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ABSTRACT The accurate diagnosis of transmission line fault types is a prerequisite for quickly removing
faults and restoring power supply, as well as the key to effectively reducing user economic losses, ensuring
stable operation of the power system. The rapid development of artificial intelligence technology has been
a promising way for fault diagnosis. However, the existing methods are still limited by small simples
and accuracy of generalization. To overcome these problems, a transmission line fault diagnosis method
based on an improved multiple SVM (MSVM) model is proposed in this paper. Firstly, the transmission
line was selected as the research object, and its fault types and causes were analyzed in detail. Then,
typical fault information are selected and corresponding MSVM model is established. Meanwhile, genetic
algorithm (GA) is adopted to optimize model parameters to improve the accuracy of generalization. Finally,
an improved IEEE-30 node test system and a real-world testing data are adopted to verify the accuracy and
feasibility of the proposed method. Through analysis, fault diagnosis accuracy of the proposed method can
be improved by up to 11% with better fitness value.

INDEX TERMS Transmission line, fault diagnosis, improved multiple SVM model.

I. INTRODUCTION
In the current context of the development of the power grid,
the power system is moving towards intelligence and com-
plexity. The scale of the power grid is gradually expanding,
and the electrical coupling of internal equipment is becoming
closer [1], [2]. In order to meet the increasing demand for
load electricity, a large number of substations and transmis-
sion lines have been put into operation, resulting in a sharp
increase in the number of maintenance objects and workload
of the power grid. Due to the safe and reliable operation of
the power grid, it has always been prioritized by the power
grid, Therefore, it is necessary to increase the maintenance
cost and capital investment of the power grid, which reduces
the economic and social benefits of enterprises [3].

Scientific research has shown that the long service life of
power transmission equipment are the main factors leading to
faults [5]. The development of faults follows certain objective
laws. Generally speaking, the longer the equipment is put into
use, the more severe the aging degree of the equipment, and
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the corresponding probability of failure is also higher. The
types and severity of faults exhibited by power transmission
equipment vary over different time periods. However, the
current methods of troubleshooting are mostly fixed time
intervals, which leads to unreasonable and uncoordinated
allocation of manpower and time resources. In addition,
the power system contains a large number of mechanical
switches and power electronic devices [6].
Transmission lines play the role of energy transmission

links, which is of great significance for ensuring the stable
and reliable supply of electricity. As early as the 1990s,
Japanese power companies began to attempt to compare the
recording differences of different fault causes before and after
flashover to achieve fault cause identification for transmis-
sion lines [7]. Based on spectrum analysis, rough conclusions
such as an increase in high-order harmonic content before
pollution flashover and a low harmonic content in metal
line collision faults were obtained, which has considerable
enlightenment significance for using waveform features to
identify the cause of line faults. The fault features that
can be directly obtained from the recording file generally
include timestamp, phase feature, and instantaneous value
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feature. The timestamp feature is divided into fault season
and fault day period for characterization, and the phase
feature mainly includes fault phase number and fault inser-
tion phase angle (FIPA). The instantaneous value feature
needs to be selected in combination with statistical analysis.
On this basis, the reference [8] supplements the sequence
component characteristics of fault waveform, extracts the
zero sequence components of three-phase current and voltage
using Karenbauer transform, forms the fault feature set, and
uses CN2 rule algorithm to mine the fault cause classification
rules. References [9] and [10] analyze the fault character-
istics and discusses the feasibility of line faults caused by
lightning strikes, trees, and animals from aspects such as
timestamp, FIPA, number of fault phases, voltage drop, cur-
rent transformation rate, arc voltage, and fault impedance
estimation. After analyzing the transient current traveling
wave in reference [11], the judgment basis for lightning
faults is that the tail time of the traveling wave is less than
40 microseconds. Subsequently, scholars have observed the
impedance time-varying characteristics based on this wave-
form to achieve the judgment of non-lightning faults such as
external force damage, mountain fire, bird damage, etc. [12].
Malaysian scholars proposed voltage drop and custom fitting
coefficients in reference [13] to distinguish transmission line
faults caused by lightning strikes and tree barriers based on
the waveform shapes of voltage and current, and have suc-
cessively extracted corresponding waveform features based
on more fault cause categories [14], [15]. Reference [16]
only starts from the waveform data in the recording file and
develops fault features from three perspectives: time domain,
frequency domain, and arc. Fault phases, fault duration, fault
current component, current attenuation degree, frequency
domain energy ratio, and arc voltage are extracted as feature
quantities to develop a complete recognition logic for fault
classification. Reference [17] analyzed the characteristics of
transition resistance based on waveform recording and fault
line parameters, and calculated the evaluation resistance and
mathematical expectation as the basis for identifying the
cause of the fault. Reference [18] is based on the sensing
monitoring waveform of Foshan Lightning Location Systems
(LLSs), extracting many features of wave head shapes on the
horizontal and vertical axes of the time domain, such as peak
value, rise time, span time, etc., and exploring and analyzing
the correlation between waveform characteristic values and
line lightning faults. In reference [19], seven time-frequency
features were extracted from the perspectives of fault time,
waveform shape, and frequency domain energy spectrum to
classify a total of 9 types of fault causes.

When the power transmission line fails, the electrical
quantity information on the corresponding line changes
before the switching value information, and the electrical
quantity information has more advantages than the switch-
ing value information in accuracy, Completeness and fault
tolerance [20], [21]. With the promotion and applica-
tion of the wide area measurement system (WAMS), the

phasor measurement unit (PMU) used determines the sam-
pling reference based on real-time global positioning system
timing, synchronously collects voltage, current, and impor-
tant switch protection information of units and lines through-
out the network, and obtains information such as voltage
and current phasor, frequency and frequency change rate,
unit and line power, thus recording the transient triggered by
disturbance [22], [23]. Reference [24] proposes a fault diag-
nosis method based on WAMS temporal information, which
establishes a reference vector based on known fault types,
extracts features from unknown faults for temporal bench-
mark analysis, and identifies fault types. Reference [25]
considers the presence of poor data or noise in WAMS mea-
surement data, and proposes a data fusion method based
on temporal data correlation mining to improve the appli-
cation effectiveness of WAMS data. Making full use of the
redundancy of various data information of WAMS and the
logical relationship between them, the real-time of PMU
synchronous measurement data and the connection between
electrical quantity changes and faults can effectively reduce
the misjudgment and missed judgment of online fault diag-
nosis, and improve the efficiency of dispatchers in handling
electrical fault.

The rapid development of artificial intelligence technol-
ogy has brought new ideas to the identification of faults.
In previous studies, some mature intelligent neural networks
have been utilized in analysis circuit and lithium-ion bat-
tery fault diagnosis, and have achieved good results. For
example, in [26], a multiple kernel extreme learning machine
(MKELM) based diagnosing model is given. A novel scheme
for analog circuit fault diagnosis utilizing features extracted
from the time-frequency representations of signals and an
improved vector-valued regularized kernel function approx-
imation is built in [27]. Similarly, a novel method with
XWSE-based feature extractor and SVM is proposed in [28],
which possesses a good capability to restrain the environment
noise. In [29], a rapid multi-fault diagnosis method for the
lithium-ion battery pack is developed, which significantly
improved the operational reliability of electric vehicles. Ref-
erence [30] introduces semi supervised learning to achieve
fault recognition in unlabeled datasets. Reference [31] uses a
variational prototype autoencoder to extract signal features
and trained a decision tree to determine fault types. The
success of fault diagnosis in transmission lines primarily
relies on the alarm information obtained from the monitor-
ing devices stationed at various points in the power system.
The transmission line section is safeguarded by protective
relaying systems, including protective relays (PR), circuit
breakers (CB), and communication equipment [32]. Conven-
tional diagnostic methods are typically based on the alarm
information obtained from the remote terminal units (RTU) of
a supervisory control and data acquisition (SCADA) system.
However, when considering failed or malfunctioning PRs or
CBs, multiple faults occurring simultaneously, or a combi-
nation of these contingencies, the complexity will increase
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significantly. It is these scenarios that give rise to the incom-
plete and uncertain characteristics of fault information [32],
[33]. As a result of these incompleteness and uncertainties,
the accuracy of fault diagnosis can be reduced, or even lead
to misdiagnosis. On the other hand, the above fault identifica-
tion methods based on artificial intelligence technology have
to some extent overcome the difficulty of threshold selection,
but are limited by the short length of distribution network
lines and the single operating position of various closing
conditions. In some fault scenarios, it is difficult to construct
a sufficient and balanced dataset that can meet the training
requirements of neural networks, resulting in difficulties in
obtaining sufficient training for such models, limitations in
classification performance when applied to fault identifica-
tion, and poor recognition performance for small sample
datasets.

To overcome these challenges, this paper proposes a trans-
mission line fault diagnosis method based on improved
multiple SVMmodel. The innovation points of this paper are
as follow:

(1) At the model level, compared with Al-based algorithm
mentioned above, classification based SVM used in this
paper adopts the principle of structural risk minimization,
which guarantees better performance and accuracy of gen-
eralization. In addition, its advantages also lie in solving
small-sample, nonlinear or high-dimensional pattern recog-
nition problems, with the ability to overcome the problems of
curse of dimensionality and over-fitting. Meanwhile, in order
to further improve the accuracy of fault diagnosis, multiple
SVM are combined for fault diagnosis. Compared to tra-
ditional single SVM models, the diagnosis accuracy of the
proposed strategy has been significantly improved.

(2) At the parameter level, the direct application of tradi-
tional SVM models in transmission line fault classification
and diagnosis has significant limitations, with many prob-
lems such as low classification recognition accuracy and
algorithm efficiency. The construction method of SVM ker-
nel functions and parameter optimization methods are still
worth exploring. In this paper, genetic algorithm is adopted
for parameter optimization, which significantly improves the
accuracy of diagnosis and is easy to promote in practical
applications.

This paper is based on PMU synchronous measurement
data, decomposing electrical quantity data through symmet-
rical component method to obtain voltage phasor features,
current phasor features, and component features of faults,
forming the corresponding fault feature set; simultaneously
constructing a multi support vector machine (MSVM) diag-
nostic model to solve the problem of inaccurate diagnostic
results caused by the similarity of fault features among dif-
ferent types of faults. This method analyzes and diagnoses
fault information features, which can accurately identify fault
types and improve the accuracy of fault diagnosis in power
systems. The analysis of simulation experimental results
shows that this diagnosis can correctly and effectively iden-
tify fault types.

II. INTRODUCTION TO COMMON FAULT TYPES OF
TRANSMISSION LINES
There are many types of faults in the power grid. However,
from the perspective of fault feature analysis, most typical
faults in the power grid including high resistance fault, sin-
gle phase ground fault and other intermittent faults. In this
section, these common fault types of transmission lines are
introduced in detail.

A. HIGH RESISTANCE FAULT
In recent years, with the rise of global temperature and the
occurrence of various extreme weather events, the aging rate
of power lines has gradually accelerated. On the other hand,
unpredictable events such as intentional damage to trans-
mission lines and external force impacts by human factors
also pose a serious threat to the safe operation of transmis-
sion lines. When a transmission line suddenly breaks due to
external forces and environmental influences, and comes into
contact with surrounding high impedance objects, it often
leads to high resistance faults in the transmission line. After
a fault occurs, the current level at this time is lower than the
current level detected by short-circuit fault detection, which
often brings difficulties and challenges to online monitoring
and fault identification of transmission line status. If the fault
cannot be identified and removed in time, it may cause more
serious accidents such as fire, further expand the scope of
Electrical fault, and bring greater economic losses.

High resistance faults usually occur in medium voltage
distribution networks, and are typically caused by lightning
strikes, strong winds, and other events that cause overhead
lines to break and fall to the ground, causing them to come
into contact with high resistance grounding media. Typically,
single-phase grounding faults are the main type.

The main form of high resistance fault is the grounding
and sagging of the line, which will not directly cause the
protection device of the power grid to trip. However, the
contact and discharge of the wire with the ground and tree
branches can easily cause fire and damage to facilities such
as roads, and there is a risk of expanding the accident hazards.
For example, in early 2016, a 10kV overhead insulated cable
in central China broke and fell to the ground after friction
with a branch of the French tree, melting out large pits on the
asphalt pavement. The sparks from the combustion caused
a fire inside the surrounding residential courtyard walls; in
the winter of 2018, a cable grounding occurred in a certain
city in the western region, causing a grounding arc to cause a
fire in the cable trench, resulting in power outages for tens of
thousands of users [34]; in addition, according to the Western
Power Coordination Commission in the United States, fires
caused by power failures account for approximately 7.8%-
9.6% of forest fires, of which 54% are related to medium
voltage distribution network lines coming into contact with
vegetation [35]. At the beginning of 2009, several serious
ignition points of the ‘‘Black Saturday’’ wildfire in Victoria,
Australia were caused by a tree collision on the line, resulting
in 173 deaths and nearly $10 billion in damage [36].
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B. SINGLE PHASE GROUND FAULT
Compared to high resistance faults, single-phase to ground
faults occur in a higher proportion and frequency in the power
system. Single phase grounding faults often occur in humid
and rainy weather. There are many reasons for single-phase
grounding faults, and the most common ones include insula-
tor breakdown, single-phase lines, and contact with tall trees.
When a single-phase ground fault occurs in the power system,
it is often accompanied by the generation of overvoltage. This
not only affects the normal electricity consumption of users,
but also poses great harm to the safety of electrical loads,
and even causes phase to phase short circuits and burns out
electrical equipment.

C. OTHER INTERMITTENT FAULTS
This type of fault includes faults caused by line icing, pol-
lution flashover, bird damage, and lightning strikes, which
have the characteristics of randomness and unpredictability.
When intermittent fault occurs, it is often accompanied by
intermittent discharge, and arc light is often generated during
discharge. In addition, the duration of intermittent faults is not
fixed, ranging from a few seconds to several hours. In recent
years, with the introduction of newmaterials, drones, and bird
driving robots, the proportion and scope of such failures have
gradually decreased.

III. PRINCIPLES OF FAULT DIAGNOSIS METHODS FOR
TRANSMISSION LINES
The fault diagnosis of transmission lines mainly relies on the
monitoring information fed back by the measurement devices
installed in the power system. According to the type of
data used, the operating status of transmission lines, and the
monitoring method, fault diagnosis methods for transmission
lines can be classified into single terminal distance mea-
surement and double terminal distance measurement, online
distance measurement and offline distance measurement, etc.
In addition, when a fault occurs in the power system, some
parameters of the power system tend to have corresponding
sudden changes, such as voltage sag and current surge, and
the measurement of voltage and current is relatively easy,
so this section selects the phasor of voltage, the phasor of
current, and the phase angle as the fault information elements
of the system, uses multi SVM model to classify the fault
information, and then judges the fault type of the transmission
line. As shown in Fig. 1, SVM has unique advantages in
processing small samples, nonlinear, and high-dimensional
information, and is now widely used in the fields of classifi-
cation recognition and fault diagnosis. The detailed principles
are as follows.

Firstly, according to the symmetrical component method,
the electrical components obtained at the time of fault can
be decomposed into three components: positive sequence,
negative sequence, and zero sequence, represented as P+,
P−, and P0, respectively. The expression is as follows:[

P0
P+

P−

]
=

1
3

[
1 1 1
1 a a2
1 a2 a

] [
R
T
S

]
(1)

FIGURE 1. The structure of SVM model.

In equation (1), a represents 120 ◦ phase advance; R, T
and S are the electrical quantitiesmeasured on the three-phase
circuit. When a fault occurs, its zero sequence component is
usually 0, but under asymmetric faults such as single-phase
grounding faults, the zero sequence component is not 0,
and the decomposed quantity should meet the following
requirements (2)-(3):

|U−| ≪ |1 − U+| (2)

|U0| < 0.004Upu (3)

Here,Upu is the standard unit value of voltage, with a refer-
ence voltage of 220kV and a reference capacity of 334MVA.
According to the above component method, different fault
information components can be extracted and decomposed.
Then, the method of multiple support vector machines is used
to diagnose and classify the fault feature information obtained
above. When a fault occurs in power system, the correspond-
ing electrical information will change, such as voltage dips,
current surges, etc. According to the definition of electrical
phasor in IEEE Standard 1159:2009, voltage phasor, current
phasor, and phase angle are selected as fault information to
perform fault diagnosis. In theory, after the decomposition of
fault voltage phasors other than single phase to ground faults,
their zero sequence components should be zero. But to avoid
interference from weak zero sequence components, the value
is set as 0.004 in eq. (3)

The basic idea of SVM is to select a hyperplane in the data
space. After the plane is selected, the collected data will be
divided into two parts. In order to enable the obtained plane
to correctly reflect the category of samples, we can apply the
idea of optimization to transform the problem of constructing
the optimal hyperplane into an optimization problem with
certain constraints, which can be expressed as follows (4):

L (w, θ) =
1
2
wTw+ µ

n∑
i=1

θi (4)

Here, L represents the classification interval between the
sample and the Hyperplane; w represents the weight value
of the sample when separated; N is the number of samples;
µ is a penalty factor, its value is usually greater than 0,
which can adjust the loss caused by singular points on the
system, balance the complexity of the algorithm, and sample
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error; θi representing relaxation variables and can ensure the
accuracy of classification even when the sample cannot be
linearly segmented in an ideal state. Kernel function is an
important concept in SVM, which is used to map nonlinear
separable data into high-dimensional space. Commonly used
kernel functions include linear kernel function, polynomial
kernel function, RBF kernel function, and sigmoid kernel
function. Different kernel functions correspond to different
mapping methods and have different processing capabilities.
In practical applications, it is necessary to select appropriate
kernel functions based on the characteristics of the problem.
Linear kernel function is the simplest kernel function and can
map raw data into linear space, which is suitable for linearly
separable problems. For linearly indivisible problems, the
performance of linear kernel function is poor; polynomial
kernel function has high nonlinear mapping ability and is
suitable for problems with complex nonlinear structures, but
its computational complexity is relatively high; RBF kernel
function is a widely used kernel function, which has strong
nonlinear mapping ability and relatively low computational
complexity, making it excellent in many practical problems;
Sigmoid kernel function maps the raw data into a space close
to the activation function of the neural network, which is suit-
able for problems with certain nonlinear structures. However,
in some cases, sigmoid kernel function may cause the kernel
matrix to be not positively definite, thereby affecting the
training and prediction of SVMmodels. Therefore, the kernel
function adopted in this article is the RBF kernel function and
its expression is shown in (5):

F
(
li, lj

)
= exp

(
−γ

∥∥li − lj
∥∥2) (5)

γ represents the parameter that determines the control
range of the RBF function, which is called the width parame-
ter; li and lj are the basic eigenvectors used in the function.
In this paper, a ‘‘1 to N’’ strategy is adopted to build a
diagnostic model for multi-SVM (MSVM). TheMSVM fault
diagnosis box designed in this paper includes two SVMmod-
els, which are trained using different fault samples. The first
SVM model is a binary classification model, which is used
to determine whether there is a fault occurring at the current
moment; the second SVM model is a three class model,
which is used to determine the type of fault (single-phase
ground fault, interphase short circuit fault, and three-phase
ground fault). Considering the possibility of abnormal sta-
tus, missed/false alarms of relay protection devices and data
collection devices in the power system, this paper compares
and fuses the diagnostic results of the two diagnostic boxes
to obtain the final diagnostic result.

During the training process, the different values of param-
eters µ, γ , θi have a significant impact on the diagnostic
accuracy of each SVM model. To improve the accuracy of
fault diagnosis results, this paper uses genetic algorithm (GA)
to optimize the parameter configuration of each SVMmodel,
and classify the fault diagnosis results. The specific optimiza-
tion steps are as follows:

(1) Encode the parameters µ, γ , θi that need to be opti-
mized, and then generate chromosomes, where unknown
variables x1, x2, and x3 replace the aforementioned param-
eters to be optimized;

(2) In order to avoid the phenomenon of insufficient or
overfitting in GA-MSVM model, this paper adopts a cross
validation method to select the most suitable parameters
for SVM. In the cross validation process, the obtained training
set is divided into five equally sized subsets. During each
validation, the first four subsets are used as the training set,
and the fifth subset is used as the validation set to check
whether each SVM is correct. Meanwhile, select fMAPE as the
indicator to measure the suitability of the validation, and its
expression is shown in equations (6):

fMAPE =

m∑
i=1

∣∣∣REi−PRiREi

∣∣∣
m

× 100% (6)

Here, m is the number of samples in the training set; REi is
the actual value; PRi is the predicted value.
(3) Then, generate 20 sets of chromosomes and calculate

the degree of adaptation of each set of chromosomes to the
sample according to equation (6).

(4) After continuous selection, crossover, and mutation
operations, replacing the old population with a new one,
the probability of generating new chromosomes is adjusted
to 0.8, and the probability of mutation is adjusted to 0.05.

(5) Repeat steps (3) and (4) until the upper limit of the
number of iterations is reached.

The detailed flowchart of optimizing SVM using GA is
shown in Fig. 2.

FIGURE 2. Flowchart of optimizing SVM using GA.

VOLUME 11, 2023 133829



P. Sun et al.: Transmission Line Fault Diagnosis Method Based on Improved Multiple SVM Model

Finally, to gain a better understanding, a practical oriented
research diagram is given. As shown in Fig. 3, when the pro-
posed method is applied in practice, it can be divided into the
following steps: (1) Data collection:Measurement equipment
collects electrical data of transmission lines under normal
working conditions and various fault conditions; (2) Data
transmission: Transfer the collected data to the power system
control center; (3) Raw data preprocessing: Adopt methods
such as denoising and filtering to reduce the impact of noise
on feature extraction; (4) Training and testing: Use symmet-
ric component method to extract features from processed
data and obtain electrical feature parameters that reflect fault
information; input the filtered features into the SVM for
training, and obtain a classifier that can distinguish different
fault types; (5) Decision making support: Input the features
of the data to be diagnosed into a trained SVM classifier to
recognize fault types; (6) Line maintenance: Based on the
fault diagnosis results, workers conduct line maintenance.

FIGURE 3. A practical oriented research diagram.

IV. CASE STUDY
In this section, two cases are given to verify the accuracy and
feasibility of the proposed method. The first case uses the
IEEE-30 standard testing system and the second case uses
data from the actual power grid. This paper selects voltage,
current, and phase angle as fault information. In these two
cases, the data sources are collected by simulation and real
power grid operation data from SCADA, which can provide
normal and accident power flow information for the power
grid. The fault information of transmission lines presents
characteristics such as multiple sources, heterogeneous infor-
mation, large quantity, and numerous attributes, making it
difficult to ensure data integrity, effectiveness and consis-
tency. In order to construct an accurate transmission line
fault diagnosis model, it is necessary to effectively clean
multi-source heterogeneous data and apply statistical and
clustering methods to eliminate abnormal data. It should
be noted that voltage and current data are usually recorded
in the form of standard unit values, and there is a sig-
nificant deviation between the voltage and current values
under fault conditions and normal values. Therefore, standard

normalization is used to preprocess the data, bringing the
order of magnitude of each attribute in the input data closer
to improve the accuracy of fault diagnosis. In addition, the
location of the fault can be obtained based on the action of
measuring equipment and relay protection equipment.

A. THE INTRODUCTION OF TEST SYSTEM
To verify the accuracy and feasibility of the proposed method
to identify faults, this section firstly constructs an IEEE-30
node testing system simulation model in ATP-EMTP, sets
corresponding faults, and analyzes fault feature information.

Fig. 4 shows the topology of IEEE-30 node testing system,
in which faults are set for fault experiments. Table 1 shows
the setting parameters of the simulation when three different
single-phase to ground short circuit faults occur. The fault
duration refers to the time from the system recording the start
of the fault to its removal; the fault location refers to the
distance between the location where the fault occurred and
the monitoring station.

FIGURE 4. Topology of IEEE-30 testing system.

TABLE 1. ATP EMTP simulation test parameter settings.

Set a fault on the line between node 9 and node 10 in the
system shown in Fig. 4. The fault type is single-phase ground
short circuit fault. After using GA, the value of µ and γ are
6.7619 and 10.5438, respectively.

B. THE FEASIBLITY OF THE PROPOSED METHOD
After a fault occurs, the voltage and current waveforms of
the line between two points are shown in Fig. 5 and 6.
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FIGURE 5. Voltage waveform changes of transmission lines under
single-phase ground fault.

FIGURE 6. Current waveform changes of transmission lines under
single-phase ground fault.

It can be observed that after a fault occurs, the voltage ampli-
tude rapidly decreases while the current amplitude rapidly
increases, indicating that electrical variables are very sen-
sitive to faults. Almost at the moment of fault occurrence,
voltage and current undergo corresponding changes. There-
fore, using electrical information for fault diagnosis can
greatly improve the system’s response speed.

Extract the components of the voltage and current obtained
in the above fault scenario, and perform fault diagnosis on
them. The calculation accuracy comparison between tradi-
tional SVM model and the proposed model is shown in
Table 2. It should be noted that the data sample contains
a total of 200 sets of data, of which the first 100 sets are
used for training and the last 100 sets are used for testing.
By analyzing the test results, it can be seen that the designed
fault diagnosis box has a correct rate of 86% and 85%
for this group of faults, respectively. This indicates that the
unoptimized setting of parameters has poor resolution ability
for similar faults. Select appropriate optimization value of
parameters and construct SVM, the results of testing using the
optimized GA-MSVM model are also shown in Table 2. The
accuracy rates of the two diagnostic boxes are 97% and 96%,
respectively. From the above comparison, it can be clearly
seen that the accuracy of the optimized GA-MSVM will be
greatly improved, and the feasibility and effectiveness of this
method have been verified.

TABLE 2. Comparison of fault diagnosis accuracy between the method
proposed in this paper and traditional SVM models.

In order to further demonstrate the accuracy of the method
proposed in this paper, the method used in this section is
compared with conventional methods. In the comparison of
examples, the PSO-SVM model is used for effectiveness
comparison. The PSO-SVM fault diagnosis box only con-
tains one four classification SVM diagnostic model, which
is used to determine the state of the line (normal operation,
single-phase ground fault, interphase short circuit fault, and
three-phase ground fault). The algorithm proposed in this
paper can achieve an accuracy of 97% for the diagnosis of
transmission line faults. The accuracy of fault diagnosis using
conventional SVM models is 86%, and the accuracy of fault
diagnosis using PSO-SVMmodels is 93%. It is not difficult to
find that the fault diagnosis accuracy of the method proposed
in this article is significantly higher than that of conventional
SVM and PSO-SVM models, and the convergence time is
approximately unchanged. In summary, the method proposed
in this paper can significantly improve computational accu-
racy and is more suitable for on-site applications.

In addition, the original ratio of training and testing data
is 5:5. When the ratio of training and testing data are 7:3 and
8:2, the fault diagnosis accuracy are 93.2% and 94.0%, which
are slightly greater than that with original ratio. In fact, it is
generally believed that the larger the training dataset, the bet-
ter the performance of themodel and the higher the diagnostic
accuracy. The method proposed in this paper can meet the
requirements of online computing and conduct relevant acci-
dent analysis. On the other hand, although relay protection
equipment can achieve rapid fault isolation, due to some fault
situations such as high resistance faults where the amplitude
of various signals is small and the fault characteristics are
weak, traditional relay protection equipment has difficulty
in feature extraction, poor flexibility in threshold selection,
and some extreme fault scenarios such as line ending faults
and thousands of ohm level faults, which result in missed
judgments and the low reliability of fault identification.

C. REAL-WORLD OPERATION DATA TEST
To further demonstrate the effectiveness and feasibility of the
proposed method in this paper, a real-world case is given.
Relevant real-world operation data in substation are adopted
and detailed information are given in Table 3.
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TABLE 3. Detailed information of real-world operation data in substation.

The method proposed in this paper is compared with the
methods proposed in references [26] and [27] for case study.
The selection results of the number of testing set and train-
ing set are shown in Table 4. The results of using different
methods to diagnose transmission line faults are shown in
Fig. 7 and Table 5. For the power system, it is mostly in
a normal operating state and rarely experiences faults. The
most common type of fault is single-phase grounded fault,
and the frequency of three-phase grounded fault occurring is
the lowest. Therefore, sample values are different for different
situations of substation.

TABLE 4. Selection results of the number of training and testing set.

FIGURE 7. Diagnostic results of fault and normal status using different
methods.

It can be observed from Figure. 7 and Table 5 that the
method proposed in this paper has significant advantages in
determining the normal or fault status of the transmission
line. Comparedwith the abovemethods, the proposedmethod
i.e., SVM model can guarantee better performance and accu-
racy of generalization. In addition, its advantages also lie
in solving small samples, non-linear or high dimensional
pattern recognition problems, with the ability to overcome

TABLE 5. Type judgment results using different methods under different
scenarios.

the problems of course of dimensionality and over fitting.
Through analysis, the accuracy of themethod proposed in this
paper is 98.2%, while the accuracy of the methods proposed
in references [26] and [27] is 96.4% and 96.8%, respectively.
The proposed method has higher accuracy. This is because
the classifier used in references [26] and [27] essentially
performs a normalization operation on the final classifica-
tion result that conforms to the probability distribution. Its
classification performance is easily affected by the number of
samples and the distribution of sample categories. When the
number of samples is small, the model is difficult to obtain
sufficient training, resulting in classification results biased
towards a larger number of categories.

In addition, the issue of whether a fault has occurred is a
binary classification problem. We choose four indicators to
judge: true positive rate, true negative rate, false positive rate,
false negative rate The specific definitions of each indicator
are as follows:

Result 1: The transmission line is in normal operation.
Result 2: The transmission line is in a faulty state.
True positive rate: Judge result 1 correctly.
True negative rate: Judge result 2 correctly.
False positive rate: Judge result 2 as result 1.
False negative rate: Judge result 1 as result 2.
It can be observed from Table 6 that the indicators of the

proposedmethod in this paper havemade significant progress
compared to the existing methods proposed by [26] and [27].
In fact, the improved MSVM model proposed in this article
includes two SVMs. The first SVM is used to determine
whether a fault has occurred; the second SVM is used to
determine the type of fault. True negative rates are a common

TABLE 6. Comparison of indicators for different methods.
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indicator used to evaluate the effectiveness of SVM classifi-
cation. Here, we use true negative rates to reflect the accuracy
of the first SVM model in determining whether a fault has
occurred. At the same time, the true negative rate is generally
lower than the true positive rate, because compared to normal
conditions, the electrical information of transmission lines
in fault conditions will be more complex, making it more
difficult to correctly identify faults. The computational time
of the proposed method is 468 6s, which is less than the
time required for on-site troubleshooting and transmission
line maintenance. It should be noted that 468.6s mentioned
in this paper is total calculation time instead of protection
time. In practical application, the protection time usually
takes tens of milliseconds. The total calculation time consists
of the following components: data processing time, training
time, parameter optimization time, and fault diagnosis time.
It should be noted that 468.6s is the total calculation time
for the first use of the GA-MSVM model. After the model
training is completed, the subsequent calculation time will
be shorter than the initial calculation time. Therefore, the
proposed method can provide auxiliary decision-making for
operators and meet practical engineering needs.

Finally, we also compared the fitness performance of the
proposed method with the PSO-SVM model, and the results
are shown in Figure 8. It can be clearly observed that the
convergence of the method proposed in this paper is better,
creating good conditions for online application and analy-
sis. GA and PSO are both typical heuristic algorithms that
attempt to simulate the adaptability of individual populations
based on natural characteristics. They both use certain trans-
formation rules to solve complex problems through search
space, so PSO and GA are usually used to optimize SVM’s
model parameters. In the GA algorithm, chromosomes share
information with each other, so the movement of the entire
population is relatively uniform towards the optimal region.
The particles in PSO only share information by searching for
the current optimal solution, so this is largely a single item
information sharing mechanism, and the entire search and

FIGURE 8. Fitness values comparison between different methods.

update process follows the current optimal solution. In addi-
tion, GA already has mature convergence analysis methods,
and can estimate the convergence speed.

V. CONCLUSION
Focusing on how to fully utilize existing historical monitoring
data for fault diagnosis of transmission lines, this paper first
provides a detailed introduction to the causes and hazards
of common faults such as high resistance grounding, single-
phase grounding faults, and other intermittent faults, as well
as fault diagnosis methods represented by the GA-MSVM
model. Finally, the given cases demonstrate the accuracy and
feasibility of the proposed method. Through analysis, the
following conclusions can be summarized:

(1)The proposed method can fully extract and utilize fault
feature information, especially with small samples, to ensure
better performance and accuracy of generalization. Com-
pared to traditional methods, the fault diagnosis accuracy of
the proposed method can be maintained at over 95%, and can
be improved by up to 11% compared to traditional methods.
On the other hand, the proposed method has good conver-
gence in terms of fitness values, which creates conditions for
online applications and data analysis.

(2)The new principles of fault analysis for power systems
with high consumption of renewable energy are potential next
research directions. The theoretical basis of existing fault
analysis is based on the assumption of the dominant fault
state system variation characteristics of infinite synchronous
generator units. Therefore, it is necessary to explore whether
the basic principles of fault analysis will change when the DG
is large-scale connected to the power grid.

(3) The combination of new algorithms such as artificial
intelligence and traditional methods in the field of protection
still needs to be studied. The complexity of fault features
makes it difficult for diagnostic algorithms based on a single
feature quantity and a single criterion to ensure reliability in
various scenarios. With the continuous maturity of artificial
intelligence algorithms and decision theory in engineering
applications, it is worth further research on how to combine
them with traditional methods.
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