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ABSTRACT In the optimization scheduling of power systems containing renewable energy, to ensure that the
scheduling results have higher security and better economy, this study proposes amulti-objective forecasting,
scenario generation, and decision scheduling integrated stochastic optimal scheduling method. Firstly,
to improve the accuracy and stability of wind-photovoltaic power forecasting, a novel multi-objective wind-
photovoltaic forecasting model is proposed based on the Laguerre polynomial, pseudo-inverse learning,
and hybrid multi-objective Runge-Kutta algorithm (HMORUN). Secondly, to deal with wind-photovoltaic
uncertainty, scenarios with representative wind-photovoltaic uncertainty characteristics are generated by
scenario generation and reduction techniques using wind-photovoltaic power forecast results. Finally,
considering wind-photovoltaic output fluctuations, the degree of source-load matching, wind-photovoltaic
utilization, and system economic efficiency factors, with the objective of maximizing the tracking of the load
curve and minimizing system economic costs, a stochastic optimized scheduling model for power systems is
established. This study uses HMORUN as a solution tool for the multi-objective stochastic optimization
scheduling problem (MOSSP). This study uses constraint repair techniques to deal with the complex
constraints of the MOSSP model to avoid system load shedding and minimize wind and photovoltaic
generation curtailment. To verify the effectiveness of the proposed model, a 10-generator power system,
including a wind farm and a photovoltaic plant, is used as a test case for simulation experiments and
compared with other multi-objective scheduling models. The experimental results show that the stability
of the proposed scheduling model has been improved by a maximum of 0.4%, and the economy has been
improved by a maximum of 7.5%.

INDEX TERMS Laguerre polynomial, pseudo-inverse learning, forecasting, hybrid multi-objective Runge-
Kutta algorithm, stochastic optimal scheduling.

I. INTRODUCTION
A. MOTIVATION
With the further development of global energy savings,
emission reduction, and energy transition, the efficient use of
renewable energy has received widespread attention. Among
these, the which vigorous development of wind power and
photovoltaic power generation is an effective way to realize
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the energy transition and take the road to sustainable devel-
opment [1], [2]. Due to the randomness and fluctuation of
the output power of wind power and photovoltaic, large-scale
wind power and photovoltaic entering the grid will affect
the balance of the power system and reduce the reliability
of grid operation. Therefore, in the optimal scheduling of
power systems containing renewable energy sources, it is
important to study how to ensure that the economic costs of
power system scheduling are minimized while at the same
time maximizing the safety of the scheduling.
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B. LITERATURE REVIEW
As an important part of modern smart grid operation and
planning, the problem of optimal scheduling of power
systems (OSPS) has received widespread attention [3]. The
mathematical nature of the OSPS problem is a highly com-
plex nonlinear, multivariate, strongly coupled optimization
problem with equation and inequality constraints, and its
output curve has a highly non-smooth and non-convex
character [4].

Currently, the methods for solving OSPS are generally
classified into fuzzy optimal scheduling methods [5], robust
optimal scheduling methods [6], and stochastic optimal
scheduling methods [7]. Fuzzy optimization scheduling
usually converts uncertain optimization problems in power
systems into min-max problems, but it has the disadvantage
that the membership function is too subjective and the
optimization process is not easily interpretable. Robust
optimization solves uncertain optimization problems by
giving uncertainty sets, which have the disadvantages of
overly conservative scheduling results, inflexible decision-
making, and high computational complexity [8]. In contrast
to the previous two, stochastic optimal scheduling fully
considers the uncertainty of renewable energy sources
by generating representative scenarios characterizing the
uncertainty in the OSPS problem [9]. The more scenarios
included in the scenario set, the more uncertain situations
are included in the scheduling problem characterized by
uncertainty. Therefore, stochastic optimal scheduling is often
used as one of the mainstream methods to deal with
uncertainty in renewable energy sources [10]. Li et al. [11]
proposed a two-stage stochastic optimal scheduling method
based on multiple scenarios that achieves flexible handling
of uncertainty and economical operation of multi-energy
microgrids. Mei et al. [12] proposed a distributed stochastic
optimal scheduling model with Latin hypercube sampling
and K-means for scene generation and reduction, and the
experimental results proved the effectiveness of the proposed
method. Staid et al. [13] use non-numerical kernel density
estimation to fit historical wind power data to generate
probabilistic wind power scenarios and verify the accuracy
of the wind power scenarios for stochastic unit combination
problems and economic scheduling problems. Lin et al. [14]
proposed a stochastic optimal dispatch model based on mean
tracking with the objective of minimizing generation costs
and tracking errors. The experimental results proved the
effectiveness of the proposed model.

In stochastic optimal scheduling, generating high-quality
stochastic scenarios can better trackwind-photovoltaic uncer-
tainty, but this requires high-quality forecasting in the form of
scenarios, and the accuracy of the forecasts directly affects the
diversity of the generated scenarios [15], [16]. Chen et al. [17]
proposed a scenario generation method based on generative
adversarial networks that can capture meteorological features
to generate wind-photovoltaic scenarios with fully diverse
behaviors. Rayati et al. [18] proposed a Markov chain

scenario generation method that takes uncertainty parameters
into account for flexible scheduling of active distribution
networks. Vagropoulos et al. [19] proposed a method for
scenario generation and reduction based on artificial neural
networks, which was tested on the Crete power system,
and the experimental results showed the effectiveness of the
proposed method. Therefore, the use of neural networks for
OSPS scenario generation is an effective way to represent the
uncertainty of the wind-photovoltaic itself.

Intelligent optimization algorism’s parallel search mode
has given it powerful non-linear solving capability on
multi-objective optimization problems and has been widely
used in the field of OSPS [20], [21]. Li et al. [22] proposed a
dynamic environmental economic schedulingmodel that con-
sidered tradable green certificates and used a multi-objective
moth flame algorithm to solve it. Zhang et al. [2] pro-
posed a multi-objective coordinated scheduling model for
hybrid wind-photovoltaic-water generation, and the proposed
model was solved by a multi-objective firefly algorithm.
Marcelino et al. [23] proposed an optimization model for
short-term hydro-generating unit combinations based on a
cascade-based operation scenario, which was solved by a
multi-objective evolutionary swarm hybridization algorithm.
Therefore, it is very effective to use intelligent optimiza-
tion algorithms to solve multi-objective optimal scheduling
problems.

C. RESEARCH GAPS AND QUESTIONS
So far, most wind-photovoltaic forecasting models are
single-objective forecasting models, which only consider
forecasting accuracy and ignore the impact of improving the
stability of forecasting results on the OSPS. Considering both
forecasting accuracy and stability can allow the forecasting
model to capture more wind-photovoltaic stochastic features
so as to ensure more accurate wind-photovoltaic forecasts
at the spikes, which can provide more accurate scheduling
instructions for OSPS [24]. Therefore, it is necessary to
develop new wind-photovoltaic multi-objective forecasting
models to provide higher-quality forecasting data for scenario
generation, better track the uncertain characteristics of wind-
photovoltaic, and ensure the secure and stable operation of
the power system.

In addition, the solution objectives of the OSPS model
are classified into the following categories: (1) Economic
efficiency, including system generation costs and environ-
mental costs, etc., [25] and [26]. (2) System safety, including
unit output stability, smoothing of wind-photovoltaic output
fluctuations, and tracking of wind-photovoltaic forecast
output curves, etc., [27], [28], and [29]. (3) Energy effi-
ciency, including maximum system generation, maximum
wind-photovoltaic generation, and minimum system carbon
emissions, etc., [30], [31], and [32]. There is a scarcity
of research that simultaneously considers wind-photovoltaic
output fluctuations, the degree of matching between power
output and load, wind-photovoltaic utilization, and system
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economic efficiency factors during optimized scheduling.
Only by comprehensively considering the coupling relation-
ships among these objectives can the scheduling results be
made safer, more economical, and more reliable.

In solving the multi-objective optimization scheduling
problem in power systems, traditional optimization meth-
ods typically convert the multi-objective problem into a
single-objective problem for solution, which cannot well
demonstrate the non-dominant relationship between differ-
ent objectives. Intelligent optimization algorithms possess
powerful parallel search capabilities, which make up for the
deficiencies of traditional optimization methods. It should be
emphasized that although intelligent optimization algorithms
have been widely applied in the optimization and schedul-
ing fields, OPDS problems with uncertainty often exhibit
complex coupling characteristics, making it difficult for
traditional optimization algorithms to find feasible solutions.
Therefore, developing novel and effective multi-objective
optimization algorithms is highly necessary.

D. NOVELTY AND CONTRIBUTION
The main objective of this research is to develop a
multi-objective forecasting, scenario generation, and deci-
sion scheduling integrated stochastic optimal scheduling
model that ensures maximum security and economy of the
scheduling results. The model is divided into three parts:
(1) Establishing a new wind-photovoltaic power forecasting
model, which is characterized by high forecasting accuracy
and strong stability, ensuring a high-quality database for
the MOSSP model; (2) A comprehensive consideration of
the complex coupling relationship between the source-load
targets of the power system to ensure safer, more economical,
and more reliable scheduling results; (3) Development of
efficient problem-solving tools to effectively solve MOSSP’s
complex non-linear constraint problems and multi-objective
forecasting models. The novelties and contributions of this
study are as follows:
(1) The HMORUN algorithm is proposed to solve

multi-objective optimization problems. The perfor-
mance of the HMORUN algorithm is tested on the ZDT
test suite and compared with current advanced multi-
objective algorithms. Finally, the proposed algorithm
is used to optimize a wind-photovoltaic multi-objective
forecasting model and a multi-objective stochastic
optimized scheduling model.

(2) A hybrid pseudo-inverse Laguerre neural network
(HPLNN) is proposed based on pseudo-inverse learn-
ing (PIL) and hybrid Laguerre polynomials. The
primary aim of HPLNN is to address the overfitting
issue that frequently arises in the forecasting pro-
cess of hybrid Laguerre neural networks (HLNN),
which enhances the accuracy and robustness of the
forecasting.

(3) A HMORUN-HPLNN multi-objective wind and pho-
tovoltaic power forecasting model is proposed based
on HMORUN and HPLNN. The main purpose of

FIGURE 1. MOSSP operating framework.

HMORUN-HPLNN is to improve the accuracy and
stability of wind and photovoltaic power forecasting
results and provide crucial data foundations for gener-
ating representative wind and photovoltaic scenarios.

(4) AHMORUN-MOSSP stochastic optimization schedul-
ing model is established based on HPLLN, HMORUN,
Latin hypercube sampling, and simultaneous backward
reduction. The HMORUN-MOSSP scheduling model
aims to maximize load curve tracking and minimize
economic costs while considering the coupling rela-
tionship among wind-photovoltaic output fluctuations,
the degree of matching between power output and load,
wind-photovoltaic utilization, and system economic
benefits.

E. PAPER ORGANIZATION
The rest of this paper is organized as follows: Section II
presents the principles of the proposed hybrid pseudo-inverse
Laguerre neural network, HMORUN, and the generation of
representative scenarios for wind and photovoltaic power.
Section III describes the objective function and con-
straint conditions of the stochastic optimization scheduling
model in detail. Section IV elaborates on the selection of
experimental data and performance indicators. Section V
conducts performance testing experiments on HMORUN,
HMORUN-HPLNN, and HMORUN-MOSSP and compares
and analyzes the experimental results with those of other
models. Section VI summarizes the experimental results of
this study. The operational framework of the MOSSP model
proposed in this paper is shown in Fig. 1.

II. WIND-PHOTOVOLTAIC MULTI-SCENARIO MODELING
This section describes in detail the methods used in the
scene generation process, mainly including the hybrid
pseudo-inverse Laguerre neural network, HMORUN, and
wind-photovoltaic uncertainty handling methods.

A. WIND-PHOTOVOLTAIC MULTI-OBJECTIVE
FORECASTING MODEL CONSTRUCTION
1) HYBRID PSEUDO-INVERSE LAGUERRE NEURAL NETWORK
(1) Hybrid Laguerre neural network Orthogonal polynomials
are widely used in constructing feedforward neural networks
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due to their strong non-linear approximation capability [33].
Wang et al. [34] proposed a new type of Laguerre polynomial
and combined it with the original Laguerre polynomial to
form a hybrid Laguerre neural network (HLNN), which
exhibited outstanding forecasting performance in wind power
forecasting.

The mathematical expressions for the two sets of Laguerre
polynomials are described as follows:

Pn (x) = ex
dn

dxn
(
xne−x

)
, x ∈ [0,+∞)

NPn (x) = e−x
dn

dxn
(
xnex

)
, x ∈ (−∞, 0]

(1)

where Pn (x) is a Laguerre orthogonal polynomial whose
domain of definition is [0, +∞). NPn (x) is a new Laguerre
orthogonal polynomial whose domain of definition is
(−∞, 0]. The combination of the two Laguerre polynomials
extends the domain of definition to (−∞,+∞).

The orthogonality of the two sets of Laguerre orthogonal
polynomials with respect to the weighting functions is
described as follows:∫

∞

0
e−xPn (x)Pm (x) dx =

{
0, m ̸= n

(n!)2 , m = n
(2)

∫ 0

−∞

exNPn (x)NPm (x) dx =

{
0, m ̸= n(
n2

)
!, m = n

(3)

The recurrence equation for two sets of Laguerre orthogo-
nal polynomials is as follows:

Pn+1 (x) = (1+ 2n− x)Pn (x)− n2Pn−1 (x)
NPn+1 (x) = (1+ 2n+ x)NPn (x)− n2NPn−1 (x)
(n = 1, 2, · · · )

(4)

A mixed neural network constructed with two sets of
Laguerre polynomials as orthogonal basis functions improves
the applicability of Laguerre neural networks in practical
engineering problems [34]. However, feedforward neural
networks are prone to overfitting the training data during
the training process, which makes it difficult for them to
generalize well to new data [35]. Therefore, it is necessary
to propose corresponding solutions for this problem.
(2) Pseudo-inverse learning
Pseudo-inverse learning is a technique that can effectively

mitigate the overfitting problem in feedforward neural
networks [36]. This method leverages the properties of matrix
pseudo-inversion to optimize the parameters of the network
and improve the accuracy and robustness of its forecasting
results. Specifically, pseudo-inverse learning computes the
pseudo-inverse matrix of the training data and then multiplies
it with the target output vector to obtain the optimal weights.
By adopting this approach, the risk of overfitting the neural
network is mitigated, leading to improved accuracy and
stability in forecasting. The specific process of training
HLNN with pseudo-inverse learning is as follows:

FIGURE 2. Network structure of the hybrid pseudo-inverse Laguerre
neural network.

When the input matrix of the training set is x =

[x1, x2, . . . , xn] and the output matrix is y = [y1, y2, . . . , yn],
the HPLNN optimal weight matrixw is calculated as follows:

w =
(
XTX

)−1
XT y = X+y (5)

in which

X =


f1 (x1) f2 (x1) . . . fm (x1)
f1 (x2) f2 (x2) . . . fm (x2)

. . . . . . . . . . . .

f1 (xn) f2 (xn) . . . fm (xn)

 (6)

where X+ is the Moore-Penrose pseudo-inverse of matrix X ,
X is the HLNN hidden layer output, and f (·) is the Laguerre
orthogonal basis function. The structure of HLNN is shown
in Fig. 2.

2) HYBRID MULTI-OBJECTIVE RUNGE-KUTTA ALGORITHM
This study uses HMORUN to optimize the HPLNN
wind-photovoltaic forecasting model, which enables the
forecasting results to have higher forecasting accuracy and
stronger forecasting stability. The proposed HMORUN is a
multi-objective version of the Runge-Kutta algorithm [37],
and its mechanism for updating non-dominated solutions
primarily involves four aspects: updating solutions, enhanced
solution quality, and cross-mutation operator. The details of
the HMORUN operating mechanism are as follows:

(1) Updating solutions
The update solution strategy of the HMORUN includes

two phases: the exploration phase and the exploitation phase,
which are executed probabilistically. The detailed update
strategy is as follows:

if rand < 0.5

(exploration phase)

xnew = (xc + r × SF × g× xc)+ SF × SM + . . .

µ× randn× (xm − xc)

else

(exploitation phase)
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xnew = (xm + r × SF × g× xm)+ SF × SM + . . .

µ× randn× (xr1 − xr2)

end (7)

where r is an integer that is 1 or -1. SF is an adaptation factor.
g and u are random numbers. randn is a random number that
follows a normal distribution. xr1, xr2, xf 1, and xf 2 are random
solutions of the pareto-frontier (PF). xm is the current solution
for the population.

(2) Enhanced solution quality
The enhanced solution quality strategy consists of three

main solution update strategies for xnew1, xnew2, and xnew3,
which are described as follows:

xnew1 = β × xavg + (1− β)× xf 1 (8)

where β is a random number between 0 and 1. xavg is themean
of three random solutions in the PF.

if rand < 0.5

if w < 1

xnew2 = xnew1 + r × w× |
(
xnew1 − xavg

)
+ randn|

else

xnew3 =
(
xnew1 − xavg

)
+ r × w× |

(
u× xnew1 − xavg

)
+ randn|

end

end (9)

where w is a random number. r is an integer of -1, 0, or 1.
When rand < w, the xnew3 update strategy is implemented,
which is detailed as follows:

if rand < w

xnew3 = (xnew2 − rand × xnew2)+ SF×(
rand × xRK +

(
v× xf 1 − xnew2

))
end (10)

where v is a random number that takes the value 2× rand .
(3) Cross-mutation operator
In HMORUN, the cross-mutation operator of NSGAII [38]

is introduced. Through performing cross-mutation operations
on populations probabilistically to further enhance the
exploration and exploitation capabilities of the proposed
algorithm. The search mechanism of the cross-mutation
operator is as follows:

xpop = xk + δ × (uk − lk) (11)

in which {
φ1 = (pk − lk) / (uk − lk)
φ2 = (uk − pk) / (uk − lk)

(12)

If θ ≤ 0.5, then δ is:

δ =
[
2θ + (1− 2θ) (1− φ1)

ηm+1
] 1

ηm+1
− 1 (13)

If θ > 0.5, then δ is:

δ = 1−
[
2 (1− θ)+ 2 (θ − 0.5) (1− φ2)

ηm+1
] 1

ηm+1 (14)

where xk is the parent population. θ is a random number
between 0 and 1. η is the distribution index.

HMORUN uses the same fast non-dominated sorting and
crowding calculation strategy as NSGA-II to select the
non-dominated solutions in the population.

Algorithm 1 Local Search Based Algorithm
Input: Func, N , Maxit , Dim
Output: P: final population
1: /*initialization*/
2: Generate initial populations
3: Calculate Func
4: /*main loop*/
5: for it=1:Maxit do
6: Updating xnew by Eq.(7)
7: Updating xnew1, xnew2, and xnew3 by Eq.(8), Eq.(9),

Eq.(10)
8: Updating xpop by Eq.(11)
9: State← [xnew1; xnew2; xnew3; xpop]
10: P← bound(State)
11: P← Non dominated sorting (Npop)
12: P← Crowding distance calculation (Npop)
13: P← Sort Population selection (Npop)
14: it = it + 1
15: end for
16: return P

This study uses HMORUN to optimize the HPLNN
weights and constructs the HMORUN-HPLNN wind-
photovoltaic multi-objective forecastingmodel with accuracy
and stability as the optimization objectives. The objective
function is shown below:

Fa = MSE =
1
N

N∑
h=1

(
ŷh − yh

)2 (15)

Fs = std
(
|ŷh − yh

∣∣ ), t = 1, 2, . . . ,N (16)

where Fa is the forecast accuracy index. Fs is the forecast
stability index. ŷh, yh, and N are the forecast values, actual
values, and sample numbers for wind and photovoltaic,
respectively.

B. WIND-PHOTOVOLTAIC UNCERTAINTY HANDLING
In this paper, the uncertainty in the behavior of renewable
energy sources is fully taken into account, and the uncertainty
in wind power and photovoltaic is treated in three ways.

Firstly, a stochastic optimization approach is used to deal
with the uncertainty of renewable energy. In the stochas-
tic optimization approach, the uncertainty of renewable
energy is characterized by generating representative wind
and photovoltaic power generation scenarios. The more
scenarios are included in the set of scenarios, the more
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uncertain situations are included in the scheduling problem
characterized by uncertainty. In this paper, Latin hypercube
sampling (LHS) [39] and imultaneous backward reduction
(SBR) [40] are used to generate representative wind-
photovoltaic scenarios. Secondly, generating high-quality
stochastic scenarios can better track the wind-photovoltaic
uncertainty, but this is based on accurate and high-quality
forecasting, and the accuracy of forecasting directly affects
the diversity of generated scenarios. Therefore, this paper
proposes a new multi-objective forecasting model for wind
and photovoltaic so that the forecasting model captures more
stochastic features of wind-photovoltaic, which ensures more
accurate wind-photovoltaic forecasts at ‘‘peak’’ moments and
provides a high-quality data base for generating characteristic
scenarios. Finally, the effects of wind and photovoltaic
fluctuations are taken into account in the system rotation
standby capacity to improve the reliability of the power
system.

III. PROBLEM DESCRIPTION OF STOCHASTIC OPTIMAL
SCHEDULING
This study proposes a multi-objective stochastic opti-
mal scheduling model that fully considers the impact of
wind-photovoltaic uncertainty on power system scheduling.
This section mainly describes the problem of the proposed
model, including relevant objective functions and constraints,
which are shown below.

A. OBJECTIVE FUNCTION
(1) Source-load difference index

One of the focuses of coordinated source-load scheduling
is to minimize the difference between the power-side output
curve and the load curve to ensure the safe and stable
operation of the power system. Therefore, this study employs
the source-load difference index (SLDI) as one of the
objectives of the proposed scheduling model, which is
expressed mathematically as follows:{

minFsi = α1QP + α2QL + α3Qθ

α1 + α2 + α3 = 1
(17)

where Fsi is the source-load difference index. QP, QL , and
Qθ are the standard deviation of the power-side output
fluctuations, the standard deviation of the residual load, and
the standard deviation of the curve corner, respectively. α1,
α2, and α3 are the weighting factors.

Ps,t = Pt + Pw,t + Pv,t

QP =

√√√√ 1
T

T∑
t=1

(
Ps,t − P̄s

)2 (18)

where Pt , Pw,t , and Pv,t are the output power of units, wind
farms, and photovoltaic plants, respectively, at time t . Ps,t is
the total power on the power side at time t . T is the total

scheduling time.
CL,t = Ploss,t + PL,t − Ps,t

QL =

√√√√ 1
T

T∑
i=1

(
CL,t − C̄L

)2 (19)

where PL,t and CL,t are the load and residual load at time t ,
respectively. Ploss,t is the system network loss at time t .

Qθ =

√√√√ 1
T

T∑
t=1

(
θt − θ̄t

)2 (20)

kt =


Ps,t+1 − Ps,t
t (t + 1)− t (t)

(1 ≤ t ≤ T − 1)

Ps,T − Ps,T−1
t (T )− t (T − 1)

(t = T )

(21)

If t = 1, t = T , then θt is:

θt = arctan |kt | (22)

If ktkt−1 ≥ 0, 2 ≤ t ≤ T − 1, then θt is:

θt = |arctan kt − arctan kt−1| (23)

If ktkt−1 < 0, 2 ≤ t ≤ T − 1, then θt is:

θt = arctan |kt | + arctan |kt−1| (24)

where θt and kt are the corner of two adjacent polyline
segments and the slope of the polyline segment at time t ,
respectively.

(2) Economic costs
Taking into account the impact of various factors on

the economic costs of the proposed model, minimizing the
total economic cost of the system is another optimization
objective of MOSSP. In order to accurately reflect the actual
operating costs of thermal power units, this study considers
the fuel cost and valve-point effect (VPE) cost of the power
generation units. To maximize the utilization of wind and
photovoltaic power and reduce the curtailment of wind and
photovoltaic power as well as the system load shedding, this
study also takes into account the overestimation cost and
underestimation cost of wind and photovoltaic power. The
mathematical expression for the comprehensive economic
cost Fec is as follows:

minFec =
T∑
t=1

N∑
n=1

F
(
Pn,t

)
+

T∑
t=1

N∑
n=1

E
(
Pn,t

)
+

T∑
t=1

(
cwvEc,t + lwvEl,t

)
(25)

where F
(
Pn,t

)
and E

(
Pn,t

)
are unit fuel costs and VPE costs

at time t . cwv and lwv are underestimated cost factors and over-
estimated cost factors. Ec,t and El,t are wind-photovoltaic
electricity abandonment and load shedding at time t . The
equations for F

(
Pn,t

)
and E

(
Pn,t

)
are as follows:

F
(
Pn,t

)
= anP2n,t + bnFPn,t + cn (26)

133908 VOLUME 11, 2023



J. Ye et al.: Multi-Scenario Stochastic Optimal Scheduling for Power Systems

E
(
Pn,t

)
= |dn sin

[
en

(
Pn,min − Pn,t

)]
| (27)

In the n-th thermal generator, an, bn, and cn are fuel cost
coefficients. dn and en are VPE cost coefficients. Pn,t is
the output power at time t . Pn,min is the lower limit of the
generator set output power.

B. CONSTRAINTS
(1) Power balance constraints

The power balance constraint of MOSSP is expressed as
an equation constraint, and its mathematical expression is as
follows:

N∑
n=1

Pn,t + Pw,t + Pv,t = Ploss,t + Pload,t (28)

in which

Ploss,t =
N∑
i=1

N∑
j=1

Pi,tBi,jPj,t +
N∑
i=1

Pi,tBi,0 + B0,0 (29)

where Bi,j, Bi,0, and B0,0 are the network loss coefficients.
(2) Generator capacity constraints

Pn,min < Pn,t < Pn,max (30)

where Pn,max and Pn,min are the maximum and minimum
output power of the nth generator.

(3) Generating unit ramp-rate constraints{
Pn,t − Pn,t−1 < URn
Pn,t−1 − Pn,t < DRn

(31)

where URn and DRn are the maximum power rising and
falling per unit time of the n-th generator in the MOSSP,
respectively.

(4) Rotating standby capacity constraint
The integrated consideration of wind power, PV, and load

fluctuations is helpful to ensure the safe and stable operation
of the MOSSP. The positive and negative rotation standby
constraints for the system are as follows:
Pw,t × wu%+ Pv,t × wu%+ Pload,t × Lu% ≤

N∑
n=1

Un,t

(
Pw,max + Pv,max − Pw,t − Pv,t

)
× wd% ≤

N∑
n=1

Dn,t

(32)

in which {
Un,t = min

(
Pn,max − Pn,t ,URn∆T

)
Dn,t = min

(
Pn,t − Pn,min,DRn∆T

) (33)

where wu%, wd%, and Lu% are the fluctuation coefficients
of wind-photovoltaic power and load in the positive and
negative rotating standby capacities, respectively. Pw,max and
Pv,max are the rated power of the wind farm and photovoltaic
plant. ∆T is the rotating standby response time, which takes
∆T = 1/6 hour in this paper.

When the actual wind-photovoltaic output is greater than
the demand of the scheduling plan and the negative rotating
standby capacity of the system cannot offset this power, wind,
and photovoltaic abandonment will only occur. The system
underestimation is calculated as follows:

Ec,t = |Ploss,t + PL,t −
(
Pt + Pw,t + Pv,t

)
| −

N∑
n=1

Dn,t

(34)

When the actual wind-photovoltaic output is less than the
demand of the scheduling plan and the system’s reserved
positive rotating standby capacity cannot supplement this
power deficit, load shedding will only occur. The system
overestimate is calculated as follows:

El,t = Ploss,t + PL,t −
(
Pt + Pw,t + Pv,t

)
−

N∑
n=1

Un,t (35)

This study utilizes HMORUN to solve the MOSSP
and constructs the HMORUN-MOSSP stochastic optimized
scheduling model, which mainly includes wind-photovoltaic
multi-objective forecasting, scenario generation and reduc-
tion, as well as stochastic scheduling model solving. The flow
chart of the proposed stochastic optimal scheduling model is
shown in Fig. 3.

IV. DATA COLLECTION AND PERFORMANCE CRITERIA
This section describes in detail the wind power data,
photovoltaic data, load data, and indicators for the evaluation
of the experimental results that were used in the course of the
experiments.

A. DATA COLLECTION
In this study, wind and photovoltaic data were obtained from
a wind farm and a photovoltaic plant in Hami, Xinjiang.
The load data were obtained from the 10-generator power
system [41]. This study collected historical data from wind
farms and photovoltaic plants for January (the sampling point
time interval is 1 h). Wind farm data includes wind speed,
wind direction, temperature, barometric pressure, humidity,
and power. The photovoltaic plant data include irradiation
intensity, temperature, barometric pressure, relative humidity,
and power. The first 29 days of January (696 samples) were
used for training, and the 30th day’s samples (24 samples)
were used for testing to verify the performance of the
proposed HMORUN-HPLNN wind and photovoltaic fore-
casting models. Historical power data for wind farms and
photovoltaic plants are shown in Fig. 4.

B. PERFORMANCE CRITERIA
This study uses stability index (SDEX), mean absolute
error (MAE), root mean square error (RMSE), index of
agreement (IA), and median absolute percentage error
(MdAPE) as evaluation indicators of the forecasting model
to comprehensively evaluate the forecasting accuracy and
forecasting stability of the HMORUN-HPLNN forecasting
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FIGURE 3. Flow chart of the proposed stochastic optimal scheduling model.

model [24]. SDEX reflects the degree of stability of the
model forecast.MAE reflects the overall level of error. RMSE
reflects the degree of difference between the forecasted and
actual values. IA reflects the sensitivity and proportional
change of the difference between the forecasted and actual
values. MdAPE responds to the forecasting accuracy of
the model. The mathematical formula for the evaluation
indicators is as follows:

SDEX = std
(∣∣ŷh − yh∣∣) (36)

MAE =
1
N

N∑
h=1

∣∣ŷh − yh∣∣ (37)

RMSE =

√√√√ 1
N

N∑
h=1

(
ŷh − yh

)2 (38)

IA = 1−

N∑
h=1

(
ŷh − yh

)2
N∑
h=1

(∣∣ŷh − ȳh∣∣+ |yh − ȳh|)2 (39)

MdAPE = median
(∣∣∣∣ ŷh − yhyh

∣∣∣∣× 100%
)

(40)

where ȳh is the mean of the actual values of the test sample.

FIGURE 4. Wind and photovoltaic power data for HMORUN-HPLNN.

V. EXPERIMENTAL RESULTS AND ANALYSIS
To verify the effectiveness of the proposed multi-objective
forecasting, scenario generation, and decision scheduling
integrated stochastic optimal scheduling model, this section
conducts extensive integrated experiments on the HMORUN
algorithm, the HMORUN-HPLNN wind and photovoltaic
power forecasting model, and the HMORUN-MOSSP
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TABLE 1. Definition of test functions ZDT1-ZDT4.

TABLE 2. IGD values obtained by MOALO, MODA, NSGAIII, MOSSA, MORUN, and HMORUN on ZDT1-ZDT4 with Dim=10.

scheduling model. Firstly, the performance of the HMORUN
algorithm is tested on the ZDT test suite [24] and
compared with other advanced multi-objective algorithms.
Secondly, the HMORUN-HPLNN wind power and pho-
tovoltaic power forecasting models were tested, including
HMORUN-HPLNN forecasting performance testing and
comparison of multi-model forecasting results. Finally, the
HMORUN-MOSSP scheduling model was tested, including
parameter sensitivity analysis, HMORUN-MOSSP schedul-
ing capability testing, and comparison of multi-model
optimization scheduling results. Each experiment was inde-
pendently run 30 times, and the average of the 30 experiment
results was compared, and the best value of PF was selected
from the 30 experiment results for comparison.

A. TESTING OF HMORUN
To verify the performance of the proposed HMORUN
algorithm, it was compared with advanced multi-objective
algorithms such as MOALO [42], MODA [43], NSGAIII
[44], MOSSA [45], and MORUN [24] on the ZDT test suite.
The ZDT test suite consists of four benchmark problems
(ZDT1-ZDT4) with 10 dimensions, and their objective
functions are presented in Table 1. The parameter settings for
the five comparison algorithms were taken from the original
literature. For HMORUN, the population size is set to 100,
and the maximum number of function evaluations is set to

1E+04, which is consistent with the other algorithms. The
inverted generational distance (IGD) is used to evaluate the
convergence and distribution performance of the algorithms.
The statistical results of IGD for all six algorithms are
shown in Table 2, and the best non-dominated solutions are
presented in Fig. 5.
Table 2 compares the experimental results of six algorithms

using evaluation indicators such as best value, average value,
median, standard deviation (std), and worst value. The results
show that the proposed HMORUN algorithm obtains the best
IGD value on ZDT1-ZDT4 test problems. From Fig. 5, it can
be seen that the non-dominated solutions of HMORUN are
closer to the true Pareto front on ZDT1-ZDT4 compared to
MOALO, MODA, NSGAIII, MOSSA, and MORUN algo-
rithms. Additionally, the non-dominated solutions obtained
by HMORUN are more uniformly distributed and have a
higher distribution density than the compared algorithms.
Hence, the proposed HMORUN algorithm outperforms
MOALO,MODA, NSGAIII, MOSSA, andMORUN in terms
of performance.

B. TESTING HMORUN-HPLNN WIND-PHOTOVOLTAIC
FORECASTING MODELS
1) TESTING OF HMORUN-HPLNN
To verify the performance of the proposed HPLNN forecast-
ingmodel, two forecastingmodels are designed in this section
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for comparison experiments. The two forecasting models
are HMORUN-HLNN andHMORUN-HPLNN, respectively.
HMORUN population N=100, PF size NPF=100, number of
function evaluations FEs=1E+4.

To ensure the fairness of comparative experiments, firstly,
HMORUN is used to optimize the initial weights of both
HLNN andHPLNN, ensuring that the two forecastingmodels
have the same initial weights. Then, the optimized initial
weights are assigned to HLNN and HPLNN for wind and
photovoltaic power forecasting. The results of the wind
and photovoltaic power forecasts and the PF obtained by
HMORUN are shown in Fig. 6, and the statistical results of
the evaluation indicators are shown in Table 3.
The results shown in Fig. 6 and Table 3 demonstrate

that the HMORUN-HPLNN forecasting model outperforms
the HMORUN-HLNN forecasting model in wind and pho-
tovoltaic power forecasting, as evidenced by its superior
evaluation metrics. These findings suggest that the proposed
HPLNN is able to address the limitations of traditional feed-
forward neural networks, thereby improving the forecasting
performance of the model.

2) FORECASTING RESULTS OF MODELS WITH DIFFERENT
MULTI-OBJECTIVE ALGORITHMS
To verify the effectiveness of the proposed HMORUN in opti-
mizingwind and photovoltaic forecastingmodels, HMORUN
is compared with state-of-the-art multi-objective optimiza-
tion algorithms, including NSGAIII, MOSSA, MODA,
MOALO, and MORUN, for the wind-photovoltaic power
forecasting problem. The experimental comparison results
are shown in Fig. 7, Table 4, and Table 5.
Based on Fig. 7 (a) and Table 4, it is evident that the

HMORUN-HPLNNwind power forecasting model proposed
in this study outperforms other models in the field of
wind power forecasting. Compared with the MOALO-
HPLNN, MODA-HPLNN, NSGAIII-HPLNN, MOSSA-
HPLNN, and MORUN-HPLNN wind power forecasting
models, HMORUN-HPLNN achieved better evaluation index
values and higher forecasting fit. As a result, the proposed
wind power forecasting model exhibits superior forecasting
performance. HMORUN provides a more effective solution
to the wind power forecasting problem.

Based on Fig. 7 (b) and Table 5, it is evident that the
HMORUN-HPLNN photovoltaic power forecasting model
proposed in this study exhibits superior forecasting per-
formance and evaluation index values in the field of
photovoltaic power forecasting. Specifically, although the
MOSSA-HPLNN photovoltaic power forecasting model
achieved the best evaluation index values in terms of
MAE, the HMORUN-HPLNN forecasting model outper-
formed the other five models in terms of IA, RMSE, and
SDEX, and exhibited a better fit. As such, the proposed
HMORUN-HPLNN photovoltaic power forecasting model
exhibits superior forecasting performance. HMORUN pro-
vides a more effective solution to the photovoltaic power
forecasting problem.

3) FORECASTING RESULTS OF DIFFERENT NEURAL
NETWORK MODELS
To further evaluate the forecasting performance of the
proposed HMORUN-HPLNN wind-photovoltaic forecasting
model, which is compared with the current popular neural
network forecasting models (including machine learning and
deep learning models). The main forecasting models used
for comparison include BPNN [46], LSTM [47], WNN
[48], RELM [49], and HLNN. For a fair comparison,
combine them with HMORUN to construct HMORUN-
BPNN, HMORUN-LSTM, HMORUN-WNN, HMORUN-
RELM, and HMORUN-HLNN forecasting models. The
parameters of HMORUN are set as described in the
section ‘‘1) Testing of HMORUN-HPLNN’’. Neural network
parameters are determined through cross-validation. The
maximum function evaluation times for each forecasting
model are set as FEs=1E+04. The experimental comparison
of the forecasting models is run independently 30 times,
and their average values are taken as the final experimental
results. The results of the experimental comparison of wind
and PV power forecasts are shown in Table 6 and Table 7.

The comparative analysis of the results between Table 6
and Table 7 demonstrates that, in contrast to forecasting
models such as HMORUN-BPNN, HMORUN-LSTM,
HMORUN-WNN, HMORUN-RELM, and HMORUN-
HLNN, the evaluation metrics for HMORUN-HPLNN
exhibit a distinct advantage. This indicates that the proposed
forecasting model boasts higher accuracy and superior
stability.

C. GENERATION OF WIND-PHOTOVOLTAIC
REPRESENTATIVE SCENARIOS
First, 1000 wind and photovoltaic scenarios were generated
using LHS based on the wind and photovoltaic power
forecasts, respectively. Then, SBR was applied to reduce
the number of scenarios and probabilistically generate five
representative scenarios for wind and photovoltaic. The
sample sampling rate for wind and PV power is 1 h. The
probabilities of generating the five representative scenarios
for wind and photovoltaic were 0.103, 0.181, 0.113, 0.374,
and 0.229, respectively. Fig. 8 shows the generation and
reduction results for the wind and photovoltaic scenarios.

D. TESTING OF THE HMORUN-MOSSP
To validate the performance of the proposed randomized
optimization scheduling model, we conducted comprehen-
sive experiments on the HMORUN-MOSSP model. The
experiments primarily included sensitivity analysis of weight
coefficients, performance testing of HMORUN-MOSSP
scheduling, and comparison of multi-model optimal schedul-
ing results.

1) WEIGHTING FACTORS SENSITIVITY ANALYSIS
This subsection focuses on the optimal ratio of weighting
factors α1, α2, and α3 in SLDI. The weighting factors α1,
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TABLE 3. Statistics of wind-photovoltaic power forecasting results of two neural networks.

TABLE 4. Statistics of wind power forecasting results for six forecasting models.

TABLE 5. Statistics of photovoltaic power forecasting results for six forecasting models.

α2, and α3 are the main parameters affecting the value of
SLDI. Under the constraint of α1 + α2 + α3 = 1, a total of
19 comparative experiments from α1 : α2 : α3 = 1 : 1 : 1 to
α1 : α2 : α3 = 8 : 1 : 8 are set up to discuss the
optimal values of α1, α2, and α3. The comparative results of
the experiments with different weighting ratios of α1, α2, and
α3 are shown in Table 8.
As can be seen in Table 8, the SLDI values vary with

the weighting factors α1, α2, and α3. Overall, the SLDI
values decrease when the single weighting factor increases.
The decreasing effect of SLDI values becomes greater when
the double-weighting factors are increased simultaneously.
However, as the weighting factors increase beyond a certain
threshold, the SLDI values start to deteriorate. The SLDI
values are minimized when the α1, α2, and α3 weight ratios

are 1, 8, and 8, respectively. Therefore, the values of α1, α2,
and α3 in this study are 0.059, 0.470, and 0.471, respectively.

2) PERFORMANCE TESTING OF HMORUN-MOSSP
This subsection focuses on testing the performance of
the HMORUN-MOSSP stochastic optimization scheduling
model. Five representative wind and photovoltaic sce-
narios are used as input to the MOSSP model, and
the MOSSP model is solved using HMORUN with the
SLDI and economic cost as the objective functions. The
HMORUN-MOSSP scheduling model ensures both safety
and economy of scheduling results while also minimizing the
amount of wind and photovoltaic power curtailment and load
shedding. The PF and the optimal compromise output power
of the units of the HMORUN-MOSSP model are shown in
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FIGURE 5. Obtained Pareto optimal solutions by MOALO, MODA, NSGAIII, MOSSA, MORUN, and HMORUN on ZDT1-ZDT4.

Fig. 9, and the optimal compromise solution output results
for 24 hours are shown in Table 9.

Based on Fig. 9 (a), it can be observed that the
non-dominated solutions obtained by theHMORUN-MOSSP

schedulingmodel are uniformly distributed with high density,
indicating that HMORUN has good global exploration
capability for MOSSP. The shape of the PF distribution tends
towards a straight line, which indicates that HMORUN has a
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FIGURE 6. Comparison of PF and forecasting curves for wind and photovoltaic power forecasting from two neural networks.

FIGURE 7. Comparison curves of six wind and photovoltaic power forecasting models.

good solving capability forMOSSP and is able to find a better
non-dominated solution for it.

Based on Fig. 9 (b) and Table 9, it can be seen
that the balancing constraints of the HMORUN-MOSSP

model have been satisfied. This indicates that the proposed
model can ensure both safety and economic considera-
tions in the scheduling results while avoiding curtailment
of wind and solar power and load shedding. Therefore,
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FIGURE 8. Wind and photovoltaic power scenario generation and reduction.

TABLE 6. Statistics on wind power forecasting results of six neural network forecasting models.

the HMORUN-MOSSP stochastic optimization scheduling
model proposed in this study can maximize the system’s
safety and economic efficiency.

3) COMPARISON OF MULTI-OBJECTIVE SCHEDULING
MODELS
To verify the performance of the proposed scheduling
model, comparative experiments are conducted between
the HMORUN-MOSSP, MOALO-MOSSP, MODA-MOSSP,

NSGAIII-MOSSP, MOSSA-MOSSP, and MORUN-MOSSP
scheduling models, and the experimental results are shown in
Fig. 10 and Table 10.

Fig. 10 compares the PF results of various random
optimization scheduling models. It can be seen from
Fig. 10 that the non-dominated solutions generated by
the HMORUN-MOSSP scheduling model are uniformly
distributed with high density and a wider solution span,
which demonstrates the effectiveness and superiority of
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TABLE 7. Statistics on photovoltaic power forecasting results of six neural network forecasting models.

TABLE 8. Statistical results of SLDI optimization for different combinations of weight ratios for α1, α2, and α3.

FIGURE 9. The compromise solution selection and optimal output power of units for HMORUN-MOSSP.

using HMORUN to solve the proposed MOSSP problem.
Importantly, the solutions generated by theMOALO,MODA,

NSGAIII, MOSSA, and MORUN algorithms are dominated
by the non-dominated solutions generated by HMORUN,
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TABLE 9. The optimal compromise solution for HMORUN.

TABLE 10. Statistics of experimental results for six models of SLDI and economic costs.

FIGURE 10. Comparison of the Pareto frontier of six stochastic optimal
scheduling models.

which indicates that the non-dominated solutions obtained
by HMORUN in solving MOSSP possess higher safety and
better economy.

Table 10 presents the statistical results of the multi-
objective scheduling model SLDI and the economic costs
experiment. The results indicate that the SLDI and economic
cost values obtained by the HMORUN-MOSSP scheduling
model (20.2009 and 576205.58, respectively) are better than
those obtained by the comparison models.

The comprehensive experimental results demonstrate
that the performance of the proposed HMORUN-MOSSP
scheduling model is significantly better than that of
the MOALO-MOSSP, MODA-MOSSP, NSGAIII-MOSSP,
MOSSA-MOSSP, andMORUN-MOSSP scheduling models.

VI. CONCLUSION
In this study, a stochastic optimization scheduling model for
integrated multi-objective forecasting, scenario generation,
and decision scheduling based on HPLNN, HMORUN, LHS,
SBR, and MOSSP is proposed. Through extensive and
comprehensive experiments, the following conclusions can
be drawn:

Under the same experimental conditions, the proposed
HMORUN-HPLNN forecasting model has significant advan-
tages over the HMORUN-HLNN forecasting model for wind
power and photovoltaic generation forecasting. HPLNN can
overcome the limitations of traditional feedforward neural
networks and thus improve the forecasting performance of
the model.

The proposed HMORUN algorithm shows significant
advantages over other advanced algorithms in solving
multi-objective forecasting problems. In multi-objective
wind and photovoltaic power forecasting problems, the
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HMORUN-HPLNN prediction model outperforms the
MOALO-HPLNN, MODA-HPLNN, NSGAIII-HPLNN,
MOSSA-HPLNN, andMORUN-HPLNN forecastingmodels
in terms of forecasting accuracy and stability. Over-
all, HMORUN demonstrates promising applications in
multi-objective wind and photovoltaic power forecasting.

The proposed HMORUN-MOSSP stochastic optimiza-
tion scheduling model ensures both safety and economy
of scheduling results while also minimizing the amount
of wind and photovoltaic power curtailment and load
shedding. Compared with other multi-objective scheduling
models, the non-dominated solution distribution of the
HMORUN-MOSSP scheduling model is more uniform
and has a higher distribution density, and the solutions
generated by MOALO, MODA, NSGAIII, MOSSA, and
MORUN algorithms are dominated by the non-dominated
solutions generated by HMORUN. The non-dominated
solutions obtained by the HMORUN-MOSSP algorithm have
higher safety and better economy. In the future, a more
comprehensive consideration of the uncertainty of renewable
energy and load can be made to make the scheduling results
safer and more economical.
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