC, $MOC_i \cdot MOC_j$ is an inner product, $\parallel MOC_i \parallel$ is the Euclidean distance of MOC_i , and the distance ranges from 0 to 1. However, high skewness similarity does not produce distinguishable values, and the value needs to be reduced. Therefore, we applied a logistic function to reduce the difference in the MOC distances. The PODist is expressed as follows: $$PODist (MOC_i, MOC_j) = \frac{1}{1 + e^{-10(CostDist(MOC_i, MOC_j) - 0.5)}}.$$ The *CHDist* is calculated using the hierarchical structure of the patent classification system. We transformed the patent classification system into a hierarchical tree network. Nodes are composed of classification codes and edges are the relationships of hierarchical structures based on patent classification systems. The similarity between classes is calculated using a class hierarchy-based distance, such as link length-based semantic distance(*LLDist*) approach [46]: $$LLDist\left(Class_{i},\,Class_{j}\right) = 1 - \frac{2 \cdot d\left(LCS\left(Class_{i},\,Class_{j}\right)\right)}{d\left(Class_{i}\right) + d\left(Class_{j}\right)},$$ where $Class_i$ is the specific patent class in CPC, UPC, or IPC, $d(Class_i)$ is the number of edge from the section in the focal classification to $Class_i$, and $LCS(Class_i, Class_j)$ is the least common subsumer of $Class_i$, and $Class_i$, under the patent classification system' hierarchical structure. The LLDist ranges from 0 to 1. The two deepest level of classes of two different patent classifications generate the MOC, and the CHDist is calculated according to the patent classification system constituting the MOC. The CHDIS formula is as follows: $$\begin{aligned} & \textit{CHDist} \left(\textit{MOC}_i, \textit{MOC}_j \right) \\ &= \frac{\textit{LLDist} \left(\textit{CPC}_i, \textit{CPC}_j \right) + \textit{LLDist} \left(\textit{USPC}_i, \textit{USPC}_j \right)}{2}. \end{aligned}$$ Finally, knowledge distance is calculated as the *PODist* and *CHDist*. The formula used is as follows: $$MOCDist = PODist \times CHDist$$ Next, we perform hierarchical agglomerative clustering based on the technological similarity among MOCs [46]. In hierarchical agglomerative clustering, MOCs are clustered from the highest value of technological similarity. The final clustering denotes the entire domain. Thus, sub-domains with lower technological similarity are composed of sub-domains with higher technological similarity. The cutoff can be further subdivided according to the purpose of the analysis. We evaluated the cut-off that sets the sub-domains in each clustering process. The cutoff criterion can be the independence of the sub-domain and the number of patents in the sub-domain. In this study, the cutoff level is set when the cutoff satisfies both the size and independence at the same time. # C. DEFINITION OF SUB-DOMAINS USING DOMAIN SPECIFC TERMS We extracted domain-specific terms (DSTs) for each sub-domain to define the name of each sub-domain. DSTs can be a single word or noun phrase and should have relative importance only in a specific sub-domain. In particular, most meaningful terms are noun phrases rather than single words. Therefore, it is important to extract noun phrases as DSTs. This study adopted a stopword-based tokenizing approach to consider noun phrases [47] and identified DSTs by comparing the term frequency distribution between each sub-domain and the entire domain. The extraction process is as follows. First, the entire patent text is tokenized by stop words, and the weights of the tokenized words are scored by word frequency and degree. The DST candidates are extracted by the ratio of word degree to word frequency, and the cutoff is usually set as a third of the total text. Second, DSTs are quantitatively identified based on the relative essentiality of the terms at different boundaries [46]. The formulation for calculating the domain-specific score (DSS) is as follows. $$DSS_{ij}(k) = \frac{edf_i(k)^2 / n_i \cdot rdf_i(k)}{edf_{\bar{i}}(k)^2 / n_{\bar{i}} \cdot rdf_{\bar{i}}(k)}, \quad (i \neq j)$$ where k is a specific keyword, rdf(k) is the referenced document frequency of k and is defined as the number of documents having k as the candidates, and edf(k) is the extracted document frequency of k. i is a specific sub-domain under the focal domain, and j is the upper set of i, that is, the entire domain. \bar{i} is a complementary set of i, and n_i is the number of documents in i. # D. MAIN PATH IDENTIFICATION We applied the concept of knowledge persistence (KP) to represent technologies that contain significant knowledge. KP quantitatively calculates the rate at which knowledge is transferred between a patent citation relationship and is an indicator that measures the amount of knowledge duration or the impact on technological development. The KP-based main path analysis identifies high-KP patents in the knowledge network and shows their development. The KP calculation method is as follows: First, a patent citation network was constructed. Second, the longest citation edge was found by the start and endpoint of the patent citation network. Third, the patent citation network was rearranged based on the layer of the longest citation edge. Fourth, KP calculated the ratio of the number of backward connections to the layer immediately preceding the endpoint. Fig 3 illustrates how KP is calculated. The formula for KP is as follows [34]: $$KP(P_A) = \sum_{i=1}^{n} \sum_{j=1}^{m_i} \prod_{k=1}^{l_j-1} \frac{1}{BWDCit(P_{ijk})},$$ When P_A represents a patent associated with A, P_{ijk} stands for the k-th patent in the j-th backward path that begins from P_i to ends at P_A ; BWDCit (P_{ijk}) is used to indicate the number of backward citations from P_{ijk} , This is done while disregarding the citations made by patents that fall between layers t and t-1, specifically when P_A is situated under layer t, The l_j is used to designate the totality of patents present along the j-th backward path, starting from P_i to P_A , The variable m_i is the entirety of viable backward paths from P_i to P_A , i is the count of patents in the final layer that hold indirect links with P_A . We identified the important patents in a knowledge network using KP normalization from the global or local perspective. The global-perspective persistence (GP) was evaluated by normalizing it using the highest KP value in the knowledge network. The layer-perspective persistence (LP) was evaluated by normalizing it using the highest KP value for each layer. In general, citation-based metrics cannot measure recent patents as important ones because of time bias [34]. KP was also calculated as a citation-based metric and is weighted on relatively old patents, but the LP metric solves the time effect bias. Based on [34], this method determines the high-KP patents with GP greater than or equal to 0.3 or LP greater than or equal to than 0.8, as the important patents. To find the main paths, we applied the backward and forward search mechanism for the paths of high-KP patents. This mechanism identifies the multiple main paths well-connected from the starting points to the endpoints [24], [48]. # E. GENERATION OF HIERARCHICAL MAIN PATHS We applied the KP-based main path analysis for the entire domain and sub-domain. The generated KP-based main paths for each sub-domain are located in their respective sections on a main path network, and all main paths are linked by FIGURE 3. Knowledge persistence calculation. Notes: Layer denotes overall knowledge structure defined by knowledge flows and inheritances in a TD; The size of layers is determined by the longest citation flow; Each node on the network is assigned to its corresponding layer; the ratio of knowledge inheritance is defined as 1/the number of knowledge in-flows through citations. integrating the main paths for the entire domain with the main paths for all sub-domains; the overlapped patents between the entire domain and sub-domains are used as integration points. For better
understanding of trajectories, all nodes are rearranged by application year. This method uncovers the role and development of sub-domain knowledge in the entire domain knowledge development [24]. # F. FUTURE DIRECTION ANALYSIS This step minimizes the hierarchical main-path network on the last layer using the KU metric. The KU metric is fundamentally based on knowledge recombination theory [25], [26], [27], [28], [29], [30], [31], [32]. Innovative knowledge, which has a high possibility of becoming a future knowledge flow, is usually created by the recombination of atypical knowledge. The KU metric is defined as follows [35]. $$KU_p = \sum_{j}^{n_p} DC_j / n_p; CPC_{p_j} \neq CPC_p,$$ where DCj represents the count of different classifications in patent p, which cites patent j; DCj is counted when main class of CPC (Cooperative Patent Classification) codes CPC_{p_j} of patent j is not assigned to patent p. np is the number of patents cited patent p on the main paths. Based on the KU scores of patents at the endpoints, the patents with the highest KU scores are being continued or prioritized for further analysis. # IV. CASE STUDY # A. DATA We collected the BM patent set using classification overlap method (COM). The patent search queries are presented in Table 3. The patent classifications used in COM are listed in Table 4. TABLE 3. Data overview. | Search Num. of query patents | Data range | Relevancy | |------------------------------|--------------------------|-----------| | G06Q | US-granted patents from | 96% | | and 48,562 | 1990.01.01 to 2021.01.01 | | | 705 | (Application date) | | TABLE 4. Business method related patent classification for data collection. | Clas
sific
ation | Descriptions | |------------------------|---| | CPC
G06
Q | Data processing systems or methods, specially adapted
for administrative, commercial, financial, managerial,
supervisory or forecasting purposes
systems or methods specially adapted for
administrative, commercial, financial, managerial,
supervisory or forecasting purposes | | USP
C
705 | Data processing: financial, business practice, management, or cost/price determination | # B. RESULT First, we extracted the MOC from the collected BM patent set and identified eight sub-domains using technological similarity-based hierarchical clustering. To define each of the identified sub-domains, keywords were extracted by applying the domain-specific score (DSS) to the titles and abstracts of patents in the sub-domains. The name for each sub-domain (Table 5) is qualitatively defined mainly based on the extracted domain-specific keywords and key-phrases (Table 6). Next, we generated KP-based hierarchical main paths for the entire domain and sub-domain. By integrating the generated main paths, the development trajectories and interrelationships among sub-domains are well identified. However, this method effectively reduces the complex network and identifies each main path. Concerning network size, the BM domain generally has a significant number of knowledge flows, resulting in a large and complex knowledge network. However, this method can effectively reduce the network size and find major knowledge flows from a complex citation network. The summary of the hierarchical main path analysis results is presented in Table 7. # 1) OVERALL TRAJCTORIES As can be seen in Figs. 4, 5, and 6, the important developments in the BM domain in the 1990s began with Managerial Computing Systems, Advertising Systems, E-commerce, and Financial Data Processing. As the offline market transitioned **TABLE 5.** Sub-domain definition. | Sub-
domains | Definition | |-----------------|--| | | Methods and systems for financial, stock, and | | Financial | insurance transactions with a focus on banks and | | Data | securities companies | | Processing | Methods and Systems for companies and | | | customers through the bank | | Payment | Methods and systems for customer payments in | | System | the network | | | Methods and systems for patient information, | | Healthcare | medications, medical information, patient | | | management, and hospital management | | E- | Methods and systems for sale and Web system | | commerce | in E-commerce | | Managerial | Method and systems for efficiently supporting | | computing | companies in especially insurance and inventory | | system | management | | Business | Methods and systems for handling data-driven | | Processing | demand forecasting, optimal efficiency, and | | system | department management | | Advertise | Methods and systems for promoting a company's | | ment | products and services to customers | | system | products and services to customers | | Security | Methods and systems for protecting data passing | | system | over networks | to an online market due to digitalization, the corresponding BM patents developed. Among them, knowledge in the E-commerce sub-domain was adopted by Advertisement Systems and Financial Data Processing. In the Advertisement System, methods (e.g., 1057 and 923) that converted offline customer channels into initial online channels were mainly invented. From Period 3 (2001-2005) in Fig. 6, new sub-domains emerged, and knowledge interactions actively occurred. The significant implication in this period is the growth of E-commerce and Payment Systems. User interfaces, such as electronic shopping carts for customer convenience, and various systemic methods for attracting customers (e.g., 18534, 21162, and 31278), were mainly developed in the E-commerce sub-domain. The emergence of new subdomains, Business Process Systems and Security Systems, is also highly related to E-commerce and Payment Systems. Key knowledge in Business Process Systems (e.g., 13752 and 25345) became more general BMs for business activities, such as demand forecasting systems and product price optimization, by using customer information from e-payment. The BMs for Security Systems, such as transaction stability (e.g., 11751 and 13216), were required and developed. In Period 4 (2006-2010) in Fig. 6, various sub-domains became important. The environment for customers and users changed because of the emergence of smartphones. TABLE 6. Top 15 extracted domain-specific terms for each sub-domain. | Class
1 | Class
2 | Class
3 | Class
4 | Class
5 | Class
6 | Class
7 | Class
8 | |------------------------------------|------------------------------------|-------------------------------------|---------------------------------|----------------------------------|------------------------------------|--------------------------------------|-----------------------------------| | Financia
1 Data
Processi | Payment
system | Healthc
are | E-
commer
ce | Manage
rial
computi | Busines
s
process | Advertis
ement
system | Security
system | | ng | | | | ng
system | system | , | | | trading
system | electroni
c | health
care | electroni
c | insuranc
e policy | business
process | online
ad | digital
signatur | | | payment | | commer | ,,,,,, | , | | e | | financial
instrume
nt | payment
transacti
on | medical
record | shoppin
g cart | health
care | supply
chain | advertisi
ng
system | digital
certifica
te | | market
data | payment
system | patient
data | product
informat
ion | payment
system | historica
1 data | advertis
ement
informat
ion | second
part | | financial
data | authoriz
ation
request | medical
informat
ion | purchas
e order | financial
account | r
impleme
nted
method | advertisi
ng
content | first part | | financial
instituti
on | account
number | social
network
ing | web site | payment
transacti
on | time
period | targeted
advertis
ement | public
key | | financial
account | payment
informat
ion | medical
conditio
n | purchas
e
transacti
on | financial
instituti
on | data
structure | advertisi
ng
campaig
n | private
key | | financial
transacti
on | credit
card | system
use | various
embodi
ment | manage
ment
system | control
system | content
item | encrypti
on key | | account
informat
ion | electroni
c
transacti
on | informat
ion
manage
ment | web
page | financial
transacti
on | manage
ment
system | web
page | line
transacti
on | | insuranc
e policy | transacti
on
processi
ng | medical
care | compute
r
network | account
informat
ion | data
related | user
profile | electroni
c
transacti
on | | credit
card | transacti
on
informat
ion | medical
procedu
re | service
provider | credit
card | program
product | search
result | smart
card | | payment
transacti
on | financial
transacti
on | monitori
ng
device | first
user | service
provider | determi
ned
based | user
interacti
on | electroni
c
payment | | data
processi
ng
system | card
reader | patient
informat
ion | system
allows | system
also | compute
r
program
product | search
engine | digital
content | | payment
system | purchas
e
transacti
on | electroni
c
medical
record | commun
ication
network | compute
r system | graphica
l user
interface | user
based | account
number | | account
number | financial
account | medical
device | social
network | informat
ion
regardin
g | user
interface |
location
informat
ion | authoriz
ation
request | | transacti
on
informat
ion | account
informat
ion | healthca
re
provider | system
receives | social
network | user
input | web site | Credit
card | Consequently, the previous sub-domains all changed. The BM patent (e.g., 47491) of the Managerial Computing System is about a big data-based order processing method. The Advertising System's patents (e.g., 46295, 46621, and 46629) developed methods of targeting advertisements by acquiring information on customers' real-time locations and channels. The Security System's BM patents (e.g., 46481 and 46502) were mainly about methods to enhance security in the payment process. **TABLE 7.** Summary of main paths. | Sub- | Name of | Num
ber of | Cita
netv | tion
vork | Main path | | | |------------|---------------------------------|---------------|------------------------|------------------------|------------------------|------------------------|--| | doma
in | Sub-
domain | patent | Num
ber of
nodes | Num
ber of
edges | Num
ber of
nodes | Num
ber of
edges | | | 1 | Financial
data
processing | 15,396 | 13,223 | 145,53
4 | 31 | 27 | | | 2 | Payment
system | 10,695 | 8,987 | 90,925 | 24 | 20 | | | 3 | Healthcare | 5,661 | 3,453 | 11,485 | 29 | 37 | | | 4 | E-
commerce | 14,728 | 12,084 | 96,638 | 67 | 73 | | | 5 | Manageria l computing system | 18,668 | 14,861 | 105,59
4 | 44 | 66 | | | 6 | Business
process
system | 6,866 | 5,046 | 19,442 | 63 | 72 | | | 7 | Advertise
ment
system | 5,308 | 3,897 | 20,805 | 40 | 42 | | | 8 | Security
system | 5,559 | 3,178 | 14,790 | 24 | 40 | | | - | Entire-TD | 48,562 | 43,401 | 537,50
6 | 61 | 109 | | In Period 5 (2011-2015) in Fig. 6, the Managerial Computing System, whose patents were not selected as major nodes on the main paths and so the sub-domain disappeared for Periods 3 and 4, was identified again. The potential reason could be the change in the consumer payment environment to a mobile environment (e.g., 37947, 38263, and 41136). Based on this, knowledge in the Managerial Computing System was actively adopted by Security System and Payment System. Security System's BMs (e.g., 34521, 37931, 42553, and 42611) were mainly about stable information transactions and cryptograms in a virtual environment. Payment System's BMs (e.g., 42616, 35470, and 38863) focused on mobile wallet-related technology. To enable efficient payments, it was important to improve customer personal information security and user convenience by separately storing user information and only opening the address for it. From Period 6 (2016-2020) in Fig. 6, knowledge flows were not as strong as before. The crucial reason is that the timing for patent disclosure and the time from application to registration takes approximately 990+ days (2.7 years). Because the patent examination period for BM patents usually takes about 1300+ days (3.6 years), this period inevitably has weak knowledge flows. Similar to previous periods, Advertisement Systems will continue to play a vital role in the BM domain in the future. Key BM patents (e.g., 49136, 48669, and 48676) for this sub-domain focused on customized advertisements using real-time customer transaction information. Companies specializing in advertising will evolve BM patents in connection FIGURE 4. KP-based hierarchical main paths for BM domain. (High-quality figure is attached in S1 file.) FIGURE 5. Ration of high KP patents for each sub-domain in specific periods. with companies that have substantial financial and customer information to acquire customer data. The BM patent (e.g., 48673) for the Security System was developed with multiple tokenization to strengthen authentication. Based on this knowledge, the patents (e.g., 48672 and 49135) of Managerial Computing Systems have developed as methods that can be utilized in social media and platforms. As such, FIGURE 6. Knowledge flow network for each sub-domain by moving average period. they will be developed according to changes in the security system environment. The increase in financial and personal data/information will lead to the development of enhanced security systems. Meanwhile, there have been no innovations in E-commerce knowledge since 2016. The E-commerce development process has evolved according to changes in customers' accessibility to digitalization, networks, and wireless communication devices. As there have been no environmental changes, BMs of E-commerce have become common knowledge. However, if the Metaverse becomes popular, companies will focus on developing new E-commerce methods or systems for the new customer environment. In addition, this paper has discovered a new sub-domain, Healthcare, for the development of the BM domain. Healthcare's BM patent (e.g., 49106) provides customized compensation based on customer information in the insurance field. Considering social needs and trends, Healthcare will grow more, and various BMs (e.g., for insurance or remote healthcare) will be actively developed. Technologies have developed through the recombination of knowledge from previous technologies. In particular, key technologies were generally invented when knowledge from several fields, rather than the knowledge of one field, was combined. We found that the development process of the BM domain also supports the innovation theory (Table 8). The key node, for instance, 13752 (Business process system) was invented based on node 1056 (Managerial computing system), 3517 (Payment system), and 9472 (Financial data processing). Node 1056 is about a system for managing customer information utilization, purchase, and delivery in the network. Node 3517 could facilitate the purchase activity by providing incentives to customers based on real-time product purchase information. Node 9472 helps customers **TABLE 8.** Example patents related to cross-domain knowledge combination. | | | | | | | - | | |---|-----|------|--------|-------|---------|-------------------------|--------| | L | Pat | Ap | Sub- | KP | # of | Title | Assig | | a | ent | plic | domai | | forwa | | nee | | b | Nu | atio | n | | rd | | | | e | mb | n | | | citatio | | | | 1 | er | yea | | | n | | | | | | r | | | | | | | 1 | US | 199 | Manag | 1219. | 643 | Digital active | Open | | 0 | 572 | 5 | erial | 347 | | advertising | Marke | | 5 | 442 | | compu | | | | t | | 6 | 4 | | ting | | | | | | | | | system | | | | | | 3 | US | 199 | Payme | 272.9 | 264 | Method and system | Incent | | 5 | 629 | 9 | nt | 427 | | for generating | ech | | 1 | 278 | | system | | | incentives based on | | | 7 | 6 | | | | | substantially real-time | | | | | | | | | product purchase | | | | | | | | | information | | | 9 | US | 200 | Financ | 53.54 | 35 | System and method | JPMor | | 4 | 768 | 2 | ial | 95 | | for establishing or | gan | | 7 | 950 | | data | | | modifying an account | Chase | | 2 | 4 | | proces | | | with user selectable | Bank | | | | | sing | | | terms | | | 1 | US | 200 | Busine | 42.44 | 15 | Systems and methods | JPMor | | 3 | 817 | 4 | SS | 14 | | for constructing and | gan | | 7 | 590 | | proces | | | utilizing a merchant | Chase | | 5 | 8 | | S | | | database derived from | Bank | | 2 | | | system | | | customer purchase | | | | | | | | | transactions data | | easily access and use financial products. Based on these BM patents, node 13752 acquires seller information using customer purchase information data. This BM patent predicts information about the current seller's profit and market share based on the information obtained. ## 2) TRAJECTORIES FOR SUB-DOMAINS Next, we analyzed the trajectories for the sub-domains. Initially, BM patents for Financial data processing were methods and systems for transacting financial instruments in a network. In the 2000s, the BM was advanced as an automated system and method for financial product transactions. In the 2010s, BMs for improving data security or user convenience (e.g., 41133 and 38902) were actively developed. Payment system has been developed based on the growth of E-commerce. BM patents (e.g., 3592 and 3360) for Payment system in the 1990s were usually about methods for payment in a network environment. Based on this, an online payment system (e.g., 21501) was developed using a NFC-enabled mobile communication device. In addition, a personal address system (e.g., 35470) was developed to increase customer convenience and security. Since 2010, the BMs for mobile device-based payment systems changed with the introduction of smartphone and wearable devices as a new customer's payment environment. The virtual payment account or system for mobile or wearable devices (41144 and 48852) were critical BMs. From this trajectory, it is predictable that companies will continuously focus on developing a new BM system for newly developed payment environments or devices. In the entire main paths, the Healthcare BM patents were first identified in 2018. However, the Healthcare sub-domain had previously had BM patents. In the 1990s, BM patents were applied to systems for patient management (e.g., 537 and 1159) and methods for insurance claims (e.g., 2956 and 3222). Based on this, BM patents for prescription benefit management for medical services (e.g., 12922) and systems for drug management (e.g., 28564) were developed. In the 1990s, E-commerce BM patents started as a catalog system for E-commerce (e.g., 923 and 820) and systems for overall operation (e.g., 559 and 1901). In the 2000s, based on the previously important operation systems, BMs focused on a system method (e.g., 5029 and 7205) to maximize the network processing speed and management efficiency of E-commerce and product placement methods applying a statistical modeling method (e.g., 10469 and 14111). In the 2010s, web-based interfaces (e.g., 42597, 43648, and 46936) for customer convenience or methods for proposing customized products by
securing customer data (e.g., 47373 and 48675) were significant. Recently, BM systems (e.g., 49025) for cryptocurrency payments in e-commerce have been developed. BM patents (e.g., 1056 and 2712) in Managerial computing systems started with the development of the company's overall infrastructure in the network. With the growth of E-commerce, BM patents (e.g., 16295 and 24691) of the Managerial computing system have focused on optimizing delivery and software management to increase customer convenience and corporate efficiency. Since the 2010s, BM patents (e.g., 47491) have developed an order management system (OMS) and methods of locating and selling items at attended delivery using big data analysis methods. In the 1990s, BM patents for Business process systems (e.g., 523 and 580) developed methods such as an automatic manufacturing costing system and a workflow management and elimination system to facilitate the operation of their companies. In the 2000s, based on the previous trajectory, BMs (e.g.,12214, 10246, and 18543) on demand forecasting for distribution management and monitoring for outsourcing companies were significantly invented. In 2010, BM patents (e.g., 39933, 38144, and 4391) were developed using data-based statistical analysis methods. Advertisement system has the highest number of KP patents in the overall development of the BM. Initially, the BM patents of the Advertisement system were developed as systems (e.g., 1029, 1595, and 1996) for advertising to customers on the Internet. Based on the previous developments, BMs related to a system that utilizes customer data to increase the effectiveness of advertisements (e.g., 16436 and 13970) were developed. BM patents (e.g., 38351, 35843, and 46444), which are systems for diversified advertising channels that customers can access, were developed. With the increasing volume of customer data and the development of analytic methods, BM patents (e.g., 46701 and 48676) on more customized advertisements were developed. Because the BM domain operates in a network environment, the sub-domain of the Security system is especially important. Initially, BM patents (e.g., 1445 and 2820) were about methods for secure transactions in payment systems. With the development of network and security technologies, BM patents (e.g., 11751 and 13216) in the 2000s strengthened security with real-time authentication, such as mobiles. Recently, according to BM patents (e.g., 48673, 48721, and 42553), credit card companies operate customer-customized network configurations and account identifier systems for safe security. #### V. CONCLUSION We applied the hierarchical main path analysis for understanding the knowledge structures, dynamic development flows, and future directions of the BM domain. The hierarchical main path analysis is a method that automatically decomposes TDs into an optimal number of sub-domains and simultaneously generates descriptive trajectories from both the overall TD view and each sub-domain view. This study found eight sub-domains under the BM domain (Financial data processing, Payment system, Healthcare, E-commerce, Managerial computing system, Business process system, Advertisement system, and Security system), identified BM patents of dominant knowledge, and confirmed the knowledge trajectories and development direction between sub-domains in BM development. The empirical results provide rich information to better understand the BM domain. Managerial computing systems, E-commerce, Advertisement systems, and Financial data processing began in the development of the BM domain. Over time, Payment system, Healthcare, Business processing systems, and Security systems sub-domains were created and composed of knowledge from various sub-domains. In the sub-domain, the Advertisement system has the highest number of KP patents, as company profit/sales are directly related. The E-commerce sub-domain played an important role until 2015, but there has been no significant development after that. E-commerce has radically developed with changes in the Internet and smartphone environment. To date, innovative BMs of E-commerce have not been developed due to the lack of system and environment changes. However, with the current development of VR and metaverse, the development of E-commerce could be restarted. Security systems are growing continuously owing to the importance of personal information and security issues for companies. The Healthcare sub-domain was not initially found in the main path of the BM domain but was recently identified. However, given the mega-trends, including COVID, well-being, aging society, and so on, the Healthcare sector will become a key sub-domain in the BM domain. Although this study provides novel implications and is helpful for the fundamental understanding of the BM domain, there are some limitations to be addressed in further work. First, since most knowledge flows, especially forward citations, occur within the BM domain, this paper focuses on the knowledge flows within the domain. However, there are many knowledge in-flows from outside the BM domain. Most of the knowledge in-flows are from software patents, and BM patents are usually classified in the class for software patents as well. So, there is no credibility problem in the results. But, various knowledge in-flows can be signals for better understanding the knowledge sources and originality of inventive ideas. Further work will include all knowledge in-flows and out-flows in the dataset. Second, there are many companies in many TDs in the BM domain. This is because, unlike other TDs, the BM domain is about 'systemic methods for doing any business'. Even though different TDs have different BMs, all BM patents are classified into the same patent classification. However, this fact contains the clue that the BM domain can be used for cross-domain analysis. Therefore, further works will consider this fact and focus on analyzing knowledge relationships among different sectors. Third, as mentioned in Theoretical background, the BM domain has relatively many citations and produces a large knowledge network. Therefore, the size of main paths, particularly KP-based hierarchical main paths, is inevitably large. This network complexity is always a serious issue for a main path analysis. The basic concept/purpose of a main path analysis is to reduce network complexity without the omission of key knowledge flows. So, a complex main path network should be revised or improved. One potential solution is to redefine the knowledge inheritance mechanism for KP. The current mechanism gives the same weight to each backward citation of the target node. But the same weight clearly cannot reflect the real world. This weight mechanism can be improved by considering the similarity between the backward citation and the focal node. In addition, the backward-forward searching also has the possibility to identify many major knowledge flows if the KP values around the high-KP patents are the same. Therefore, the algorithmic improvement of the backward-forward searching can be a possible solution. # APPENDIX FOOTNOTES Number footnotes separately in superscripts numbers. Place the actual footnote at the bottom of the column in which it is cited; do not put footnotes in the reference list (endnotes). Use letters for table footnotes (see Table 1). ¹It is recommended that footnotes be avoided (except for the unnumbered footnote with the receipt date on the first page). Instead, try to integrate the footnote information into the text. | Label | Patent
Numbe
r | Applic
ation
Year | Class | KP | Title | 1070 | US570
4045 | 1995 | 1 | 190.91 | System and method of risk transfer and risk diversification including means to assure with assurance of timely | |-------|-----------------------|-------------------------|-------|-------------|--|------|-----------------------|------|---|--------|---| | 512 | US523
7495 | 1991 | 6 | 85.36 | Production/purchase management processing system and method | 1079 | US584 | 1995 | 4 | 656.2 | payment and segregation of the
interests of capital
Consignment nodes | | 523 | US524
9120 | 1991 | 6 | 108.89 | Automated manufacturing costing
system and method | 1103 | 5265
US568 | 1995 | 1 | 512.28 | Crossing network utilizing optimal | | 530 | US538
1332 | 1991 | 6 | 119.16 | Project management system with automated schedule and cost | 1159 | 9652
US591 | 1995 | 3 | 79.17 | mutual satisfaction density profile System for providing medical | | 537 | US530
1105 | 1991 | 3 | 341.84 | integration All care health management system | 1197 | 8208
US583 | 1995 | 3 | 69.7 | information Computer-implemented method for | | 559 | US538
3113 | 1991 | 4 | 1271.8
6 | System and method for electronically providing customer services including | 1198 | 5897
US561 | 1995 | 6 | 88.48 | profiling medical claims Point of supply use distribution process | | 564 | US523 | 1991 | 4 | 737.25 | payment of bills, financial analysis and loans | 1208 | 1051
US571 | 1995 | 6 | 112.5 | and apparatus System and method for estimating | | | 1566 | | | | Method and apparatus for producing a catalog | 1255 | 2985
US561 | 1995 | 6 | 98.02 | business demand based on business influences Method of and system for generating | | 580 | US530
1320 | 1991 | 6 | 106.43 | Workflow management and control
system | | 5109 | | 6 | | feasible, profit maximizing requisition sets | | 589 | US524
1465 | 1991 | 6 | 82.72 | Method for determining optimum
schedule in computer-aided scheduling
system | 1323 | US561
5121 | 1995 | | 84.26 | System and method for scheduling
service providers to perform customer
service requests |
 599 | US530
5197 | 1992 | 7 | 393.97 | Coupon dispensing machine with feedback | 1445 | US602
9150 | 1996 | 8 | 66.87 | Payment and transactions in electronic commerce system | | 609 | US528
3731 | 1992 | 4 | 1914.0
5 | Computer-based classified ad system and method | 1456 | US592
3552 | 1996 | 6 | 55.55 | Systems and methods for facilitating the
exchange of information between
separate business entities | | 618 | US524
7578 | 1992 | 8 | 379.76 | Process for exchange of rights between microprocessor cards | 1555 | US582
2737 | 1996 | 7 | 583.85 | Financial transaction system | | 652 | US542
4938 | 1992 | 1 | 196.19 | Method and apparatus for providing access to a plurality of payment | 1560 | US584
8395 | 1996 | 6 | 48.62 | Appointment booking and scheduling
system | | 669 | US528
3829 | 1992 | 5 | 1132.5
1 | networks System and method for paying bills electronically | 1565 | US590
5974 | 1996 | 1 | 207.44 | Automated auction protocol processor | | 738 | US552 | 1993 | 6 | 122.96 | System and method for the advanced | 1595 | US594
8061 | 1996 | 7 | 508.18 | Method of delivery, targeting, and
measuring advertising over networks | | 760 | 1813
US545
9656 | 1993 | 6 | 117.41 | prediction of weather impact on
managerial planning applications
Business demand projection system and
method | 1599 | US586
7821 | 1996 | 3 | 154.66 | Method and apparatus for electronically
accessing and distributing personal
health care information and services in | | 762 | US563
0069 | 1993 | 6 | 110.45 | Method and apparatus for creating workflow maps of business processes | 1600 | US596
3911 | 1996 | 6 | 97.75 | hospitals and homes
Resource allocation | | 768 | US546 | 1993 | 5 | 803.66 | Electronic bill pay system | 1654 | US584
8396 | 1996 | 7 | 782.66 | Method and apparatus for determining
behavioral profile of a computer user | | 783 | 5206
US532 | 1993 | 6 | 128.38 | Tour/schedule generation for a force | 1676 | US579
4219 | 1996 | 2 | 491.2 | Method of conducting an on-line auction with bid pooling | | 804 | 5292
US559 | 1994 | 5 | 551.4 | management system Network settlement performed on | 1772 | US594
6662 | 1996 | 6 | 136.54 | Method for providing inventory optimization | | 810 | 6642
US555 | 1994 | 3 | 238.6 | consolidated information Method and system for generating | 1901 | US605
8379 | 1997 | 4 | 189.64 | Real-time network exchange with seller specified exchange parameters and | | 814 | 7514
US555 | 1994 | 8 | 522.79 | statistically-based medical provider
utilization profiles
Trusted agents for open electronic | 1920 | US612
8603 | 1997 | 1 | 111.27 | interactive seller participation
Consumer-based system and method
for managing and paying electronic | | | 7518
US571 | | | 463.94 | commerce | 1946 | US602
1397 | 1997 | 1 | 195.97 | billing statements
Financial advisory system | | 820 | 5314 | 1994 | 4 | | Network sales system | 1976 | US611
9103 | 1997 | 1 | 98.47 | Financial risk prediction systems and methods therefor | | 849 | US564
4727 | 1994 | 1 | 440.09 | System for the operation and management of one or more financial accounts through the use of a digital | 1989 | US611
9101 | 1997 | 4 | 143.13 | Intelligent agents for electronic commerce | | 873 | US577 | 1994 | 6 | 117.8 | communication and computation system
for exchange, investment and borrowing
Automatic sales promotion selection | 1996 | US611
9098 | 1997 | 7 | 192.36 | System and method for targeting and distributing advertisements over a | | 902 | 4868
US546 | 1994 | 6 | 119.32 | system and method Method for resource assignment and | 2012 | US597
0475 | 1997 | 4 | 233.72 | distributed network Electronic procurement system and method for trading partners | | | 7268 | | | | scheduling | 2060 | US589
9980 | 1997 | 2 | 500.6 | Retail method over a wide area network | | 923 | US545
1998 | 1994 | 4 | 796.64 | Home shopping video catalog | 2065 | US615
1582 | 1997 | 6 | 68.15 | Decision support system for the
management of an agile supply chain | | 956 | US550
4675 | 1994 | 7 | 688.76 | Method and apparatus for automatic
selection and presentation of sales
promotion programs | 2109 | US600
6191 | 1997 | 3 | 60.7 | Remote access medical image exchange system and methods of | | 982 | US554
8506 | 1994 | 6 | 104.81 | Automated, electronic network based, project management server system, for managing multiple work-groups | 2115 | US596
0411 | 1997 | 5 | 118.03 | operation therefor
Method and system for placing a
purchase order via a communications | | 999 | US541
6694 | 1994 | 6 | 101.16 | Computer-based data integration and
management process for workforce | 2134 | US595
3707 | 1997 | 6 | 112.19 | network Decision support system for the management of an agile supply chain | | 1007 | US559
2379 | 1994 | 1 | 202.46 | planning and occupational readjustment
Method and apparatus for pooling and
distributing bond dividends | 2135 | US590
3878 | 1997 | 7 | 405.78 | Method and apparatus for electronic commerce | | 1029 | US574
0549 | 1995 | 7 | 615.02 | Information and advertising distribution system and method | 2206 | US591
5241 | 1997 | 3 | 96.71 | Method and system encoding and processing alternative healthcare | | 1037 | US571
0889 | 1995 | 1 | 400.35 | Interface device for electronically integrating global financial services | 2224 | US595
6700 | 1997 | 5 | 265.85 | provider billing System and method for paying bills and other obligations including selective | | 1056 | US572
4424 | 1995 | 5 | 1219.3
5 | Digital active advertising | 2315 | US602
9141 | 1997 | 2 | 152.05 | payor and payee controls
Internet-based customer referral system | | 1057 | 4424
US567 | 1995 | 8 | 130.22 | System and method for commercial payments using trusted agents | 2454 | 9141
US600
9410 | 1997 | 7 | 278.34 | Method and system for presenting customized advertising to a user on the | | 2458 | US594
0812 | 1997 | 1 | 204.85 | Apparatus and method for automatically matching a best available loan to a potential borrower via global telecommunications network | - | 4953 | US746
4040 | 2000 | 3 | 10.72 | Apparatus and method for processing and/or for providing healthcare information and/or healthcare-related information | |------|---------------|------|---|--------|---|---|-------|---------------|------|---|--------|---| | 2712 | US632
4522 | 1998 | 5 | 186.72 | Electronic information network for inventory control and transfer | | 4955 | US713
6835 | 2000 | 2 | 49.56 | Credit card system and method | | 2731 | US613
1087 | 1998 | 4 | 142.55 | Method for automatically identifying, matching, and near-matching buyers | | 5029 | US706
9235 | 2000 | 4 | 14.34 | System and method for multi-source transaction processing | | 2753 | US633 | 1998 | 5 | 92.78 | and sellers in electronic market
transactions
Electronic payment system employing | | 5255 | US710
3565 | 2000 | 1 | 37.66 | Initial product offering system | | 2765 | 9766
US622 | 1998 | 3 | 18.7 | limited-use account number Iterative problem solving technique | | 5263 | US717
7833 | 2000 | 1 | 115.04 | Automated trading system in an electronic trading exchange | | 2796 | 6620
US648 | 1998 | 7 | 105.6 | Method and apparatus for local | | 5314 | US658
7835 | 2000 | 2 | 296.08 | Shopping assistance with handheld computing device | | 2820 | 7538
US632 | 1998 | 8 | 108.63 | advertising Four-party credit/debit payment protocol | | 5387 | US689
5387 | 2000 | 7 | 48.8 | Dynamic marketing based on client computer configurations | | 2917 | 7578
US626 | 1998 | 4 | 109.13 | Collaborative recommendations using | | 5502 | US708
9208 | 2000 | 2 | 54.83 | System and method for electronically exchanging value among distributed users | | 2922 | 6649
US640 | 1998 | 1 | 81.01 | item-to-item similarity mappings Automated exchange for matching bids | | 5564 | US678
5671 | 2000 | 4 | 35.62 | System and method for locating web-
based product offerings | | 2050 | 5180 | 1000 | 2 | 40.00 | between a party and a counterparty
based on a relationship between the
counterparty and the exchange | | 5573 | US659
4644 | 2000 | 7 | 56.21 | Electronic gift certificate system | | 2956 | US634
3271 | 1998 | 3 | 48.09 | Electronic creation, submission, adjudication, and payment of health insurance claims | | 5688 | US690
7401 | 2000 | 4 | 46.23 | Portal switch for electronic commerce | | 3027 | US627
5812 | 1998 | 6 | 79.87 | Intelligent system for dynamic resource management | | 5942 | US644
6045 | 2000 | 4 | 42.56 | Method for using computers to facilitate
and control the creating of a plurality of
functions | | 3164 | US628
9322 | 1998 | 5 | 97.18 | Electronic bill processing | | 6456 | US685
0899 | 2000 | 4 | 28.04 | Business process and apparatus for
online purchases using a rule-based
transferable shopping basket | | 3186 | US657
8005 | 1998 | 6 | 53.3 | Method and apparatus for resource
allocation when schedule changes are
incorporated in real time | | 6993 | US766
8761 | 2001 | 5 | 16.18 | System and method for ensuring order fulfillment | | 3187 | US620
5431 | 1998 | 6 | 114.07 | System and method for forecasting
intermittent demand | | 7075 | US787
7286 | 2001 | 6 | 7.26 | Subset optimization system | | 3196 | US612
8600 | 1998 | 4 | 75.56 | Electronic shopping system and method
of defining electronic catalogue data
therefor | | 7190 | US792
5513 | 2001 | 4 | 4.56 | Framework for processing sales transaction data | | 3222 | US620
8973 | 1998 | 3 | 68.62 |
Point of service third party financial
management vehicle for the healthcare
industry | | 7205 | US724
9044 | 2001 | 4 | 25.1 | Fulfillment management system for
managing ATP data in a distributed
supply chain environment | | 3337 | US626
6645 | 1998 | 3 | 45.08 | Risk adjustment tools for analyzing
patient electronic discharge records | | 7223 | US708
0026 | 2001 | 6 | 33.47 | Supply chain demand forecasting and planning | | 3360 | US626
0024 | 1998 | 2 | 125.56 | Method and apparatus for facilitating
buyer-driven purchase orders on a
commercial network system | | 7229 | US666
2166 | 2001 | 8 | 20.44 | Tokenless biometric electronic debit and credit transactions | | 3369 | US601
8713 | 1998 | 3 | 50.44 | Integrated system and method for
ordering and cumulative results
reporting of medical tests | | 7333 | US681
3612 | 2001 | 4 | 27.8 | Remote bidding supplement for traditional live auctions | | 3517 | US629
2786 | 1999 | 2 | 272.94 | Method and system for generating
incentives based on substantially real-
time product purchase information | | 7409 | US737
3314 | 2001 | 4 | 42.58 | Unified product purchasing method | | 3572 | US623
3566 | 1999 | 1 | 117.66 | System, method and computer program
product for online financial products
trading | | 7490 | US691
5275 | 2001 | 4 | 9.55 | Managing customization of projects prior
to manufacture in an electronic
commerce system | | 3592 | US644
9599 | 1999 | 2 | 23.94 | Network sales system | | 7801 | US716
5221 | 2001 | 3 | 18.17 | System and method for navigating patient medical information | | 3601 | US663
6833 | 1999 | 5 | 95.15 | Credit card system and method | | 7864 | US740
6434 | 2001 | 7 | 58.71 | System and method for improving the
performance of electronic media
advertising campaigns through multi- | | 3613 | US651
0418 | 1999 | 4 | 107.95 | Method and apparatus for detecting and
deterring the submission of similar offers
in a commerce system | | 7915 | US717
7849 | 2001 | 8 | 25.17 | attribute analysis and optimization
Method for validating an electronic
payment by a credit/debit card | | 3628 | US717
7836 | 1999 | 5 | 77.91 | Method and system for facilitating
financial transactions between
consumers over the internet | | 7927 | US655
3352 | 2001 | 6 | 34.49 | Interface for merchandise price optimization | | 3664 | US706
9234 | 1999 | 4 | 34.69 | Initiating an agreement in an e-
commerce environment | | 8221 | US720
3658 | 2001 | 2 | 10.92 | Methods and apparatus for processing order related messages | | 3684 | US690
7566 | 1999 | 7 | 53.59 | Method and system for optimum
placement of advertisements on a
webpage | | 9208 | US737
0011 | 2001 | 4 | 68.43 | Financial information portal | | 3809 | US691
0017 | 1999 | 6 | 42.13 | Inventory and price decision support | | 9472 | US768
9504 | 2002 | 1 | 53.55 | System and method for establishing or modifying an account with user | | 3908 | US659
4643 | 1999 | 1 | 84.41 | Automatic stock trading system | | 9482 | US698
5870 | 2002 | 3 | 23.57 | selectable terms
Medication delivery system | | 3942 | US609
8053 | 1999 | 5 | 115.33 | System and method for performing an electronic financial transaction | | 9502 | US758
7363 | 2002 | 5 | 36.47 | System and method for optimized funding of electronic transactions | | 4096 | US640
5176 | 1999 | 4 | 34.13 | Method for processing multiple electronic shopping carts | | 9633 | US743
7325 | 2002 | 1 | 35.92 | System and method for performing automatic spread trading | | 4160 | US646
3345 | 1999 | 5 | 66.61 | Regenerative available to promise | | 9813 | US775
6723 | 2002 | 3 | 6.36 | System and method for managing patient bed assignments and bed | | 4247 | US685
3987 | 1999 | 8 | 20.31 | Centralized authorization and fraud-
prevention system for network-based
transactions | | 10237 | US759
9856 | 2002 | 4 | 14.41 | occupancy in a health care facility Detection of fraudulent attempts to initiate transactions using modified | | 4268 | US634
3273 | 1999 | 4 | 39.13 | Computerized, multimedia, network,
real time, interactive marketing and
transactional system | | 10246 | US810
3538 | 2002 | 6 | 1.67 | display objects Method and system for forecasting demand of a distribution center and | | 4397 | US658
7827 | 1999 | 4 | 35.91 | Order fulfillment processing system | | 10469 | US718
1419 | 2002 | 4 | 27.93 | related stores
Demand aggregation system | | 4846 | US698
0962 | 2000 | 4 | 40.27 | Electronic commerce transactions within
a marketing system that may contain a
membership buying opportunity | | 10770 | US777
8872 | 2002 | 7 | 19.46 | Methods and apparatus for ordering advertisements based on performance | | 4938 | US717
7825 | 2000 | 5 | 43.35 | Integrated system for ordering,
fulfillment, and delivery of consumer
products using a data network | | 11279 | US758
4116 | 2002 | 6 | 10.48 | information and price information
Monitoring a demand forecasting
process | | | | | | | products doing a data Hetwork | - | | 4110 | | | | ριούσοο | | 11751 | US770
7120 | 2003 | 8 | 23.85 | Mobile account authentication service | 21162 | US892
4269 | 2007 | 4 | 25.42 | Consistent set of interfaces derived from a business object model | |-------|---------------|------|---|-------|---|-------|---------------|------|---|-------|---| | 12178 | US737
9890 | 2003 | 6 | 30.57 | System and method for profit maximization in retail industry | 21208 | US778
3571 | 2007 | 1 | 15.07 | ATM system for receiving cash deposits from non-networked clients | | 12214 | US727
5039 | 2003 | 6 | 20.69 | Workflow management software overview | 21214 | US800
5740 | 2007 | 1 | 9.82 | Using accounting data based indexing to create a portfolio of financial objects | | 12680 | US706
9243 | 2003 | 4 | 17 | Interactive remote auction bidding system | 21257 | US840
1936 | 2007 | 5 | 1 | Architectural design for expense reimbursement application software | | 12922 | US715
5397 | 2003 | 3 | 21.79 | Apparatus and method for managing prescription benefits | 21461 | US824
9905 | 2007 | 6 | 3 | Methods, systems, and computer-
readable media for providing future job | | 13216 | US703
9611 | 2003 | 8 | 5.95 | Managing attempts to initiate authentication of electronic commerce | 21501 | US835
2323 | 2007 | 2 | 14.01 | information
Conducting an online payment
transaction using an NFC enabled | | 13752 | US817
5908 | 2004 | 6 | 42.44 | card transactions Systems and methods for constructing and utilizing a merchant database derived from customer purchase | 21505 | US824
9965 | 2007 | 1 | 15.05 | mobile communication device
Member-supported mobile payment
system | | 13754 | US799
6324 | 2004 | 8 | 15.48 | transactions data Systems and methods for managing multiple accounts on a RF transaction | 21519 | US789
0416 | 2007 | 4 | 1 | Systems and methods for providing a trading interface | | 13906 | US741 | 2004 | 4 | 10.32 | device using secondary identification indicia Method for electronic gifting using | 21771 | US801
0404 | 2007 | 6 | 6.77 | Systems and methods for price and promotion response analysis | | 13970 | 8407
US751 | 2004 | 7 | 11.01 | merging images Business rating placement heuristic | 21815 | US824
4590 | 2007 | 4 | 24.39 | Software system for decentralizing ecommerce with single page buy | | 14036 | 6086
US780 | 2004 | 8 | 55.06 | | 21948 | US878
8278 | 2007 | 4 | 4.4 | Consumer database loyalty program for
a money transfer system | | 14036 | 5383 | 2004 | 0 | 55.06 | Price planning system and method including automated price adjustment, manual price adjustment, and promotion | 23118 | US868
9124 | 2007 | 4 | 4.08 | Method, medium, and system for
simplifying user management of | | 14111 | US737
6572 | 2004 | 4 | 10.69 | management
Return centers with rules-based
dispositioning of merchandise | 24691 | US859
5077 | 2008 | 5 | 1 | products during online shopping
Architectural design for service request
and order management application | | 14117 | US801
0399 | 2004 | 6 | 6.17 | Methods, systems, and articles of manufacture for analyzing initiatives for a business network | 24946 | US832
1323 | 2008 | 1 | 4.5 | software
Interprogram communication using
messages related to order cancellation | | 14470 | US789
5077 | 2004 | 7 | 11.47 | Predicting inventory availability and
prioritizing the serving of competing | 24977 | US821
9489 | 2008 | 8 | 4.52 | Transaction processing using a global unique identifier | | 14940 | US716
2443 | 2004 | 4 | 15.04 | advertisements based on contract value
Method and computer readable medium
storing executable components for | 25345 | US878
1881 | 2008 | 6 | 21.78 | Merchant benchmarking tool | | 45050 | 110700 | 2024 | - | 50.04 | locating items of interest among multiple
merchants in connection with electronic
shopping | 25575 | US815
5996 | 2008 | 6 | 7 | System and method for customer care complexity model | | 15359 | US736
4086 | 2004 | 7 | 56.61 | Dynamic discount card tied to price curves and group discounts | 25674 | US767
3791 | 2008 | 2 | 19 | Method and apparatus for creating and exposing order status within a supply | | 15407 | US782
2622 | 2004 | 3 | 1 | System and method for medical appointment and examination sequence planning | 26456 | US823
9245 | 2008 | 6 | 3 | chain having disparate systems
Method and apparatus for end-to-end
retail store site optimization | | 15945 | US810
3545 | 2005 | 7 | 13.4 | Managing payment for sponsored content presented to mobile
communication facilities | 28004 | US836
4540 | 2009 | 7 | 8.41 | Contextual targeting of content using a monetization platform | | 15953 | US812
1944 | 2005 | 5 | 10.9 | Method and system for facilitating network transaction processing | 28071 | US840
3211 | 2009 | 1 | 8.4 | System, program product and methods for retail activation and reload | | 16007 | US758
4123 | 2005 | 4 | 8 | Systems for dynamically allocating finite or unique resources | 28165 | US897 | 2009 | 1 | 3 | associated with partial authorization transactions | | 16092 | US782
2688 | 2005 | 2 | 30.19 | Wireless wallet | 28221 | 7565
US804 | 2009 | 3 | 3.33 | Interprogram communication using messages related to groups of orders Systems and methods for verifying | | 16169 | US781
3963 | 2005 | 4 | 1 | Interactive electronic desktop action
method and system for executing a
transaction | 28564 | 6242 | | 3 | | prescription dosages | | 16295 | US814
0592 | 2005 | 5 | 13 | Delivery operations information system
with route adjustment feature and
methods of use | | US863
9525 | 2009 | 8 | 7 | Drug labeling | | 16408 | US870
6515 | 2005 | 3 | 4 | Methods, systems, and apparatus for
providing a notification of a message in
a health care environment | 28861 | US878
8429 | 2009 | | 5.4 | Secure transaction management | | 16436 | US777
8873 | 2005 | 7 | 18.65 | System and method of providing
advertisements to Wi-Fi devices | 30714 | US840
1897 | 2009 | 7 | 4.33 | System and method of displaying ads based on location | | 16584 | US787
0077 | 2005 | 5 | 19.95 | System and method for buying goods
and billing agency using short message
service | 31052 | US934
2835 | 2010 | 7 | 20.06 | Systems and methods to deliver targeted advertisements to audience | | 17836 | US757
7600 | 2005 | 1 | 10.59 | System and method for regulating order
entry in an electronic trading
environment | 31159 | US819
6811 | 2010 | 4 | 8.54 | Multiple criteria buying and selling model | | 18274 | US782
2682 | 2006 | 5 | 12.63 | System and method for enhancing supply chain transactions | 31230 | US835
5987 | 2010 | 5 | 8.13 | Systems and methods to manage information | | 18281 | US777
8456 | 2006 | 8 | 42.7 | Automatic currency processing system
having ticket redemption module | 31278 | US835
5948 | 2010 | 4 | 26.19 | System and methods for discount retailing | | 18326 | US839
6749 | 2006 | 5 | 12.29 | Providing customer relationship
management application as enterprise
services | 31283 | US868
8468 | 2010 | 3 | 1 | Systems and methods for verifying
dosages associated with healthcare
transactions | | 18373 | US848
9067 | 2006 | 2 | 21.52 | Methods and systems for distribution of a mobile wallet for a mobile device | 31386 | US806
0435 | 2010 | 4 | 0 | Systems and methods for providing a trading interface | | 18405 | US773
4533 | 2006 | 1 | 11.03 | Method and system for electronic trading via a yield curve | 31861 | US827
5590 | 2010 | 4 | 4.94 | Providing a simulation of wearing items such as garments and/or accessories | | 18534 | US768
9469 | 2006 | 4 | 60.57 | E-commerce volume pricing | 32550 | US867
6706 | 2010 | 5 | 3 | Online check register using check imaging | | 18543 | US804
1616 | 2006 | 6 | 9 | Outsourced service level agreement provisioning management system and method | 33461 | US816
5948 | 2010 | 1 | 5 | System for selecting and purchasing assets and maintaining an investment portfolio | | 18602 | US790
9246 | 2006 | 1 | 7.11 | System and method for establishment of
rules governing child accounts | 34159 | US983
6791 | 2010 | 1 | 0 | System for and a method of transmitting data in a central trading system | | 18862 | US765
7466 | 2006 | 4 | 14.4 | Systems and methods for providing personalized delivery services | 34484 | US967
9299 | 2011 | 7 | 11.46 | Systems and methods to provide real-
time offers via a cooperative database | | | | | | | | | | | | | | | 34535 | US820
4770 | 2011 | 4 | 0 | Computer-implemented systems and methods for resource allocation | 42640 | US104
45682 | 2014 | 5 | 4.18 | Systems and methods for parcel delivery to alternate delivery locations | |-------|----------------|------|---|-------|--|-------|----------------|------|---|------|---| | 34586 | US827
1332 | 2011 | 4 | 4.55 | DAS predictive modeling and reporting function | 42700 | US944
9296 | 2014 | 3 | 6 | Management of pharmacy kits using multiple acceptance criteria for | | 34714 | US827
1313 | 2011 | 6 | 4 | Systems and methods of enhancing leads by determining propensity scores | 42738 | US108
25007 | 2014 | 4 | 0 | pharmacy kit segments
Remote transaction processing of at a
transaction server | | 34859 | US896
5788 | 2011 | 4 | 15 | Search page topology | 42801 | US103
54264 | 2014 | 6 | 0 | Contact recommendations based on purchase history | | 34927 | US871
2923 | 2011 | 5 | 11 | Computer system for routing package deliveries | 42983 | US102
35686 | 2014 | 6 | 0 | System forecasting and improvement using mean field | | 35470 | US811
2353 | 2011 | 2 | 16.46 | Payment service to efficiently enable electronic payment | 43047 | US104
30753 | 2014 | 5 | 0.5 | System and method for international merchandise return service | | 35843 | US913
5632 | 2011 | 7 | 1 | Methods and systems for ad placement planning | 43648 | US989
8767 | 2014 | 4 | 1 | Transaction facilitating marketplace platform | | 36784 | US830
6850 | 2011 | 6 | 1.67 | System and method for strategizing interactions with a client base | 43733 | US100
68057 | 2014 | 3 | 0 | Systems and methods for integrating, unifying and displaying patient data | | 37116 | US841
7548 | 2011 | 3 | 0 | Medical service support apparatus | 43911 | US105
40621 | 2014 | 6 | 0 | across healthcare continua
Inventory mirroring | | 37931 | US970
4155 | 2012 | 8 | 9.49 | Passing payment tokens through an hop/sop | 44106 | US988
6705 | 2014 | 7 | 0 | Advertisement opportunity bidding | | 37947 | US857
7803 | 2012 | 5 | 48.76 | Virtual wallet card selection apparatuses, methods and systems | 44336 | US969
1105 | 2014 | 5 | 0 | Analyzing calendar to generate financial information | | 37983 | US849
4914 | 2012 | 4 | 3.67 | Promoting offers through social network influencers | 45482 | US104
45667 | 2014 | 6 | 1 | System and method of work assignment management | | 38045 | US899
0099 | 2012 | 3 | 6 | Management of pharmacy kits | 45502 | US103 | 2014 | 7 | 1 | Cross-channel personalized promotion | | 38144 | US862
6563 | 2012 | 6 | 1 | Enhancing sales leads with business specific customized statistical propensity models | 46295 | 18993
US895 | 2014 | 7 | 1 | Media properties selection method and | | 38263 | US931
7835 | 2012 | 5 | 3 | Populating budgets and/or wish lists using real-time video image analysis | 46444 | 9146
US103 | 2015 | 7 | 0 | system based on expected profit from
profile-based ad delivery
Advertisement rotation | | 38351 | US972
1262 | 2012 | 7 | 0.5 | Systems and methods for providing time-sensitive communications of targeted advertisements to mobile | 46448 | 90101
US112 | 2015 | 6 | 0 | Interleaving surprise activities in | | 38683 | US909
2776 | 2012 | 2 | 21.23 | devices System and method for managing payment in transactions with a PCD | 46453 | 44264
US953 | 2015 | 5 | 0 | Workflow Transaction processing using a global | | 38902 | US856
6224 | 2012 | 1 | 0 | Systems and methods to create, compare, customize, promote, track, | 46456 | 0131
US110 | 2015 | 2 | 0.33 | unique identifier Identification and verification for | | 39519 | US844 | 2012 | 6 | 2 | optimize and shop for index or theme
based portfolios of securities
System and method for estimating | 46476 | 23890
US100 | 2015 | 2 | 0.33 | provisioning mobile application Data passed in an interaction | | 39933 | 2854
US825 | 2012 | 6 | 1.17 | residual lifetime value of a customer
base utilizing survival analysis
Forecasting demand for products | 46481 | 26087
US984 | 2015 | 8 | 2.45 | Payment account identifier system | | 41128 | 5266
US966 | 2013 | 4 | 0 | Systems and methods for tailoring | 46485 | 6878
US104 | 2015 | 5 | 0.5 | Systems and methods for facilitating | | 41133 | 5874
US952 | 2013 | 1 | 22.63 | marketing Method and system for correlating | 46486 | 10165
US104 | 2015 | 5 | 0.5 | shipping of parcels for returning items Systems and methods for facilitating | | 41136 | 4501
US983 | 2013 | 5 | 25.12 | diverse transaction data System and method of providing | 46494 | 10164
US100 | 2015 | 4 | 1 | shipping of parcels Systems and methods for returning one | | 41144 | 0595
US935 | 2013 | 2 | 14.69 | tokenization as a service Multi-directional wallet connector | 46502 | 02341
US105 | 2015 | 8 | 2 | or more items via an attended
delivery/pickup location
Ensuring secure access by a service | | 41224 | 5393
US862 | 2013 | 2 | 8.18 | apparatuses, methods and systems Remote transaction processing using | 46531 | 10055
US973 | 2015 | 3 | 0 | provider to one of a plurality of mobile
electronic wallets
Management of pharmacy kits | | 41271 | 0754
US922 | 2013 | 6 | 0 | authentication information Methods, systems, and computer- | 46621 | 4294
US950 | 2015 | 7 | 0 | Method and systems for directing | | 41414 | 4114
US965 | 2013 | 6 | 1 | readable media for generating a report
indicating job availability
Visual representations of recurring | | 8089 | | | | profile-based electronic advertisements
via an intermediary ad network to
visitors who later visit media properties | | 41777 | 2776
US925 | 2013 | 6 |
4 | revenue management system data and predictions Predicting likelihood of on-time product | 46629 | US103
80631 | 2015 | 7 | 1 | Systems and methods to provide advertisements for real time | | 31111 | 1484 | 2010 | Ü | * | delivery, diagnosing issues that threaten
delivery, and exploration of likely
outcome of different solutions | 46695 | US983
6743 | 2015 | 7 | 7 | communications Systems and methods to register merchants for data processing in an | | 42531 | US102
23730 | 2014 | 4 | 3 | e-wallet store injection search apparatuses, methods and systems | 46701 | US102
82797 | 2015 | 7 | 0 | electronic transaction system
Inference model for traveler
classification | | 42553 | US111
64176 | 2014 | 8 | 1 | Limited-use keys and cryptograms | 46752 | US956
9781 | 2015 | 6 | 1 | Methods for providing cross-vendor support services | | 42576 | US946
6074 | 2014 | 7 | 6 | Advertising impression determination | 46833 | US957
8071 | 2015 | 6 | 0 | Context aware interaction | | 42585 | US103
95237 | 2014 | 4 | 0 | Systems and methods for dynamic proximity based E-commerce | 46936 | US104
82517 | 2015 | 4 | 0 | Providing a simulation of wearing items such as garments and/or accessories | | 42597 | US971
0807 | 2014 | 4 | 3 | transactions Third-party value added wallet features and interfaces apparatuses, methods | 47068 | US995
9532 | 2015 | 5 | 0 | Secure element authentication for remote deposit capture compatible | | 42604 | US111
64142 | 2014 | 2 | 0 | and systems
Multi-entity management of a node in a
wireless node network | 47069 | US995
9533 | 2015 | 5 | 0 | check image generation Secure element authentication for remote deposit of check images | | 42608 | US110
55710 | 2014 | 5 | 4 | Systems and methods for verifying and processing transactions using virtual | 47086 | US101
85926 | 2015 | 3 | 0 | received from payors Component based aggregation of medication orders | | 42611 | US105
10073 | 2014 | 8 | 2 | currency
Methods and systems for provisioning
mobile devices with payment credentials | 47196 | US106
50344 | 2015 | 6 | 0 | Inventory mirroring in a heterogeneous fulfillment network | | 42616 | US103
66387 | 2014 | 2 | 7.49 | Digital wallet system and method | 47373 | US101 | 2015 | 4 | 0 | Data refining engine for high | | 42623 | US102
62340 | 2014 | 7 | 1 | Method and apparatus to allocate and recycle telephone numbers in a call- | 47491 | 69802
US106 | 2015 | 5 | 0 | performance analysis system and
method
Big data sourcing simulator | | | | | | | tracking system | | 85319 | | | | | | 47523 | US102
82777 | 2015 | 4 | 0 | Recently viewed items display area | |-------|----------------|------|---|---|---| | 47599 | US103
80646 | 2015 | 7 | 0 | Platform for providing customizable user brand experiences | | 48481 | US100
02380 | 2015 | 4 | 0 | Beacon service method and device | | 48669 | US103
80637 | 2016 | 7 | 0 | Systems and methods to provide voice connections via local telephone | | 48672 | US109
90967 | 2016 | 5 | 0 | numbers
Method of distributing tokens and
managing token relationships | | 48673 | US105
52828 | 2016 | 8 | 0 | Multiple tokenization for authentication | | 48675 | US106
64883 | 2016 | 4 | 0 | System and method for monitoring activities in a digital channel | | 48676 | US103
39554 | 2016 | 7 | 1 | Systems and methods to provide messages in real-time with transaction | | 48681 | US102
68891 | 2016 | 5 | 0 | processing
Retrieving product information from
embedded sensors via mobile device | | 48710 | US105
46283 | 2016 | 8 | 0 | video analysis
Mobile wallet as a consumer of services
from a service provider | | 48721 | US105
46284 | 2016 | 8 | 0 | Mobile wallet as provider of services consumed by service provider applications | | 48852 | US961
9794 | 2016 | 2 | 1 | systems and methods for providing compensation, rebate, cashback, and reward for using mobile and wearable payment services, digital currency, NFC touch payments, mobile digital card barcode payments, and multimedia haptic capture buying | | 48914 | US985
8605 | 2016 | 6 | 0 | Methods and apparatus for generating a
unique virtual item | | 49015 | US107
83488 | 2017 | 5 | 0 | Systems and methods of locating and selling items at attended delivery/pickup locations | | 49025 | US104
97037 | 2017 | 4 | 1 | System and method for managing
cryptocurrency payments via the | | 49027 | US111
64167 | 2017 | 2 | 0 | payment request API Systems and methods for virtual currency exchange at a mobile event | | 49031 | US109
02445 | 2017 | 6 | 0 | Location evaluation | | 49080 | US111
82833 | 2018 | 6 | 0 | Estimating annual cost reduction when pricing information technology (IT) service deals | | 49082 | US108
39386 | 2018 | 4 | 0 | Stored value smart contracts on a blockchain | | 49090 | US112
76033 | 2018 | 6 | 0 | System and method for fine-tuning sales clusters for stores | | 49093 | US108
32296 | 2018 | 4 | 0 | Transaction management system, transaction management method, and program | | 49106 | US110
49130 | 2018 | 3 | 0 | Integrating custom benefits into an in-
use communication transmission
exchange | | 49135 | US110
74218 | 2019 | 5 | 0 | Multi-source, multi-dimensional, cross-
entity, multimedia merchant analytics
database platform apparatuses,
methods and systems | | 49136 | US106
28842 | 2019 | 7 | 0 | Systems and methods to communicate offer options via messaging in real time with processing of payment transaction | | 49172 | US111
20451 | 2019 | 5 | 0 | System and method for mobile express return of products | # **REFERENCES** [1] M. Yunis, A. Tarhini, and A. Kassar, "The role of ICT and innovation in enhancing organizational performance: The catalysing effect of corporate entrepreneurship," J. Bus. Res., vol. 88, pp. 344-356, Jul. 2018. return of products - [2] H. Koda, "Business models patent," Nikei Kogyo Shinbunsha, Tokyo, Japan, Tech. Rep., 2000. - [3] W. Lee and S. Sohn, "Identifying emerging trends of financial business method patents," Sustainability, vol. 9, no. 9, p. 1670, Sep. 2017. - [4] K. Rong, D. Patton, and W. Chen, "Business models dynamics and business ecosystems in the emerging 3D printing industry," Technol. Forecasting Social Change, vol. 134, pp. 234-245, Sep. 2018, doi: 10.1016/i.techfore.2018.06.015. - [5] E. Popov, "Business institutions of economic activity digitalization," Upravlenets, vol. 10, no. 2, pp. 2-10, May 2019, doi: 10.29141/2218-5003-2019-10-2-1. - [6] S. Nam, S. Yoon, N. Raghavan, and H. Park, "Identifying service opportunities based on outcome-driven innovation framework and deep learning: A case study of hotel service," Sustainability, vol. 13, no. 1, p. 391, Ian 2021 - [7] H. Park and J. Yoon, "A chance discovery-based approach for new product-service system (PSS) concepts," Service Bus., vol. 9, no. 1, pp. 115-135, Mar. 2015. - [8] S. Wagner, "Business method patents in Europe and their strategic use—Evidence from franking device manufacturers," Innov. New Technol., vol. 17, no. 3, pp. 173-194, Apr. 2008, doi: 10.1080/10438590600984042. - [9] W. Han, S. Lee, and Y. Park, "IT-based evolution of service business model: Case of education service," in Proc. 3rd Int. Conf. Inf. Financial Eng., Shanghai, China, 2011, pp. 492-496. - [10] C. Lee, H. Park, and Y. Park, "Keeping abreast of technology-driven business model evolution: A dynamic patent analysis approach," Technol. Anal. Strategic Manage., vol. 25, no. 5, pp. 487-505, May 2013. - [11] Y. M. Kim, D. Jung, Y. Chang, and D. H. Choi, "Intelligent micro energy grid in 5G era: Platforms, business cases, testbeds, and next generation applications," Electronics, vol. 8, no. 4, p. 468, Apr. 2019, doi: 10.3390/electronics8040468. - [12] M. J. Meurer, "Business method patents and patent floods," Wash. UJL Pol'y, vol. 8, p. 309, 2002. - [13] M. G. Moehrle, M. Wustmans, and J. M. Gerken, "How business methods accompany technological innovations-A case study using semantic patent analysis and a novel informetric measure," R&D Manage., vol. 48, no. 3, pp. 331-342, Jun. 2018. - [14] H. Niemann and M. G. Moehrle, "Car2X-communication mirrored by business method patents: What documented inventions can tell us about the future," in Proc. PICMET, Jul. 2013, pp. 976-984. - [15] H. Niemann, M. G. Moehrle, and L. Walter, "Business method patents as a challenge for technology management in the logistics industry: The case of intelligent sensor networks," in Proc. Technol. Manage. Energy Smart World (PICMET), Jul. 2011, pp. 1-10. - [16] H. J. No, Y. An, and Y. Park, "A structured approach to explore knowledge flows through technology-based business methods by integrating patent citation analysis and text mining," Technol. Forecasting Social Change, vol. 97, pp. 181-192, Aug. 2015. - [17] S.-B. Chang, "Using patent analysis to establish technological position: Two different strategic approaches," Technol. Forecasting Social Change, vol. 79, no. 1, pp. 3-15, Jan. 2012. - [18] E. M. Morris, "What is technology," BUJ Sci. Tech. L., vol. 20, no. 1, p. 24, - [19] V. Fredrich, R. B. Bouncken, and V. Tiberius, "Dyadic business model convergence or divergence in alliances?—A configurational approach," J. Bus. Res., vol. 153, pp. 300-308, Dec. 2022. - [20] S. Nasirov, I. Gokh, and F. Filippaios, "Technological radicalness, R&D internationalization, and the moderating effect of intellectual property protection," J. Bus. Res., vol. 145, pp. 215-227, Jun. 2022. - [21] J. R. Allison and E. H. Tiller, "The business method patent myth," Berkeley Tech. LJ, vol. 18, no. 4, p. 987, 2003. - [22] H. Park and C. L. Magee, "Quantitative identification
of technological discontinuities," IEEE Access, vol. 7, pp. 8135-8150, 2019. - [23] Y. An, "Analysis of technological knowledge flows in business model innovation," Ph.D. thesis, Dept. Ind. Eng., Seoul Univ., Seoul, South Korea, 2017. - [24] S. Yoon, C. Mun, N. Raghavan, D. Hwang, S. Kim, and H. Park, "Hierarchical main path analysis to identify decompositional multi-knowledge trajectories," J. Knowl. Manage., vol. 25, no. 2, pp. 454-476, Mar. 2021. - [25] H. Youn, D. Strumsky, L. M. A. Bettencourt, and J. Lobo, "Invention as a combinatorial process: Evidence from U.S. patents," J. Roy. Soc. Interface, vol. 12, no. 106, May 2015, Art. no. 20150272. - [26] M. L. Weitzman, "Recombinant growth," Quart. J. Econ., vol. 113, no. 2, pp. 331-360, 1998. - [27] M. A. Schilling and E. Green, "Recombinant search and breakthrough idea generation: An analysis of high impact papers in the social sciences," Res. Policy, vol. 40, no. 10, pp. 1321–1331, Dec. 2011. - [28] M. K. Berkowitz, R. R. Nelson, and S. G. Winter, "An evolutionary theory of economic change," Southern Econ. J., vol. 50, no. 2, p. 590, Oct. 1983. - [29] H. Nakamura, S. Suzuki, I. Sakata, and Y. Kajikawa, "Knowledge combination modeling: The measurement of knowledge similarity between different technological domains," Technol. Forecasting Social Change, vol. 94, pp. 187-201, May 2015. - [30] C. Mun, S. Yoon, N. Raghavan, D. Hwang, S. Basnet, and H. Park, "Function score-based technological trend analysis," Technovation, vol. 101, Mar. 2021, Art. no. 102199. - [31] L. Fleming, "Recombinant uncertainty in technological search," Manage. Sci., vol. 47, no. 1, pp. 117-132, Jan. 2001. - [32] F. P. Appio, A. Martini, and G. Fantoni, "The light and shade of knowledge recombination: Insights from a general-purpose technology," *Technol. Forecasting Social Change*, vol. 125, pp. 154–165, Dec. 2017. - [33] S.-B. Chang, K.-K. Lai, and S.-M. Chang, "Exploring technology diffusion and classification of business methods: Using the patent citation network," *Technol. Forecasting Social Change*, vol. 76, no. 1, pp. 107–117, Jan. 2009, doi: 10.1016/j.techfore.2008.03.014. - [34] H. Park and C. L. Magee, "Tracing technological development trajectories: A genetic knowledge persistence-based main path approach," *PLoS ONE*, vol. 12, no. 1, Jan. 2017, Art. no. e0170895. - [35] S. Kim, S. Yoon, N. Raghavan, N.-T. Le, and H. Park, "Developmental trajectories in blockchain technology using patent-based knowledge network analysis," *IEEE Access*, vol. 9, pp. 44704–44717, 2021. - [36] C. D. Melarti, "State Street Bank & (and) Trust Co. v. Signature Financial Group, Inc.: Ought the mathematical algorithm and business method exceptions return to business as usual," *J. Intell. Prop. L.*, vol. 6, no. 2, p. 359, 1998. - [37] H. Park, J. J. Ree, and K. Kim, "Identification of promising patents for technology transfers using TRIZ evolution trends," *Expert Syst. Appl.*, vol. 40, no. 2, pp. 736–743, Feb. 2013. - [38] C. Mun, S. Yoon, Y. Kim, N. Raghavan, and H. Park, "Quantitative identification of technological paradigm changes using knowledge persistence," PLoS ONE, vol. 14, no. 8, Aug. 2019, Art. no. e0220819. - [39] N. P. Hummon and P. Dereian, "Connectivity in a citation network: The development of DNA theory," *Social Netw.*, vol. 11, no. 1, pp. 39–63, Mar. 1989. - [40] B. Verspagen, "Mapping technological trajectories as patent citation networks: A study on the history of fuel cell research," Adv. Complex Syst., vol. 10, no. 1, pp. 93–115, Mar. 2007. - [41] R. Fontana, A. Nuvolari, and B. Verspagen, "Mapping technological trajectories as patent citation networks. An application to data communication standards," *Econ. Innov. New Technol.*, vol. 18, no. 4, pp. 311–336, Jun. 2009. - [42] J. S. Liu and L. Y. Y. Lu, "An integrated approach for main path analysis: Development of the Hirsch index as an example," *J. Amer. Soc. Inf. Sci. Technol.*, vol. 63, no. 3, pp. 528–542, Mar. 2012. - [43] N. Barbieri, C. Ghisetti, M. Gilli, G. Marin, and F. Nicolli, "A survey of the literature on environmental innovation based on main path analysis," *J. Econ. Surveys*, vol. 30, no. 3, pp. 596–623, Jul. 2016. - [44] C. L. Benson and C. L. Magee, "A hybrid keyword and patent class methodology for selecting relevant sets of patents for a technological field," *Scientometrics*, vol. 96, no. 1, pp. 69–82, 2013. - [45] C. L. Benson and C. L. Magee, "Technology structural implications from the extension of a patent search method," *Scientometrics*, vol. 102, no. 3, pp. 1965–1985, Mar. 2015. - [46] C. Y. Mun and H. Park, "Structural decomposition of technological domain using patent," *Scientometrics*, vol. 121, no. 2, pp. 633–652, 2019. - [47] S. Rose, D. Engel, N. Cramer, and W. Cowley, "Automatic keyword extraction from individual documents," *Text Mining, Appl. theory*, vol. 1, nos. 1–20, p. 10.1002, 2010. - [48] D. You and H. Park, "Developmental trajectories in electrical steel technology using patent information," *Sustainability*, vol. 10, no. 8, p. 2728, Aug. 2018. **SEJUN YOON** is currently pursuing the Ph.D. degree with the Department of Information Systems, College of Engineering, Hanyang University, Seoul, South Korea. His research interests include technology management, patent mining, technological trajectory, and machine learning. NAGARAJAN RAGHAVAN (Member, IEEE) received the Ph.D. degree in microelectronics from the Division of Microelectronics, Nanyang Technological University (NTU), Singapore, in 2012. He is currently an Associate Professor with the Engineering Product Development (EPD) Pillar, Singapore University of Technology and Design (SUTD). Prior to this, he was a Postdoctoral Fellow with the Massachusetts Institute of Technology (MIT), Boston, MA, USA, and IMEC, Belgium, in joint association with Katholieke Universiteit Leuven (KUL). His work focuses on reliability assessment, maintenance modeling, characterization and lifetime prediction of nanoelectronic devices as well as material design for reliability, uncertainty quantification and prognostics, and health management of electromechanical/industrial systems. **NGUYEN-TRUONG LE** received the Ph.D. degree in technology management from the University of Stuttgart, Germany. He is currently a Senior Researcher with the Fraunhofer Institute for Industrial Engineering IAO. In the Open Photonics Laboratory, companies professionals and students practice the method "Make2Learn and Innovate" to explore emergent technologies, such as AI, 5G, and photonics. His research interests include biologization of technology, patent information analysis, and open innovation. **HYUNSEOK PARK** received the Ph.D. degree in technology and innovation management from the Pohang University of Science and Technology (POSTECH), Pohang, in 2014. In 2014, he was with the Fraunhofer Institute of Industrial Engineering IAO, as a Visiting Researcher. From 2014 to 2016, he was a Postdoctoral Associate with the Institute for Data, Systems and Society (IDSS), Massachusetts Institute of Technology (MIT). He is currently an Associate Professor with the Department of Information Systems, College of Engineering, Hanyang University, Seoul, South Korea, and the Director of the Future Intelligence Laboratory. His work focuses on technology intelligence, machine learning for technical analysis, technology and innovation management, and data-driven-based design science. • • •