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ABSTRACT In this paper, a hybrid metaheuristic-based Machine learning approach has been propounded
for the classification of various Chronic Diseases (CDs). The CDs often get misdiagnosed due to various
issues viz., similar and overlapping symptoms, sensitive devices, lack of clinical experts, etc. Based on the
above issues, this study has utilized a fusion of Particle Swarm Optimization with Random Forest (PSORF)
for the automatic identification of CDs. The approach PSORF comprises of two main components: PSO
for obtaining the minimal optimal feature set, also to optimize the performance of the RF classifier, and
RF classifier for the classification of multiple CDs. In this research, five different CD datasets have been
deployed onto a series of experiments have been conducted to identify the best approach for the classification
of CDs. To address the issues of imbalanced and incomplete data in the datasets used, Synthetic Minority
Oversampling Technique (SMOTE) and Expected Minimization (EM) Imputation techniques have been
applied before training the model. This ensures the data quality is improved before being used for analysis.
Furthermore, the performance of the PSO and RF classifiers has been compared with other metaheuristic
and ML classifiers in terms of different performance metrics. For this purpose, Friedman’s tests have been
employed to calculate the mean ranks of all the classifiers across all the datasets for different metrics. The
results showed that the proposed technique achieved the highest mean rank in terms of Accuracy, F-measure,
and Receiver Operating Characteristics (ROC) across all five datasets.

INDEX TERMS Chronic diseases, machine learning, metaheuristic techniques, multi-classification, PSO,
SMOTE.

I. INTRODUCTION this study has focused on three different domains of CDs as

Chronic diseases (CD) are long-lasting diseases causing
millions of deaths and disability worldwide. Especially, post-
pandemic CDs are on the rise as the virus not only affects
the lungs but also the other parts of the body.! Such diseases
cannot be cured completely but can be controlled and treated
only if detected early.” In regard to the classification of CDs,

The associate editor coordinating the review of this manuscript and

approving it for publication was Kostas Kolomvatsos
1Post-COVID symptoms and effects, accessed on 19/06/2023.
2Early diagnosis of Chronic diseases, accessed on 19/06/23.

shown in Figure 1.

CDs such as heart disease, lung disease, cancer, diabetes,
etc., are the leading cause of death and disability worldwide.
These are such diseases whose symptoms show up at the later
stages which makes it even harder to treat them. The most
prevalent form of heart disease is Coronary Artery Disease
(CAD), which occurs when a major artery (such as the
Left Anterior Descending (LAD), Left Circumference Artery
(LCA), or Right Coronary Artery (RCX)) becomes narrowed
due to stenosis. The deaths resulting from CAD were reported
as 382,820 in 2020 [1]. The symptom of CAD includes
shortness of breath, chest pain, chest tightness, and sweats.
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FIGURE 1. Taxonomy of the chronic diseases utilized in this study.

The next group of CDs is respiratory diseases consisting of
Chronic Obstructive Pulmonary Disease (COPD), Asthma,
Pneumonia, Tuberculosis (TB), etc [2]. These are the
group of diseases that has been greatly affected by the
COVID-19 pandemic as it has directly attacked the lungs
making them less immune to other respiratory diseases. The
number of deaths reported due to COPD, Asthma, Lung
cancer, and Pneumonia are 3.2, 260, 1.8, and 2.4 million
respectively.® Such chronic diseases give rise to a range
of symptoms, such as shortness of breath, excessive mucus
production, chest pain, tightness in the chest, coughing, and
many more. Breast cancer is currently the most prevalent
form of cancer, resulting in 685,000 fatalities worldwide.*
Similarly, Diabetes, a chronic metabolic disease contributes
to 1.5 million deaths each year.” It is riskier as it can affect the
other major organs such as the Heart and kidneys. Although
there are various fundamentally well-organized primary care
approaches for treating CDs such as Spirometry pulmonary
functional test for COPD, X-rays, scans for other lung
diseases, surgical removal, radiation therapy, mammograms
for Breast cancer [3], and Angiography for CAD, there
are various issues related to such treatments mentioned as
follows:

« Overdiagnosis in case of mammograms, radiation injury
during chemotherapy.®

o The miniature size of tumors and lung nodules cannot
be read clearly by clinical experts.’

« Misclassification of diseases due to similar and overlap-
ping symptoms.?

« Expensive medical procedures such as Angiography.’

3Respiratory disease, Number of deaths reported, accessed on 19/06/23.
4Breast cancer, factsheet for Breast Cancer, accessed on 20/06/23.
5Diabetes“, accessed on 20/09/23.

6Overdiagnosis of mammograms, accessed on 22/06/23.

TMissed detection of lung cancer, accessed on 22/06/23.

8Misdiagnosis of lung diseases, accessed on 22/06/23.

9Corona.ry artery Angiogram, accessed on 22/06/23.
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o Rely on manual which is

time-consuming and laborious.

labeling by doctors
10

Therefore, in response to the aforementioned issues, several
researchers have proposed implementing computer-aided
diagnosis, which can simplify the work of physicians and
decrease the likelihood of misdiagnosis. Previous research
on various CDs [4], [5], [6], [7], [8], [9], [10], [11] has
demonstrated that it is feasible to detect and categorize
CDs using Machine Learning (ML) technology. However,
such approaches have shown lower performances and exhibit
some limitations such as imbalanced data, accuracy paradox,
missing data problems, slow convergence by metaheuristic
techniques like Genetic Algorithm (GA), etc. Some stud-
ies even achieved excellent performances. Howbeit, that
might be the case of accuracy paradox, a condition that
occurs when the models achieve excellent performance by
training on biased or imbalanced data. Hence, this study
aims at providing a metaheuristic-based framework Particle
Swarm Optimization based Random Forest (PSORF) that
can diagnose CRDs efficiently while dealing with issues
found in previous studies. In this study, the problem of
imbalanced data and missing data has been rectified by
utilizing the SMOTE filter and EM Imputation method
respectively. The slow convergence problem of GA has been
resolved by using PSO. The ability of PSO to search larger
spaces efficiently, being less computationally expensive, and
faster convergence has made it an effective and efficient
global search technique as compared to other techniques
such as the Genetic, Bat, and Firefly algorithms. Similarly,
Random Forest (RF) has a great advantage over other ML
techniques such as its ability to deal with missing and
imbalanced data, reduce overfitting by using an ensemble of
various decision trees, etc. The performance of the proposed
approach has been evaluated through a series of experiments
on five different chronic disease datasets and compared to
other benchmark metaheuristics and ML techniques. The
remarkable performance of the proposed approach is evident
from the results, surpassing other techniques. The major
contributions of this study have been listed as follows-

o A hybrid metaheuristic-based ML classifier (PSORF)
has been proposed that can not only diagnose a disease
but can also differentiate various similar CDs based on
symptomatic information.

o« EM Imputation and SMOTE techniques have been
employed to fill in the missing values and treat
imbalance data problems respectively.

o Performance of different metaheuristic techniques such
as PSO, GA, Bat, and Firefly Algorithm (FA) has been
compared using radar charts.

o Friedman’s Test has been utilized to corroborate the
performance of the proposed approach with the other
ML classifiers by comparing their mean ranks.

The remaining sections of this paper are structured as
follows: Section II discusses the previous research and

10Mannual data labeling, accessed on 22/06/23.
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identifies gaps in the use of ML techniques for detecting
CDs. Section III outlines the materials and methods utilized
in this study. In addition, it explains the benchmarks feature
selection and ML techniques in brief. Furthermore, it explains
the proposed methodology and all its stages in detail.
Section IV illustrates the experimental work carried out on
different datasets using the proposed approach and shows the
comparison of the proposed approach with other ML and
metaheuristic techniques. It further explains the limitations
and future work of the study. Section V concludes the study.

Il. RELATED WORK AND RESEARCH GAPS

In the literature, several researchers have examined numerous
ML models for the detection of various CDs to help clinical
decision-making. In this regard, this section discusses multi-
ple works done for the classification of Breast Cancer, heart,
Diabetes, and respiratory diseases as shown in Table 1, 2, 3,
and 4 and also identifies the research gaps.

Upon review of prior research, it was found that many
studies employed metaheuristic optimization algorithms
for feature selection and different machine learning (ML)
and deep learning (DL) models for disease classification,
as outlined in Tables 1, 2, 3, and 4. While these previous
studies have yielded promising outcomes, there are still some
areas for further research and improvement, as described
below.

o Imbalance dataset: It must be acknowledged that pre-
vious research has frequently depended on imbalanced
datasets to predict diseases, producing biased outcomes.
However, a study conducted by Zhang et al. [21]
resolved this issue by utilizing the SMOTE filter. It is
crucial to meticulously scrutinize potential biases when
interpreting research findings.

o Missing data: In this study, it was found that the
Exasens dataset contains some missing values that
must be addressed before being used in the training
model. If left untreated, such values can significantly
impact the accuracy of the classification model. Previous
studies by Ramachandra and Murthy [27] and Gill and
Pathwar [28] did not address these missing values.
However, Amutha and Sekar [26] utilized the KNN
Imputation method to address this issue. While this
method is effective, adaptive, and flexible, it can be
susceptible to outliers and is computationally expensive.

o Lower performances: Previous studies have clearly
demonstrated that certain datasets exhibit lower per-
formance levels due to missing data, lack of feature
selection, and high computational models [22], [29],
[30]. It has been observed that studies that employed
metaheuristic-based ML classifiers outperformed those
using DL models when comparing studies that utilized
the same dataset. While DL models are known for
their automatic feature selection, it is important to note
that tuning these features and the model’s parameters
can consume a significant amount of computational
resources. On the other hand, utilizing metaheuristic

VOLUME 11, 2023

optimization algorithms for feature selection with ML
classifiers greatly reduces the computational power
required. Therefore, it can be concluded that Meta-
heuristic Optimization (MHO) based ML classifiers
have been shown to outperform DL models.

o Accuracy Paradox: Despite various issues and research
gaps, previous studies achieved excellent performances.
The accuracy paradox may be at play here. Even
though the training model achieves high accuracy levels,
it has low predictive value. This is especially true when
handling an imbalanced Breast cancer dataset, where
the accuracy rate can be over 97% in all cases [12],
[13], [14], [15], [16], [17]. However, such a model
trained on this data may not perform well in identifying
cancer patients in real-life situations, despite producing
accurate training results due to a high proportion of
cancer patients’ examples.

« No statistical testing: It’s worth noting that only a few
studies have been found in the literature that utilized
statistical testing to validate their models and achieve
optimal performance [13] and [22]. Most studies instead
compared various ML and DL models using different
performance metrics to determine the top performer.
However, these results were not adequately explained in
those studies.

In order to create a reliable and effective model, this
study has addressed all of the research gaps mentioned
previously. The issue of imbalanced and missing data was
tackled in section III, while section IV thoroughly explains
and confirms the classification performance of the proposed
model.

Ill. MATERIALS AND METHODS

In this section, the materials and methods utilized in this
study have been examined. It describes the different datasets
employed in this study and then discusses the benchmark
metaheuristic and ML classification techniques. It further
showcases the different stages of the proposed methodology
in detail.

A. DATASETS

This study has employed five publicly available datasets
as evaluation benchmarks: the International Confer-
ence on Biomedical Health Informatics (ICBHI) lung
sound database [35], Wisconsin Breast Cancer Dataset
(WBCD) [36], Z-Alizadehsani dataset [37], Exasens
dataset [38], and Diabetes dataset [39] collected from UCI
library, Kaggle, and dataworld. For ease purpose, datasets
ICBHI, WBCD,
Z-Alizadehsani, Exasens, and Diabetes have been specified
as D1, D2, D3, D4, and DS respectively. Detailed information
regarding each dataset has been presented in Table 5.

In this study structured data consisting of symptomatic
information in accordance with the respective diseases has
been considered for the evaluation of ML classifiers for
classifying Chronic diseases. The distribution of instances
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TABLE 1. Previous works done for the detection of breast cancer using different feature selection and ML approaches on the wisconsin breast cancer
dataset.

Author Year Feature Selection Classifiers Accuracy Limitations
Oladele, T. | 2021 Ant Colony | Support vector Machine | 97.13% for both | Imbalance data problem, undecidability be-
0. et.al., Optimization (ACO), | (SVM), C4.5, Naive Bayes | ACO and PSO tween ACO and PSO, no statistical tests
[12] PSO (NB), Convolution neural were performed
network (CNN), Neural
Network (NN), Logistic
Regression (LR), RF
Ogundokun, 2022 PSO ANN, CNN, SVM, Grid | 98.5% (CNN) | Imbalance data, High computational deep
R. O. et. al., Search 99.2% learning model
[13]
Sahu, B. 2019 Principle Component | ANN, SVM, K-Nearest | 97% (PCA+ANN) Lower performance, Imbalance data, no sta-
et.al., [14] Analysis (PCA) Neighbor (KNN), RF tistical tests were performed
Olorunsola, 2021 GA, PSO, Harmony | SVM, C4.5,NB, KNN, NN, | 97.1% (PSO+RF) Lower performance, Center bias operator
B.J. [15] search, Tabu search LR, RF problem in Harmony Searchy, Imbalance
data, no statistical tests were performed
Guo, Z. [16] 2022 GA, PSO, Open | Multilayer Perceptron | 98.79% Imbalance data, no statistical tests were per-
Source Development | (MLP) formed
Model Algorithm
(ODMA)
Jia, X. [17] 2022 Wolf  Optimization | SVM 99.02% Imbalance data, Center bias operator prob-
Algorithm (WOA) lem in WOA, no statistical tests were per-
formed
Huang, H. | 2019 Firefly Optimization | SVM 93.83% Lower performance, Center bias operator
[18] Algorithm (FOA) problem in FOA, Imbalance data, no statis-
tical tests were performed

TABLE 2. Previous works done for the detection of Coronary artery disease using different feature selection and ML approaches on the Z-alizadehsani
dataset.

Author Year Feature Selection Classifiers Accuracy Limitations
Gupta, A. et. 2021 PSO, GA, FA, | Ensemble (RF+Extra tree) 97.37% Imbalance data, Center bias operator problem
al., [19] Bat, Gravitational, in FA, lower performance

Dragonfly, FAMD
Fajri, Y. A, 2022 Bee Swarm and Q- | SVM, RF, LightGBM, | 90.1% Lower performance, increased time complex-
[20] learning XGBoost ity, no statistical tests were performed
Zhang, S. et. | 2022 SMOTE LightGBM 94.7% Lower performance, no feature selection, no
al., [21] statistical tests were performed
Hassannataj 2022 Genetic algorithm SVM+ANOVA test 89.45% lower performance, Imbalance data
Joloudari,
et.al., [22]
Kolukisa, B., | 2023 Computational FS | MLP 91.78% Lower performance, Imbalance data, statisti-
et.al., [23] methods cal tests were not performed
Kolukisa, B., 2020 No feature selection KNN, SVM, LR, Lin- 88.38% Lower performance, Imbalance data, statis-
et.al., [24] ear Discriminant Analysis tical tests were not performed, no feature

(LDA), NB, Ensemble selection

Singh, A., 2021 InfoGain, GainRatio RF, NB, MLP 95.70% for | Lower performance, Imbalance data, statisti-
et.al., [25] RF cal tests were not performed

TABLE 3. Previous works done for the detection of Diabetes using different feature selection and ML approaches on the vanderbilt diabetes dataset.

Author Year Feature Selection Classifiers Accuracy Limitations
Amutha, S., et. | 2023 Binarised Grey Wolf | Grid search based SVM 98.71% Center bias operator problem in
al., [26] (GW) and Whale WOA and GWOA, missing data, no
optimization (WO) statistical tests were performed
technique
AC, R, et. al., 2023 No feature selection Logistic Regression, 93% No feature selection, Lower perfor-
[27] stacking mance, missing data, no statistical
tests
Gill, S., etal., 2022 GA RF 93.95% Lower performance, missing data, no
[28] statistical tests were performed
Rajendra, P, | 2021 Chi-square Ensemble technique 93% Lower performance, missing data
et.al., [29]
into different classes corresponding to different diseases is Further details regarding the datasets are mentioned as
shown in Figure 2. follows:
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TABLE 4. Previous works done for the detection of Respiratory Disease using different feature selection and ML approaches on the ICBHI and exasens

dataset.

Author Year Feature Selection Classifiers Accuracy Limitations
Dhar, J. [30] 2021 GA Ensemble model, GB,NB, | 98.2% Imbalance data problem, no statistical
REF, Support Vector Classi- tests were performed
fier (SVC), KNN, LR
Irshad, R. R, | 2023 Tasmanian Devil opti- | DCNN 99.1% Imbalance data, High computational
et. al., [31] mization (TDO) deep learning model, missing data
Zarrin, P. S., | 2020 Grey Wolf Optimization | XGBoost, SVM, Gaussian | 91.25% Lower performance, Imbalance data,
et.al., [32] (GWO) Naive Bayes (GNB), LR, missingness problem, no statistical
ANN tests were performed
Petmezas, G. | 2022 Short-time Fourier | Large Short term Memory | 76.39% Lower performance, Imbalance data,
[33] Transform (STFT) (LSTM) no statistical tests were performed
Ali, S. W. [34] 2023 Mel-Frequency cepstral | MusicANN, VGGish, and | 81% Imbalance data, no statistical tests
coefficient (MFCC) OpenL3 were performed

TABLE 5. Deployement of datasets for the identification of chronic diseases.

Description ICBHI WBCD Z-Alizadehsani Exasens Diabetes
Data Size 10120 * 8 569 * 32 303 * 59 399 *9 390 * 16
Data type Sound Tabular data Tabular data Tabular data Tabular data
Missing values No No No Yes No
Imbalance dataset Yes Yes Yes Yes Yes
Disease COPD, Asthma, BE, Bronchiolitis, | Breast Cancer Coronary Artery COPD, Asthma | Diabetes
LRTI, URTI, Pneumonia Disease
Classification Multi-classification Binary Binary Binary Binary
Target class Diseases Diagnosis Cath Diagnosis Diabetes
length ranging from 10s to 90s making it a total of
= URTI . .
aLRTI 5.5 hours of recordings. The recordings are collected
= Healthy —— from 126 patients. It contains 6898 respiratory cycles
. Malignan . .
. | i wherein 1864, 886, and 506 contain crackles, wheezes
Pueumonia and both crackles and wheeze respectively [40], [41].
e o WBCD: The dataset was created at the University of
o Wisconsin Hospitals in 1992. The attribute ““diagnosis”
(a) ICBHI Dataset (D1) (b) WBCD Dataset (D2) has been denoted as the class label that classifies the
tumor as Malignant (M) and Benign (B). In the literature,
the majority of the papers worked on unstructured data
""":" for Breast cancer like mammograms [42], [43].
- Asthma . .
'2““ | SR o Z-Alizadehsani Dataset: The data was collected from
Normal . . . . .
Healthy heart disease patients at Shaheed Rajaei Cardiovascular,

(c) Z-Alizadehsani Dataset (D3) (d) Exasens Dataset (D4)

m Diabetes
No Diabetes

(e) Diabetes Dataset (D5)

FIGURE 2. Distribution of instances into the number of target classes
corresponding to datasets a) ICBHI dataset D1, b) WBCD dataset D2, c)
Z-Alizadehsani dataset D3, d) Exasens dataset D4, e) Diabetes dataset D5.

o ICBHI Respiratory Sound Database: The dataset was
collected by two research teams in Portugal and
Greece. It consists of 920 annotated recordings of

VOLUME 11, 2023

Medical, and Research Center, Tehran, Iran. This dataset
is an extension of the Z-Alizadehsani dataset and was
collected from the UCI library. In this dataset, the
information about the major three arteries has been
added increasing the total number of attributes to 59. The
attributes are grouped into four categories: demographic
information, symptoms and examination, ECG, and
laboratory and echo features [40], [44].

Exasens Dataset: The dataset was collected at Research
Center Borstel, Germany. It contains information regard-
ing the four groups of saliva samples namely, COPD,
Asthma, Infected, and healthy [40].

Diabetes Dataset: The dataset utilized in this study is
a modified version of the original Vanderbilt Diabetes
dataset [45] originated from a study conducted on rural
African Americans. The original dataset consisted of
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patients with several missing values. Before deploying
the dataset into this study, 13 patients with heavily
missing data were excluded.'!

B. BENCHMARK TECHNIQUES

This section discusses the benchmark techniques utilized in
this study for comparing and validating the performance of
the proposed approach. As mentioned earlier, the proposed
approach comprises two components i.e., PSO and RF
Hence, for comparison purposes, two sets of benchmark
techniques have been utilized. One set is for comparing
feature selection techniques and another set is for comparing
proposed approaches with state-of-art classifiers.

1) FEATURE SELECTION

In this study, to compare and validate the performance of
PSO, three benchmark metaheuristic optimization techniques
GA [15], [16], [19], Bat [19], and FA [19] have been
employed. These algorithms are population-based algorithms
where the agents perform both local and global searches.
They are iterative in nature. They generally start from a
randomly chosen solution and move forward. The goal is
to find an optimal solution at each iteration until no further
improvements can be made. Also, It is not advisable to use
the Firefly algorithm as one of the benchmark techniques
due to its “‘center bias operator” problem [46] because
this operator enables the algorithm to optimize its function
in a way that places its respective optima in the center
of the feasible set. Despite this, numerous studies in the
literature have utilized this algorithm for feature selection and
tuning of hyper-parameters of ML classifiers. For comparison
purposes, this study has incorporated both types of MHO
algorithms, one with and others without a center bias operator
problem.

2) ML CLASSIFIERS
This section discusses the cutting-edge classifiers that were
employed to assess and verify the effectiveness of the

proposed method.
« Naive Bayes: This supervised learning classifier is an

amalgamation of two terms: The term “naive” indicates
that the algorithm assumes conditional independence
between all features, given the value of the class
variable. On the other hand, the term “Bayes” indicates
that the method is based on the Bayes theorem [12], [27].
This theorem describes the relationship between the
class variable (denoted as z) and the dependent feature
vectors (y; through y,). as shown in (1).

(P@P(y1 . ....yul2)
CYn) = 1
) PO - ) M

There are different versions of Naive Bayes which differ
only in terms of the assumption they make regarding the
distribution P(y;|z) [32].

P(zlyt, -

HDjabetes dataset, Modified dataset by Robert Hoyt*, accessed on
20/09/23.
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o Multilayer Perceptron (MLP): It is the simplest form of
neural network that learns a function f(-) : R? —
R? by training on a dataset where p is the number
of dimensions for the input and g is the number of
dimensions for the output [13], [16]. The model consists
of three layers: the “Input layer” consists of a set of
neurons X;|xi, X2, .....X, indicating the input features,
the middle layer is the ‘“Hidden layer” consisting of
one or more layers containing neurons that transform the
previous layer values into a weighted linear summation
and then apply a non-linear activation function g(-) :
R? — R, and the last layer “Output layer” that
receives the input from the hidden layer and transform it
into the output values [25].

o Sequential Minimal Optimization (SMO): A supervised
learning algorithm designed for the training of SVM as
its training requires solving large complicated Quadratic
Programming (QP) optimization problems. This prob-
lem becomes more cumbersome when dealing with
large datasets leading to a running time of O(N3) [47].
SMO breaks these large QP problems into small QP
problems which then can be solved analytically. All
these calculations make SMO scale between linear or
quadratic in the training set size hence making it faster
than SVM.

o Bagging. It is an averaging ensemble classifier that
builds several estimators independently and then aver-
ages their predictors. The idea is that the com-
bined estimators perform better than single estima-
tors due to the reduction in variance. It works best
with strong and complex models as they reduce
overfitting [23].

C. PROPOSED METHODOLOGY
This section introduces the details of the proposed approach
PSO-RF for the multiclassification of Chronic Diseases.
Additionally, various stages of the proposed approach have
been exhibited in Figure 3.

The key elements of each stage are briefly elaborated on as
follows:

1) STAGE 1: DATA PREPROCESSING
In this stage, the original raw data has been treated in terms
of quantity and quality by having it pass through different
sub-stages to enhance the performance of the proposed
approach. The various sub-stages are shown in Figure 4.
The datasets were first checked for their types. Among all
the datasets, dataset D1 was unstructured and needed to be
converted into structured data using Python programming.
Hence, the .csv file containing the patient id and disease
has been aligned with the .txt file of different .wav files to
get a structured file. In addition, it has been observed from
Table 5 that the Exasens dataset suffers from a missingness
problem. The dataset consists of 33.36% of the whole data
missing values. In this regard, this study has deployed

VOLUME 11, 2023



A. Singh et al.: PSORF Framework for the Classification of CDs

IEEE Access

f+— %
' g Data Conversion
&
§ Processed ¥
* Missing Value | @ 9@ & ;
! : Imputation "} Zﬂ::
LT
b SMOTE for Metahauristic
" balancing dataset Algarithm

-

!

Apply 10-fold cross validation to split the dataset into

Evaluation matrics ——= Output

two parts
v v

Minlmal
. optimal Training | Testing
L & L i )

Aubist

Random Forest :1
Final Predicted

FIGURE 3. Overview of the proposed PSO-RF approach. The PSO-RF consists of a preprocessing module, a metaheuristic feature selector, and an
ensemble Random Forest classifier.
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unstructured into . PRy . SMOTE, Class

proper strcuctured imputation to B Balancer
data missing values

| S v

FIGURE 4. Representation of multiple stages of preprocessor module for treating raw unstructured data.

TABLE 6. Increment in the number of instances after applying SMOTE
across all the datasets.

classbalancer.

TABLE 7. Balancing the weights of an imbalanced ICBHI dataset D1 using

Datasets Number of instances | Number of instances Class Labels Weights of Class in- | Weights of Class in-
Before Preprocessing | After Preprocessing stances before Prepro- | stances after prepro-
D2 (WBCD) 569 781 cessing cessing
D3 (Z-Alizadehsani) 303 471 URTI 253 1265
D4 (Exasens) 399 638 LRTI 22 1265
D5 (Diabetes) 390 578 COPD 8723 1265
Asthma 11 1265
Bronchiectasis 176 1265
Bronchiolitis 143 1265
Expected Minimization (EM) Imputation technique to fill in Pneumonia 407 1265
the missing values. Furthermore, all the datasets employed in Healthy 385 1265

this study have an imbalanced distribution of instances among
different classes. To tackle this problem, SMOTE [19], [21]
technique has been utilized for datasets D2, D3, D4, and
D5. It creates synthetic examples of the minority class
instances using the K-nearest neighbor. After the application
of SMOTE filter, the rise in the number of instances can be
seen in Table 6.

Howeyver, in the case of dataset D1, the distribution of
instances is highly skewed The majority class (COPD)
has 8723 instances and the minority class (Asthma) has
11 instances. Similarly, for other classes, the number
of instances is much less as compared to the majority
class. Increasing the number of instances through over-
sampling using SMOTE will escalate the total number of
instances to approximately 70k, quite high to be handled
by the model. With such a large number of instances,
the probability of getting highly noisy data is also high.

VOLUME 11, 2023

Therefore, the authors utilized the Class Balancer filter
to equally assign weights to all the classes as shown in
Table 7.

The Class Balancer filter has reassigned equal weights to
different class instances in such a way that the total sum
of the instance weights i.e., 10120 remains the same even
after balancing them. This allows the Classifier to know
that each class holds equal importance and need not to be
ignored.

2) STAGE 2: PARTICLE SWARM OPTIMIZATION

The second phase is the Feature selection (FS) phase which
deals with selecting the best features subset that can aid in
achieving optimal results. This is an optional step as it is not
always required. However, FS is crucial when dealing with
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Algorithm 1 Particle Swarm Optimization Based Random Forest Approach

Require: A Training set S = (p1, q1) - - . -(Pn, gm), Feature set F, number of trees in forest= B, Generation counter (r = 1),

T:Maximum generators

Ensure:An optimal feature set (F'), Output= H: predicted disease

PSO(F)
{Initialization of PSO parameters}
Joreach particleie 1....... N, do

Position = X;(0)

Velocity = V;(0)

pbest = X;(0)

gbest < best of pbest

end

{Update pbest and gbest of each particle}
whilet < T

iff (Xi) < f (pbest;)

then

pbest;(t) = X;(t)

gbesti(t) € {pbest|(t), ... .pbest,,(t)}|f (gbesti(t)) = min{f (pbest|(t), ... .pbest, (1))

end
fori=1;i <N;i++do
{Update Velocity and Position}

Vit + 1) = wVi(t) + crri(pbest;(t) — X;(t)) + cara(gbest;(t) — Xi(1))

Xi(t + 1) =Xi(t) + Vit + 1)
Evaluate fitness function of X;(t + 1)
t=t+1

return F'

end

RandomForest(SFY)

O <« ¢

fori=1;i <N;i++do

S <« A random sample from S
0; < RandTree(SF")

O < 0 U{o;}

end

return O

RandTree(SF)

Joreach node

sy <— a small subset of F!
Split on best features of F'
return H

Chronic disease metadata as the diagnosis of a disease is done
using the differential diagnosis method where the idea is to
rule out the non-related diseases. Hence, a lot of tests such as
laboratory tests, scans, X-rays, and blood tests were done, all
of which are not really required, and also may not be related
to the actual disease. And this unrelated existence of these
tests might cause an overfitting problem [34]. Therefore,
FS is essential before training the classification model as
it will lead to a faster, more accurate, and cost-effective
model.

For this purpose, this study has utilized a metaheuristic
approach PSO introduced by Kennedy and Eberhart [48].
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It is a stochastic population-based approach influenced by
fish schooling or bird flocking behavior. It is different from
other optimization algorithms like Differential Evolution in
terms that it does not depend on any gradient or differ-
ential gradient. It simply explores and exploits the search
space using the particle’s position and velocity information.
There are various advantages of PSO including being
computationally inexpensive, having low system require-
ments, faster convergence, easy implementation, etc [49].
It is mostly used for finding the maxima or minima of
a function defined over a multidimensional vector space.
It performs feature selection by considering the features as
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particles in a high dimensional space where each particle
in the swarm is an optimal solution. The fitness function
is calculated for each particle in the swarm based on
its position [13], [16], [19]. Each particle’s position is

represented as X; = Xj1, Xi2, .oeeuenen X;q4, where d denotes
the dimension. Likewise, every particle has an associated
velocity, denoted by V; = vi1, via, ceveeee. , Vid. After each

iteration, the velocity and position values at any time instant ¢
and ¢ + 1 for each particle are updated as shown in (2) and (3)
respectively.

Vit + 1) = wVi(t) + ciri(pbest;(t) — X;(t))
+ cara(gbesti(t) — X;(1)) ()
Xt + D) =X)+ Vit + 1) 3

In the above equations, w is the inertia constant with values
between 0 and 1. It determines how much each particle keeps
up with its previous velocity. In the same way, r; and r, are
constants selected at random, with a value ranging from O to 1.
Meanwhile, ¢1 and ¢; are coefficients linked to cognitive and
social aspects. They control the trade-off between exploration
and exploitation as c¢; helps in finding the local minima
and ¢, helps in finding the global minima among the local
minima. The determination of the optimal local and global
value is based on the variables pbest and gbest respectively.
These variables depend on the position of the particle X;(#)
as shown in (4) and (5). In order to determine the pbest
and gbest values, the fitness function (f) of a particle at
t+1 instant is compared with its fitness function at ¢ instant of
time.

pbesti(t) = Xi(0)iff (Xi) < f(pbest;) (4)
Also, gbesti(t) € {pbest|(t), ... .pbest,(t)}
|f (gbesti(t)) = min{f (pbesti(t), ... .pbest,(t)) (5)

The complete procedure for the proposed approach has
been illustrated in Algorithm 1, where the preprocessed
training set S = (p1, 1), cvvveee (Pn, gm) consisting of n rows
and m columns considered in this study where S € D, i.e.,
S could be any of the five datasets D. The selected optimal
feature set F! was then passed to the training model Random
forest. The goal was to select the feature set that maximizes
the classification accuracy and minimizes the number of
features. To achieve this goal, the fitness function (f) set for
PSO is shown in (6).

Fitness(f) = 6 x acc(f) + (1 — 0) x (1 — %) (6)
Ny

where Ny and Ny define the number of selected and total
number of features respectively. The classification accuracy
has been denoted by acc(f), and 6 signifies the weighing
factor between the classification accuracy and the number of
selected features.

3) STAGE 3: TRAINING ON RANDOM FOREST CLASSIFIER
This study has utilized a Random Forest classifier, an ensem-
ble technique for the classification of CDs as shown in
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TABLE 8. Description of different evaluation metrics utilized in this study.

Metric Formula
TP+TN

Accuracy TESFPHTNTFN
Precision w
Recall £P<+)FN o

1 1 r{a)—prl€
Kappa statistic 77« }%Epr ©
ROC FPR -
F-measure Z*Recall*Pregzgzon

Recall+Precision

Matthew’s  correlation LP+TN_FP+FN
coefficient (MCC) V/(TP+FP)(TP+FN)(TN+FP)(TN+FN)
Mean Absolute Error % S B — Oy
(MAE)
Root Mean Square Error % S (B —04)?
(RMSE)

Algorithm 1. The basic idea of RF is to form a single
strong classifier by combining multiple decision trees by
either taking the average of their outputs or taking the
majority vote. In previous works, RF has shown an excellent
performance as compared to other classifiers [12], [15]. The
reason is that it uses bagging for the ensemble process
which reduces the correlation between the trees. Also, the
variance and overfitting of the classifier get reduced [20],
[31]. Moreover, by restricting the features, the decision trees
can learn faster and hence can be built in a small amount of
time.

The algorithm 1 also considers a forest L comprising of
various small decision trees [ wherein for each / belonging to
L, it selects a bootstrap sample S* from S. Furthermore, for
each node of the tree, a very small feature set sy is obtained
from F which is then used for node splitting.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

The experimental work conducted on the four chronic
disease datasets, namely D1, D2, D3, D4, and D5 has
been thoroughly discussed in this section. The experiments
illustrate the efficacy of the components of the proposed
model by comparing them with the conventional feature
selection and classification methods. Moreover, Friedman’s
test has also been employed as a statistical test for validating
the performance of the proposed approach against previous
methods.

A. EXPERIMENTAL SETUP

All experiments were run on a Windows 11 with AMD
Ryzen 5 4600H with Radeon Graphics processor and 24 GB
RAM. All the computations in this study have been
done using three different software. The preprocessing and
classification have been done using the Weka and Jupyter
Notebook. In addition, for statistical testing, the SPSS tool
has been utilized.

B. EVALUATION METRICS
The various evaluation metrics utilized in this study for the
classification of CDs have been described in Table 8.
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TABLE 9. Value of parameters set for Genetic, PSO, Firefly, and Bat algorithm across all datasets.

Genetic Values PSO Parameters Values Firefly Parameters Values Bat Parameters Values
Parameters
Population  Size 20 Population ~ Size 20 Population ~ Size 20 Population  Size 20
(in samples) (in samples) (in samples) (in samples)
Number of itera- 20 Number of itera- 20 Number of itera- 20 Number of itera- 20
tions tions tions tions
Seed 1 Seed 1 Seed 1 Seed 1
Probability of 0.6 Mutataion type bit-flip Mutataion type bit-flip Mutataion type bit-flip
Crossover
Mutation 0.033 Mutation 0.01 Mutation 0.01 Mutation 0.01
probability Probability Probability Probability
Inertia Weight 0.33 Chaotic coefficient 0.4 Chaotic coefficient 0.4
Social weight 0.33 Absorption coeffi- 0.001 frequency 0.5
cient
Individual weight 0.34 betaMin 0.33 loudness 0.5
30 e P50 i [ ire [y Genelic Bal | =@=PS0 ==8=Firefly Genetic Bat
* Aveuracy Accuracy
25 100 g
MCC f:: Precision Moo §E Trecision
" ) A
x \
15 < ROC : Recall ROC - /I' Recall
* : ) —— el
Y/
10 ~ \\
»00¢ 2K Kappa statistics F-mensure Kappa statistics F-measure
5 S60¢ {a) Dataset D1 (b) Dataset D2
e PGS0} i Fire fly Genetic Bat e P50 et [rely Genelic Ll
0 Kb Accuracy
D1 D2 D3 D4 D5 99 g
MCC :Jq | Mo Precision

Bl PSO M Firefly M Genetic [] Bat

FIGURE 5. Representation of a minimal optimal number of features
selected by PSO, GA, Bat,and FA techniques corresponding to datasets D1,
D2, D3, D4, and D5.

In the above Table, TP, TN, FP, and FN denote True
Positive, True Negative, False Positive, and False Negative
respectively. Similarly, TPR and FPR indicate a True positive
rate and a False positive rate respectively. Furthermore, for
MAE, n is the total number of samples, E; is the expected or
actual value, and O; is the observed value i.e., the predicted
value of i;, data sample obtained by the classifier. For Kappa
statistics, P,(a) and P,(e) denote the actual and observed
accuracy respectively.

C. COMPARISON OF PSO WITH OTHER OPTIMIZATION
TECHNIQUES
This section discusses the effectiveness of the PSO opti-
mization technique by comparing its performance with
other state-of-the-art optimization feature selection methods
Genetic Algorithm (GA), Bat and Firefly Algorithm (FA).
In this regard, the parameters corresponding to PSO, GA,
Bat, and FA have been set across all five datasets for
determining the minimal optimal feature subset as shown in
Table 9.

The number of minimal attributes resulting from all four
optimization techniques are shown in Figure 5.

Different techniques provided the minimal set of features
across all the datasets except D1 as it already contained the
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FIGURE 6. Classification output parameters of Naive Bayes corresponding
to different FS algorithms for datasets a) D1 (ICBHI), b) D2 (WBCD), c) D3
(z-Alizadehsani), d) D4 (Exasens), and D5 (Diabetes).

minimal attributes. As a rule of thumb, it is known that
neither too many nor too few features should be utilized
for the prediction [25]. This study utilized the original set
of features for D1 as the resulting optimal features were
too less. For dataset D3, PSO and FA has provided the
minimal set of features and for dataset D2, FA provided the
minimal set. However, for dataset D4 all three techniques
resulted in a minimal subset of features. Also, for dataset D5,
PSO obtained a minimal optimal feature set of 9 attributes
which is higher than the feature set provided by the other FS
techniques. Furthermore, to validate the performance of PSO
over GA, FA, and Bat algorithms, Radar charts have been
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FIGURE 7. Classification output parameters of MLP corresponding to
different FS algorithms for datasets a) D1 (ICBHI), b) D2 (WBCD), c) D3
(z-Alizadehsani), d) D4 (Exasens), and D5 (Diabetes).
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FIGURE 8. Classification output parameters of SMO corresponding to
different FS algorithms for datasets a) D1 (ICBHI), b) D2 (WBCD), c) D3
(z-Alizadehsani), d) D4 (Ex ), and D5 (Diabetes).

drawn across all five datasets for different ML classifiers.
Each chart evaluates the performance of all optimization
techniques for different evaluation metrics. Firstly, the FS
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FIGURE 9. Classification output parameters of Bagging corresponding to
different FS algorithms for datasets a)D1 (ICBHI), b) D2 (WBCD), c) D3
(z-Alizadehsani), d) D4 (Exasens), and D5 (Diabetes).

techniques have been compared for the Naive Bayes classifier
as shown in Figure 6.

It can be clearly observed from the above figure that
for datasets D2, D3, and D5, PSO has shown the best
performance. However, in the case of datasets D1 and D4,
a similar number of attributes has been obtained by all the
FS techniques, consequently leading to overlapping charts.
Similarly, for MLP, SMO, Bagging, and RF, different charts
have been obtained as shown in Figure 7, 8, 9, and 10
respectively.

It is clear from the figures above that the minimal optimal
feature set obtained from PSO has greatly helped all the
classifiers in achieving the highest performance as compared
to other FS techniques.

D. COMPARISON OF RF CLASSIFIER WITH BENCHMARK
ML CLASSIFIERS

This section benchmarks the performance of the ensemble RF
classifier towards other state-of-the-art classifiers, i.e., NB,
MLP, SMO, and Bagging. In this regard, the hyperparameters
corresponding to all these classifiers have been set across all
five datasets as shown in Table 10.

Moreover, this study has employed 10-fold cross-
validation for splitting the dataset into training and testing
sets. Thereafter, the training set and selected feature set were
passed to all the classifiers for the classification of CDs. The
resulting classification performance of all the classifiers has
been compared across all the datasets for different evaluation
metrics as shown in Table 11 and 12.
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FIGURE 10. Classification output parameters of RF corresponding to
different FS algorithms for datasets a) D1 (ICBHI), b) D2 (WBCD), c) D3
(z-Alizadehsani), d) D4 (Exasens), and D5 (Diabetes).

TABLE 10. Values of hyperparameters across all the classifiers.

Classifier
Naive Bayes

Hyperparameters

BatchSize=100, Number of decimal places= 2, Kernel
estimator= False, Supervised Discretization= False
MLP BatchSize=100, decay= False, Hidden layers= a, learn-
ing rate= 0.3, momentum= 0.2, seed=0, training
time=500, Validation threshold= 20

SMO BatchSize=100, c=1.0, Calibrator= Logistics, epsilon=
1.0E-12, FilterType=Normalize Training data, Kernel=
PolyKernel, Seed=1, Tolerance parameter= 0.001
BatchSize=100, Classifier= REPTree, Number of itera-
tions= 10, seed =1

BatchSize=100, Number of execution slot= 1, Number
of iteration= 100, seed =1

Bagging

Random Forest

The results obtained from the experimentation work
illustrated two important observations.

« Firstly, a situation of accuracy paradox has been raised
for dataset D1. The performance of all the classifiers
for different metrics across dataset D1 is ideal, which
is quite impossible. This is due to the presence of a
high imbalance across the classes of dataset D1. These
biased outcomes have resulted because of the biased
data.

o Secondly, there are cases where multiple classifiers
have shown similar results corresponding to the same
metric. For example, for dataset D3, SMO, Bagging,
and RF have shown similar performance in terms of
Accuracy.

Hence, to further assess the classification performance of
the proposed approach against other state-of-the-art classi-
fiers, some statistical tests are required that are discussed in
the subsection below.
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FIGURE 11. Comparison of Accuracy, ROC, and F-measure across all
classifiers in terms of mean Rank calculated by Friedman'’s Test.
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FIGURE 12. Comparison of MAE and RMSE across all classifiers in terms
of mean Rank calculated by Friedman'’s Test.

E. STATISTICAL TESTING

In this section, a thorough comparison has been conducted
between the proposed approach and other benchmark clas-
sifiers, utilizing Friedman’s statistical test to determine the
results [19]. This test with the associated p-value has been
performed for multiple comparisons. It has been undertaken
to detect the performance difference between the PSO-RF
and different classifiers. The null hypothesis with threshold
value p = 0.05 considered for this study was that there is no
significant difference between PSO-RF and other classifiers.
The indication of a significant difference is appraised by
p<0.05. Different test statistics set for Friedmann’s test have
been shown in Table 13.

It is worth mentioning that the performance difference
between PSO-RF and other classifiers is highly significant
(»p < 0.05) for Accuracy, F-measure, and RMSE. Hence,
rejecting the null hypothesis for these parameters that, there
is no significant difference between PSO-RF and other
classifiers.

The Friedmann mean rank obtained on the above exper-
imental results for different classifiers across different
evaluation metrics is shown in Figures 11 and 12. In terms
of Accuracy, ROC, and F-measure, the higher the rank of
the classifier the better the classifier. Whereas for MAE, and
RMSE, the lower the error rank the better the classifier.
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TABLE 11. Comparison of performance of classifiers across all five datasets (D1, D2, D3, D4, and D5) in terms of accuracy (in %), ROC (in %), F-measure

(in %).

Evaluation Datasets PSO-NB PSO-MLP PSO-SMO PSO-Bagging PSO-RF

metrics

Accuracy DIl 99.6 100 100 100 100
D2 95.6 97.9 98.3 98.5 99.2
D3 97 99.1 99.7 99.7 99.7
D4 89.9 94.2 87.6 97.8 99.0
D5 87.3 90.0 84.9 90.5 93.5

ROC Dl 100 100 100 100 100
D2 98.8 99.4 98.4 99.8 99.9
D3 99.1 99.9 99.8 99.7 99.7
D4 98 98.4 95.7 99.9 99.9
D5 93.6 94.7 82.9 96.3 98.1

F-measure D1 99.6 100 100 100 100
D2 95.6 98 98.3 98.6 99.2
D3 97.1 99.2 99.8 99.8 99.8
D4 89.9 94.2 87.5 97.8 99.1
D5 87.2 90.0 84.5 90.5 93.5

TABLE 12. Comparison of performance of classifiers across all five datasets (D1, D2, D3, D4, and D5) in terms of MAE and RMSE.

Evaluation Datasets PSO-NB PSO-MLP PSO-SMO PSO-Bagging PSO-RF
metrics
MAE D1 0.027 0.018 0.1875 0.0011 0.0083
D2 0.0421 0.0235 0.0166 0.0392 0.0192
D3 0.0385 0.0121 0.0021 0.006 0.054
D4 0.072 0.0437 0.2603 0.0218 0.0135
D5 0.1516 0.1046 0.1509 0.1402 0.1231
RMSE D1 0.0768 0.312 0.2912 0.0011 0.0083
D2 0.1877 0.1362 0.129 0.1132 0.075
D3 0.1622 0.907 0.0458 0.0476 0.1004
D4 0.1934 0.1567 0.3279 0.0921 0.0727
D5 0.3173 0.2905 0.3884 0.2637 0.2284
TABLE 13. Values of different test statistics are set across different
. N . ’ 100
performance metrics during friedman'’s test.
90
Statistics Accuracy| ROC F- MAE RMSE
measure 80
Number of | 5 5 5 5 5
datasets 70
Chi-square 13.860 9.026 13.860 5.760 11.520
value 60
Degree of free- | 4 4 4 4 4 Accuracy
dom CNN-LSTM[33] mVGG[34]
Significance 0.008 0.060 | 0.008 0.218 0.021 uSVM ensemble[50] m Proposed approach

The results obtained from Friedman’s Test showed that
out of all the classifiers, PSO-RF obtained the highest mean
rank in terms of accuracy, ROC, and F-measure. Also, the
mean of MAE is similar for PSO-Bagging and PSO-RF.
Similarly, the mean RMSE is lowest for PSO-RF. Hence, it is
evidently visible from Fig. 11 and 12 that the proposed model
(PSO-RF) has risen as the best model as it exhibits the highest
ranks among all the classifiers.

F. COMPARISON OF PROPOSED APPROACH WITH
PREVIOUS METHODS

For the sake of universality and comprehensiveness, this
study further contrasts the proposed approach with other
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FIGURE 13. Comparison of Proposed approach with previous studies with
respect to ICBHI Dataset in terms of Accuracy. Convolutional Neural
Network-Long short term memory (CNN-LSTM), Visual Geometry Group
(VGG).

existing studies. A state-of-art comparison with the proposed
approach for dataset D1 has also been shown in Figure 13.
From Fig. 13, it is evident that for Datasets D1, the
proposed approach, i.e., PSORF has outperformed the
previous studies’ results by obtaining the highest accuracy
of 100%. The accuracies obtained by studies [33], [34], [50]
were way too low for dataset D1 as compared to the proposed
approach. The second highest accuracy was obtained in [50]
wherein the author utilized an ensemble of Support vector
machines (SVM). However, the study couldn’t identify the
feature importance as it utilized the radial basis function
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FIGURE 14. Comparison of Proposed approach with previous studies with
respect to WBCD Dataset in terms of Accuracy.Multilayer
perceptron+Open source development Model Algorithm (MLP+ODMA),
Support Vector Machine- Wolf Optimization Algorithm
(SVM+WOA),Particle Swarm Optimization+Artificial Neural Network
(PSO+ANN).
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FIGURE 15. Comparison of Proposed approach with previous studies with
respect to Z-Alizadehsani Dataset in terms of Accuracy.Support Vector
Machine+Q learning based Bee Swwarm Optimization (SVM+QBSO).

to derive the best-performing model. Hence, it could be
said that in terms of feature importance and classification
performance, the proposed approach performed the best for
dataset D1. For dataset D2 as can be seen in Figure 14, the
proposed approach obtained similar results as that of study
[13] in terms of accuracy.

Howbeit, this might be due to overfitting as the dataset was
left imbalanced in study [13], and also the researchers utilized
a highly computational Deep learning model for obtaining
high accuracy. Similarly, for studies [16], [17], the dataset
was left imbalanced, and no statistical tests were performed
to support the classification performances obtained by their
respective models. Therefore, in terms of computational
power, the proposed approach for dataset D2 is better than
all previous studies. Furthermore, for dataset D3, it is clearly
evident from the above Figure 15, that the proposed approach
obtained the highest accuracy of 99.7% as compared to
studies [20], [21], [23].

The second highest accuracy has been obtained by
study [21] wherein the authors utilized the LightGBM model
for the detection of CAD disease. However, the problem with
previous studies related to dataset D3 had some limitations
such as increased time complexity for study [20], no feature
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FIGURE 16. Comparison of Proposed approach with previous studies with
respect to Exasens Dataset D4 in terms of Accuracy. Deep Convolution
neural network (DCNN).
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FIGURE 17. Comparison of Proposed approach with previous studies with
respect to Vanderbilt Diabetes Dataset D5 in terms of Accuracy.

selection in study [21], and imbalance data problem in
study [23]. All these limitations have been overcome in the
proposed approach, consequently leading to better accuracy
as compared to the previous studies. Similarly, in the case
of dataset D4 as shown in Figure 16, the proposed approach
obtained the second-highest accuracy of 99.05% which is
0.5% less than the accuracy obtained by researcher [31].

The proposed approach has completely rectified the
problem of missing value by utilizing EM Imputation
whereas the problem still persists in study [31], [32]. At last,
for dataset D5, the proposed approach obtained the third
highest accuracy of 93.5% as shown in Figure 17.

The other studies [26], [27] obtained an accuracy of 98.7%
and 93.9% respectively. However, the problem with these
approaches is that the dataset had missing values and was
left imbalanced. In addition, the study [26] utilized GWO and
WOA (that should not be used as these algorithms exhibit
center bias problem) as the base feature selection technique
as their proposed model. The technique proposed in this study
is free from center bias problem and also the problem of
missingness and imbalance data has been rectified. Hence,
at last, it could be said that across all the datasets except
D5, the proposed approach, i.e., PSORF has performed the
best. It has not only detected Chronic diseases but also
multi-classified symptomatically similar diseases. This study
also has some limitations. Firstly, for dataset D1, the proposed
approach obtained almost ideal results which might be a
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result of the presence of a high imbalance in the dataset.
The ML classifiers utilized in this study are not complex
enough to deal with such highly imbalanced data. Secondly.
to tackle down the imbalance data problem, this study has
utilized SMOTE filter which might result in the generation of
some noisy data. Therefore, in the future, this study aims to
provide a suitably complex Al-based predictive model for the
multi-classification of diseases in dataset D1. Furthermore,
for the problem of imbalance dataset, different variants of
SMOTE can be applied in the future studies.

V. CONCLUSION

This study aimed to provide an efficient Machine learning
framework PSORF that can not only detect but also
Classify similar Chronic diseases such as COPD, Asthma,
Bronchiectasis, etc. For this purpose, this study considered
five different datasets across which a series of experiments
have been performed. The datasets obtained from public
repositories suffered from missing values and imbalanced
data problems that were rectified through EM Imputation
and SMOTE techniques. The processed data was then passed
through the PSO-RF framework which provided the best
optimal feature set and efficient classification result on
all the datasets. In addition, to validate the classification
performance of the PSORF framework, both PSO and
RF were compared with different metaheuristic and ML
classifiers respectively. The performance of PSO with other
metaheuristic techniques, namely firefly, Bat and Genetic
search were compared through radar graphs on the basis of
various evaluation metrics. It was evident from the graphs that
across all the datasets, PSO provided the best results. Hence,
for further evaluation, five different PSO-based classifiers
were compared by using various performance metrics. The
results showed that among all the classifiers, the PSO-based
RF classifier outperformed the other classifiers in terms
of Accuracy, F-measure, and ROC. However, there were
some classifiers whose performances were similar across
all the datasets. Therefore, for further clarification on the
classification performance of the classifiers, Friedman’s
testing was performed. The test results proved that among all
the classifiers PSO-RF achieved the highest rank indicating
that it has outperformed other classifiers. The proposed
PSO-RF framework not only classified the binary Chronic
diseases such as Breast cancer, Diabetes and Heart disease
but also classified multiple chronic diseases that were
symptomatically similar such as COPD, Asthma, Pneumonia,
Bronchiectasis, etc.
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