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ABSTRACT Speech emotion recognition and its precise classification are challenging tasks that heavily
depend on the quality of feature extraction and selection for speech signals. Many feature selection
algorithms have been proposed to achieve recognition, however, their accuracy has not reached a satisfactory
level. We introduce an improved equilibrium optimizer (iEO) algorithm and utilize mel frequency cepstral
coefficients (MFCCs) and pitch features for emotion recognition. The transfer function is used to complete
the binarization of iEO (BiEO), and the algorithm adopts multi-swarm and transfer functions to balance
global search and local search. The performance of the proposed algorithm is verified using four English
speech emotion datasets, eNTERFACEOQS, ryerson audio-visual database of emotional speech and song
(RAVDESS), surrey audio-visual expressed emotion (SAVEE) and toronto emotional speech set (TESS). The
experimental results illustrate that the proposed algorithm obtains an accuracy of 0.4923, 0.5581, 0,5575 and
0.9840 in eNTERFACEOS5, RAVDESS, SAVEE and TESS based on K-nearest neighbors, and an accuracy
of 0.5279, 0.5862, 0.6752 and 0.9941 based on random forest.

INDEX TERMS Speech emotion recognition, feature selection, equilibrium optimizer, transfer function.

I. INTRODUCTION

Artificial intelligence has recently made significant progress
in engineering applications [1], [2]. However, we are still
unable to interact with machines naturally due to their
inability to understand our emotional states or behaviors
(31, [4].

Speech signals include information about speakers’ age,
gender, religion, origin, and emotional state. They are
the best source for effective computing, and they are
acquired more easily than other biological signals. There
are many conditions for recognizing emotional individuals,
such as human-robot interaction, entertainment, business
applications, computer games, audio monitoring and call
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centers. As a result, most researchers place a high priority
on speech emotion recognition (SER). The main goal of
this research is to develop algorithms and models that can
accurately identify and classify happiness, sadness, anger,
fear, and more, based on acoustic features present in speech
signals [5], [6].

The process of SER involves several steps. First, audio
data containing human speech is collected and pre-processed
to extract relevant acoustic features, such as pitch, intensity,
and spectral information. Next, machine learning techniques
build models that can learn and recognize patterns in these
acoustic features. Once the models are trained, they are used
to predict emotions.

Feature extraction converts raw speech signals into numer-
ous features, and feature selection improves the efficiency
and performance of emotion recognition systems. Feature
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selection identifies the most relevant and discriminative
acoustic features, while it is an NP hard task when dealing
with a large feature space [7].

Metaheuristic algorithms generally tend to find better
solutions through trial-and-error methods [8]. Although
metaheuristics can usually discover near-optimal solutions
with less computational effort than traditional optimization
algorithms, they are not guaranteed to find the optimal solu-
tion [9], [10]. Metaheuristic algorithms efficiently explore
the search space of feature subsets and reduce computational
overhead [11], [12].

Equilibrium optimizer (EO) is a relatively new meta-
heuristic algorithm inspired by the behavior of individuals in
ecosystems [13]. It was proposed by Shahryar Rahnamayan
and Hamid R. Tizhoosh in 2018. EO searches for optimal
solutions by simulating the interaction among individuals and
their equilibrium behavior. Many efforts have been made
to adapt EO for feature selection. Using principles from
chaos theory, [14] addressed the issues of slow convergence
and local optima trapping in the original EO algorithm.
Chaotic maps have been added to the optimization process
of EO to achieve an effective search. Additionally, eight S-
and V-shaped transfer functions are employed to implement
feature selection. Reference [15] utilized Entropy to enhance
the performance of EO. Levy flight is employed to discover
new solutions and improve the algorithm’s global search,
while local optimality is avoided by various jumps. Through
using S- and V-shaped transfer functions, [16] brought binary
EO as a powerful and efficient optimization technique for fea-
ture selection. Reference [17] combined the ReliefF guided
approach with a novel binary EO that utilizes S- and V-shaped
transfer functions for efficient feature selection in machine
learning and data analysis tasks. Reference [18] advanced
EO with Cauchy mutation, opposition-based learning (OBL),
and a novel search approach. The population’s diversity
is enhanced by OBL, and the algorithm’s exploration and
exploitation are improved by the novel search and the Cauchy
mutation. The solutions are converted into binary forms by
time-varying S- and V-shaped transfer functions.

Although researchers have applied various algorithms to
identify emotions, this task remains challenging. Because
there is no theoretical basis to directly represent the features
of human voice and associate them with different emotional
states. We want to find the most useful emotional features
from mel frequency cepstral coefficients (MFCCs) and pitch
to improve recognition accuracy. Compared with particle
swarm optimization (PSO) and gray wolf optimizer (GWO),
EO presents great performance in CEC benchmark functions
and engineering applications. It has fast convergence, and it
is suitable for high-dimensional optimization. In this study,
we investigate EO to recognize speech emotion through
feature selection, and the primary contributions of this paper
are summarized as follows:

(1) Propose a model for extracting speech emotion
features.
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(2) Propose an improved EO to implement feature
selection.

(3) Propose a multi-swarm to balance the exploration
and exploitation of EO. Each sub-swarm adopts a uniquely
transfer function to implement searching, and the whole
population shares the global information.

(4) Validate the accuracy, precision, recall and F1-Score
of the proposed algorithm on four English speech emotion
datasets.

The structure of this paper is organized as follows.
Section II presents related works on SER. Section III
introduces feature extraction, and the proposed feature
selection algorithm. Section IV discusses the experimental
results, and Section V provides the conclusion of the work.

Il. RELATED WORKS

Metaheuristic algorithms have proven to be more reliable in
classification tasks. Yogesh et al. developed a novel hybrid
algorithm that combines PSO’s search ability with BBO’s
diversity [19]. This hybrid optimization technique efficiently
searches the large feature space of speech signals, and selects
the most relevant features for emotion and stress recognition.
Huang and Epps partitioned speech signals into smaller
segments, and extracted acoustic features from them [20].
These partition-based features capture specific emotional
cues present in different parts of speech, and provide a more
detailed representation of emotional dynamics in continuous
speech. By considering phonetic context, they are expected
to encompass the influence of specific speech sounds and
linguistic elements on emotional expression. Kalhor and
Bakhtiari utilized the information from multiple speakers
and emotions for classification [21]. Instead of treating each
speaker and emotion separately, the model jointly optimize
feature selection across multiple tasks, and it identifies
the features that are relevant for emotion recognition of
different speakers. Yogesh et al. used high order spectral
analysis (HOSA) to extract BSF and BCF from speech [22].
By combining these features with the standard 2010 inter-
speech features, the performance of a real-time SER system is
further enhanced. The selected features generalize the model,
and also reduce computational cost. Yildirim et al. modified
the initial generation of metaheuristic algorithms [23], and
evaluated the method on the nondominated sorting genetic
algorithm II (NSGA-II) and the cuckoo search (CS) algorithm
for SER.

In addition to metaheuristic algorithms, deep learning
techniques have recently been demonstrated their superi-
ority over traditional machine learning methods in SER.
Sheikhan et al. employed a hybrid approach to obtain
the optimal weights setting and structure of a recurrent
neural sentiment classifier with gravity search algorithm
(GSA) and its binary version [24]. A rich feature set is
constructed by speech signals related to affinity, speech
quality and spectrum, and a fast feature selection method
chooses more effective features. Mao et al. presented an
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innovative approach for SER by combining an improved
decision tree algorithm, a layered feature selection strategy
and a neural network [25]. The layered strategy involves
a step-by-step process of feature evaluation and selection,
including correlation analysis, mutual information, and other
feature ranking methods. Amjad et al investigated the benefits
of deep convolutional neural network (DCNN) [26]. They
extract features from speech emotion databases using a pre-
trained framework, and employ a feature selection approach
to find the most influential features for SER. They classify
seven emotions using K-nearest neighbors (KNN), support
vector machine (SVM), decision tree (DT), random forest
(RF), and multilayer perceptron classifier (MLP). SER has
limitations in speech misunderstanding, data labeling, and
other issues. Kumaran et al. extracted acustic features using
MFCCs and gamma tone frequency cepstral coefficients
(GFCCs) [27], and then utilized a deep convolutional current
neural network to recognize emotions.

Although EO has demonstrated advantages in engineering
applications, its research on SER is still limited. Dey et al.
proposed a low-cost computational model for classification
[28]. They utilize golden ratio optimization (GRO) and
EO for feature selection. The input features are optimized
for the XGBoost classifier where they are chosen from
linear prediction cepstrum coefficient (LPCC) and linear
predictive coding (LPC). To improve the accuracy of SER
and reduce the burden of computational cost, Bagadi et al.
proposed a robust metaheuristic feature selection model
where CS and EO find the optimal features [29]. The hybrid
algorithm achieves high emotion recognition in EMO-DB
and RAVDESS.

Ill. MATERIALS AND METHOD
This section describes the proposed model, depicted in
Figure 1. It includes pre-processing, feature extraction,
feature selection and classifiers.

A. PRE-PROCESSING

The pre-processing of audio signals involves a series of
steps to prepare and enhance audio data before it is used
in speech recognition or music analysis. These steps are
essential to improve the quality and reliability of audio data
for subsequent analysis.

1) PRE-EMPHASIS

In audio signals, high-frequency components typically con-
tain important information related to speech and other sound
characteristics. However, during recording or transmission,
low-frequency components tend to carry high energy and can
dominate signals. As a result, high-frequency components
may become less prominent and harder to detect, leading to
the potential loss of valuable information. Pre-emphasis helps
address this issue by applying a high-pass filter to amplify the
amplitudes of high-frequency components in audio signals.

y(n) = x(n) —ay(n — 1) ey
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where y(n) and x(n) imply the output and input signals at time
index n, and « is a constant, which is usually set to 0.97.

2) FRAMING

Framing is a valuable tool for analyzing audio signals because
they are non-stationary, meaning their characteristics change
over time. In each frame, there is a fixed number of audio
samples representing a small portion of the original audio
signal. By analyzing these short segments through framing,
we can capture temporal changes and extract essential
features that are crucial for different audio analysis tasks.

N = (L — win_size)/inc + 1 2)

where L is the length of a signal, win_size is the length of a
frame, and inc is frame shift.

3) WINDOWING
Windowing reduces the abrupt changes in amplitude that
would otherwise occur at the boundaries of segments. These
abrupt changes introduce unwanted frequencies and cause
spectral leakage.

Commonly used window functions consist of the Ham-
ming window, Hanning window, Rectangular window, and
Blackman window. Each window function has its own
characteristics, and the choice of window depends on specific
applications.

2nn
N -1
where N is the length of a window, and n is a value within
[0, N-1].

w(n) = 0.54 — 0.46 *x cos(

) 3

B. FEATURE EXTRACTION

Speech signals are divided into frames of 25ms with a 10ms
overlap by the Hamming window, and then the fast fourier
transform determines the power spectrum of each frame.
We extract MFCCs and pitch features from raw audios.
A total of 141 features are extracted, and Table 1 describes
their details.

1) FAST FOURIER TRANSFORM (FTT)

Fast fourier transform is an algorithm that can efficiently
compute discrete Fourier transform (DFT) and its inverses
for given data points. FFT significantly reduces the compu-
tational complexity of DFT, and it is suitable for real-time
applications.

0-1 L
Xk = wmyxymxe O @
n=0

where X (k) is the frequency spectrum at bin &, and O is the
number of samples in a frame.

2) MEL-SCALE FILTER BANK
Mel-scale filter bank is designed to replicate the non-linear
relationship between frequency and perceived pitch by
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FIGURE 1. The flowchart of the proposed model.

TABLE 1. The details of features.

v

Feature extraction

|

Feature selection

A,

Classifiers

Output
— .
emotion category

Features Details
the min, max, mean, median and variance value of each coefficient
MFCC . . . . ..
the min, max, mean, median and variance derivatives of each coefficient
spurt length
Pitch the min, max, mean, median and variance value of each pitch

the min, max, mean, median and variance derivatives of each pitch

human ears. Mel-scale is mathematically defined based
on psychoacoustic studies that analyze human auditory
perception.

Mel(f) = 2595l0g10(1 + fm) (5)
where f is frequency.
k—fom—1) L
W fm—1) <=k <= f(m)
Hpu(k) = _m — — —
Fnt D —pemy SRS D
0 else

(6)

3) LOG ENERGY

Log energy is a common feature in speech recognition, and

it produces valuable information about the intensity and

loudness of audio signals within each time frame. Combined

with other features like MFCCs and delta features, log energy

builds effective and robust audio signal processing systems.
N-1

som) = In(Y_ X(k)*Hp(k),0 <=m <=M  (7)

k=0

4) DISCRETE COSINE TRANSFORM (DCT)

Discrete cosine transform converts a sequence of data points,
typically in the spatial or time domain, into cosine function
coefficients in the frequency domain. The main advantage of
DCT is that it can concentrate most of the signal energy into
a few low-frequency coefficients, while involve less valuable
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messages in high-frequency coefficients. Through quantizing
and discarding less significant coefficients, DCT achieves
efficient data compression and preserves essential features for
human perception.

N 7(m — 0.5)n

C(n) = Z s(m)cos(————), n

=12,....L (8
N ®)

m=0

where L determines the number of MFCCs, and it is set to
13 in this paper.

5) MEL-FREQUENCY CEPSTRAL COEFFICIENTS

MEFCCs are powerful features for audio and speech process-
ing tasks because they effectively capture essential spectral
information while reducing the dimensionality of feature
space. They have been widely adopted in SER, speaker
identification, music genre classification, and various other
audio-related applications due to their effectiveness and
robustness. MFCCs play a crucial role in advancing the field
of audio signal processing, and they are a standard feature
representation in audio processing systems. Figure 2 exhibits
the model of MFCC.

C. IMPROVED EQUILIBRIUM OPTIMIZER

FOR FEATURE SELECTION

To obtain the optimal features from MFCCs and pitch
features, we need to calculate 24! - 1 times, which is almost
impossible. Therefore, we utilize the improved EO as a
feature selector to acquire an approximate optimal solution
within an acceptable time range.
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FIGURE 2. The model of MFCC.

1) EQUILIBRIUM OPTIMIZER
Equilibrium optimizer randomly initializes the positions of
the population and its position update is defined as follows.

G(n)
Xi(n + 1) =Xeq(n) + (Xi(n) — Xeg(n))F (n) + T(l —F(n))

&)

where X,, represents the equilibrium pool, and it is con-
structed by the positions of the first four optimal solutions
and their average value. The algorithm randomly chooses one
from X, for each run.

F controls the balance between exploration and exploita-
tion, as shown in Eq. (11).

tn) = (1 — L)@Wﬁm) (10)
Max_iter
F(n) = sign(r — 0.5)[e '™ — 1] (11)

where Max_iter denotes the maximum iteration. A and r are
two random numbers within the rage [0,1]. Sign is the signum
function of Matlab. G assists the algorithm in acquiring better
performance, and it is computed as follows.

Gop — { 051 if(r, > GP) 1)
0 else

Go(n) = GCP * (Xpq(n) — X;(n)) (13)

G(n) = Go(n) * F(n) (14)

where r| and r, are two random values between [0,1].

2) IMPROVED EQUILIBRIUM OPTIMIZER
In EO, solutions are guided by the equilibrium pool. However,
the presence of the four optimal solutions, which might be
located at a local optimum, can potentially trap the while
population. Alternatively, if these solutions are scattered in
different search regions, they can hinder convergence.
Exploration and exploitation are two critical aspects used
to evaluate the effectiveness of metaheuristic algorithms.
Improved exploration enhances the EO’s global search ability
and aids in escaping from local optima. Additionally, better
exploration empowers the algorithm with strong local search
ability and promotes it to thoroughly exploit promising
regions and discover the optimal solution. At the beginning
of the proposed BiEO, the population is divided into three
sub-swarms, as illustrated in Figure 3. The first sub-swarm
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Log energy | Discrete cosine transform

MEFCCs

focuses on exploration ability, and the second sub-swarm
maintains population diversity and convergence. The last
sub-swarm is responsible for exploitation ability, and the
sub-swarms share valuable information.

The transfer function plays a significant role in binary
metaheuristic algorithms, and it is responsible for con-
verting continuous values into a binary string. A well-
designed transfer function can help maintain diversity in
the population, prevent premature convergence, and ensure
effective exploration of search space. We utilize three transfer
functions (as shown in Figure 4) and Eq. (15) to implement
binarization.

X/(n) if (S(value) < rand)

: 1
1 —X{(n) else (13

ﬂm+n={

G(n)
value = (X;(n) — Xeq(n))F(n) + T(l — F(n) (16)

where S represents the transfer function, and X{ (n) means
the position of individual i in the j-th dimension at the n-th
iteration.

In the first sub-swarm, the equilibrium pool is constructed
by the sub-swarm, and it adopts S; as its transfer func-
tion where S; quickly switches positions. This sub-swarm
explores more space, and it has excellent global search ability.
In the second sub-swarm, it adopts S as its transfer function.
It has the advantages of EO, and it well balances global search
and local search. In the third sub-swarm, X, is constituted of
the global optimal solution, and this sub-swarm adopts S3 as
its transfer function where S3 slowly changes positions. The
sub-swarm exploits optimal solutions, and it has great local
search ability.

D. CLASSIFIERS
KNN and RF establish classification models, and K-fold
cross validation evaluates the performance of the models.

1) K-NEAREST NEIGHBOR

KNN is a non-parametric algorithm that doesn’t assume any
specific data distribution. Instead, it relies on the similarity
or distance among data points to make predictions. When
predicting a new data point, KNN finds the K nearest data
points in a training set based on a distance metric (like
Euclidean distance), and then determines the majority class
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The first sub-swarm
(Quarter individuals)

The second sub-swarm
(Half individuals)

The third sub-swarm
(Quarter individuals)

Share information

FIGURE 3. The division of multi-swarm.

Transfer Functions

1
 — S‘=1/(1+exp(—30'x))
0.9] —— S=1/(1+exp(~1"X))

08| —— S M1+exp(-0.1°%)

(X
o o o
o > N

FIGURE 4. Transfer functions.

among those K neighbors.

d(x, x') = 2 D (x(i) — x'(i)? 7)

i=1

where x and x’ represent training and test data, and n is the
number of features.

2) RANDOM FOREST

RF creates multiple decision trees during a training phase and
combines their predictions to produce the final prediction.
Each decision tree is built using random data and features.
This randomness introduces diversity among decision trees
and improves the model’s generalization.

3) K-FOLD CROSS VALIDATION
K-fold cross validation randomly divides a original dataset
into K folds. A classification model is then trained and tested
K times where each fold is used as a test set and the remaining
K-1 folds are employed as a training set.

In this study, we use 5-NN and 10-fold cross validation,
and the number of decision trees is set to 20.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. DATASETS DESCRIPTION

In this paper, eNTERFACEOS, ryerson audio-visual database
of emotional speech and song (RAVDESS), surrey
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audio-visual expressed emotion (SAVEE) and toronto
emotional speech set (TESS) are employed to evaluate the
emotion recognition of the proposed algorithm.

1) eNTERFACEO5

eNTERFACEOS contains both audio and visual data. The
dataset records a range of emotional expressions, from basic
emotions like happiness, sadness, anger, and surprise to more
complex emotional states. This multimodal nature allows
researchers to investigate how emotions are conveyed through
both speech and facial cues.

2) RYERSON AUDIO-VISUAL DATABASE OF EMOTIONAL
SPEECH AND SONG

This dataset includes an array of audio and video recordings
featuring performances by professional actors [29]. These
skilled actors adeptly portray a diverse spectrum of emotions,
including, but not limited to, sadness, anger, happiness,
fear, calmness, surprise, and neutrality. These emotional
expressions are thoughtfully captured at varying levels of
intensity, and provide an extensive and nuanced resource for
in-depth emotion analysis.

3) SURREY AUDIO-VISUAL EXPRESSED EMOTION

SAVEE contains recordings of sentences spoken in seven
emotional expressions: anger, fear, disgust, sadness, happi-
ness, surprise, and neutral [28]. Each emotion is portrayed by
multiple actors, ensuring a diverse set of emotional variations.
The database includes recordings from four male and four
female actors, which balances the gender representation of
emotional expression.

4) TORONTO EMOTIONAL SPEECH SET

TESS includes recordings of sentences spoken with happi-
ness, sadness, anger, disgust, fear, surprise, and neutrality.
One notable feature of TESS is the careful selection of
actors to portray these emotions. Professional actors are
chosen to ensure that the emotional expressions are portrayed
convincingly and consistently across the dataset, and this
method enhances the dataset’s credibility and utility for
emotion analysis research.
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TABLE 2. The main parameters setting of the compared algorithms.

Algorithm  Main parameters

EO al=2; a2=1; GP=0.5;

BBO_PSO  KeepRate = 0.2; alpha = 0.9; pMutation = 0.1; w = 0.9; wdamp = 0.99; c1 =2;c2 =2;
MOBFA Nye =4; Nog = 2; Pog =0.25; C; = 0.05;

BiEO al=2; a2=1; GP=0.5;

TABLE 3. The experimental results of the compared algorithms.

Dataset EO BBO_PSO MOBFA BiEO
Accuracy Length Accuracy Length Accuracy Length Accuracy Length
eNTERFACEOQS 0.4158 66.4 0.4042 66.15 0.3935 69 0.4923 46.2
RAVDESS 0.4674 62.8 0.4036 70.1 0.3497 66.65 0.5581 62.9
SAVEE 0.5230 70.1 0.5252 67.6 0.5113 70.45 0.5575 52.4
TESS 0.9507 66.15 0.8534 66.4 0.8620 71.7 0.9840 55.65
>/=/< 0/0/4 0/0/4 0/0/4 4/0/0
Rank 2.25 3 3.75 1
P-Value 0.0194
1.2
1
0.8
0.6
0.4 S =
0.2
o . . _ . .
EO BBO_PSO MOBFA BiEO
eNTERFACEOS RAVDESS SAVEE TESS
FIGURE 5. The precision, recall and F1-Score of the algorithms.
B. EXPERIMENTAL SETUP running time.
To validate the superiority of the proposed BiEO, the classi- TP + TN
fication performance is compared with EO [28], BBO_PSO accuracy = (18)
. TP+ TN + FP + FN
[22] and MOBFA [30]. EO is utilized to test whether the TP
proposed BiEO enhances the performance of classical EO. precision = TP~ FP (19)
BBO_PSO and MOBFA are used for emotion classification, ]TP
so they can test the effectiveness of the proposed emotion recall = ——— (20)
recognition model. Table 2 presents further details of the TP+ };N* P
algorithms. F1 — Score = (21)

The maximum iterations of the algorithms is set to 100,
while the population size is 20. The experimental data
obtained is the results of repeating 20 times. To evaluate the
statistical significance of experimental results, we employ
Wilcoxon rank sum and Friedman test at a significance level
of 0.05.

C. OBJECTIVE FUNCTION

Classification accuracy and the number of selected features
are considered in feature selection [31], while in SER,
classification accuracy is the main indicator for evaluating
algorithms. Therefore, it is used as the objective function
in the experiments, as shown in Eq. (18). We compare
the algorithms in precision, recall, F1-Score (as shown in
Egs. (19-21)) [32], the number of selected features and
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2xTP+FP+FN

D. EXPERIMENTAL ANALYSIS

1) SIMULATION RESULTS ON THE KNN CLASSIFIER

Table 3 presents the results using the KNN classifier where
Accuracy represents prediction accuracy and Length means
the number of selected features.

The recognition accuracy of BiEO in four datasets is
0.492, 0.558, 0.557 and 0.984, respectively, and BiEO is
superior to EO. The proposed multi-swarm improves the
classification accuracy of EO and can be applied to English
SER. BBO_PSO obtains the accuracy of 0.404, 0.404,
0.525 and 0.853, and MOBFA acquires the accuracy of 0.394,
0.350, 0.511, 0.862. BiEO outperforms EO, BBO_PSO and
MOBFA in eNTERFACEOS, RAVDESS, SAVEE and TESS.
The Wilcoxon rank sum reveals that the algorithms have no
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GNTERFACEDS [Anger  Disqust. Fear HppinessSadness Surprise

Anger Mo ™ % Do % 8
Disgust W % %% % 1% %
Fear 1% 8% 3 %% D% b
Happiness Yoo o 10% 6% % 8
Sadrness 1% 16% e 6 Mk 1%
Suuprise W 8% 1% % %46k

(a) eNTERFACEO5

RAVDESS|ingy  Digt Feahl Hapyy Newml Sl Supred Caln

By 6% % ®% 8 % M % M
Dt SOUSEH MM M % &M
Rl o6 SNSE ® M % M %
By | % % W s om M
Neirl | 0% W % wEH ™ w1
Sl R TR A N T
Supid | % % 8% W% o W RH %
Cin LB S S A /T

(b) RAVDESS

SAVEE [Angy Disgust Feaful Happy Newral Sad  Suprised
Angy W% B 4 1% MW Mm% 4%
Disgust ol A% X% B W% 8 %
Fearfl O 2% B 18 1% 1% 2%
Happy To M W%l 4Tk 26 1% 1%
Neutral Do 6% 1% 0% 8% 4% 0%

Sad o % % T W% 5k 1%
Surpised B 3% e 0% 6% 38k
(c) SAVEE
TESS Angy Disgust Fearfil Heppy Newral Sad  Suprised
Angry 0% 0% 0% M M 0% 0%
Disgust Mol 9% 0% 0% 0% 0% 0%
Fearful O 0ol 1006 0% M 0% 0%
Happy Mo % 060 S8% 0% 0% 1%
Neural O 0% 0 0% e 1% 0%
Sad Mo M 0% 0% D% %%k 0
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FIGURE 6. Confusion matrices.

TABLE 4. The average running time of the compared algorithms (Second).

Dataset EO BBO_PSO MOBFA BiEO
eNTERFACEOQS 168.4900 170.8084 170.3729 163.186
RAVDESS 415.8207 418.4271 410.4288  377.9914
SAVEE 176.2913 177.9443 177.5689  169.0756
TESS 1174.5043  1189.2512  1204.1097  997.4129

similar experimental data in the four datasets. The Friedman
test presents that their average ranks are 2.25, 3, 3.75 and 1,
respectively, with P-values less than 0.05. The superiority
of BiDE is confirmed by the Wilcoxon rank sum and the
Friedman test.

BiEO achieves emotion recognition with a minimal num-
ber of features. Interestingly, EO, BBO_PSO and MOBFA
utilize more features than BiEO, but their classification
accuracy doesn’t surpass BiEO. This suggests that, in feature
selection, using too more features may not conducive to
improving classification performance.

Figure 5 depicts the precision, recall and F1-Score of
the algorithms. The results in TESS are better than in
eNTERFACEO5, RAVDESS and SAVEE. EO and BBO_PSO
obtain the best data in TESS, followed by SAVEE, RAVDESS
and eNTERFACEOS. For MOBFA, the precision, recall and
F1-Score in RAVDESS are better than in eNTERFACEOS.
For BiEO, the results in SAVEE are inferior to those in
RAVDESS. Overall, BiEO exhibits the best performance in
precision, recall and F1-Score.
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FIGURE 7. Convergence curves.

Figure 6 shows the confusion matrices of BiEO. A con-
fusion matrix contains the information about the actual and
predicted classification of a SER system. In eNTERFACEOS,
BiEO obtains a high recognition accuracy on Anger and
Happiness, but a low accuracy on Fear and Sadness.
In RAVDESS, BiEO has an accuracy of 75% on Clam,
while its accuracy on Happy, Sad, and Surprised is less than
50%. In SAVEE, BiEO has higher classification accuracy on
Neutral than other emotions. In TESS, BiEO achieves high
emotional recognition.
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TABLE 5. The experimental results of the compared algorithms.

EO BBO_PSO MOBFA BiEO
Dataset
Accuracy Length Accuracy Length Accuracy Length Accuracy Length
eNTERFACEOS5 0.5174 68 0.5248 62.6 0.5140 73 0.5279 56.8
RAVDESS 0.5458 74.4 0.5584 69 0.5420 70 0.5862 49.8
SAVEE 0.6465 71.4 0.6545 68.2 0.6487 70.6 0.6752 48.4
TESS 0.9908 68.6 0.9924 71 0.9915 69.2 0.9941 56.6
>/=/< 0/1/3 0/2/2 0/1/3 4/0/0
Rank 3.5 2 3.5 1
P-Value 0.0129
TABLE 6. The average running time of the compared algorithms (Second).
Dataset EO BBO_PSO MOBFA BiEO
eNTERFACEOS 6305.9544 6260.3155 6290.8553 5990.6368
RAVDESS 21050.7790  21124.4899  21175.2304  19343.1022
SAVEE 7135.4514 7031.1318 7116.9895 6611.9405
TESS 25160.5714  26345.8442  24241.2402  22994.5546
TABLE 7. The experimental results of the compared algorithms in EMO-DB.
Algorithm  Accuracy Precision Recall F1-Score Length Time
EO 0.5554 0.5434 0.5268 0.5175 68.15 124.0763
BBO_PSO 0.4622 0.4447 0.4314 0.4203 68.4 117.2673
MOBFA 0.4602 0.4463 0.4298 0.42 69.25 114.783
BiEO 0.6775 0.6633 0.6535 0.6476 54 112.5669
EO 0.7503 0.7518 0.726 0.7194 69.6 10962.1237
BBO_PSO 0.7563 0.76 0.7315 0.7256 75.8 10951.0444
MOBFA 0.7525 0.7532 0.7253 0.7189 73.4 11081.0599
BiEO 0.7636 0.763 0.7355 0.7276 66.4 10315.633

Figure 7 displays the convergence curves of the algorithms.
It can be observed that BiEO has the fastest convergence
speed in eNTERFACEOS5, RAVDESS, SAVEE and TESS,
and it is always searching for the optimal solution. BiEO
has the ability to escape local traps in emotion recognition.
BBO_PSO includes two operations, BBO and PSO, so it
updates the global optimum every 20 iterations. In eNTER-
FACEQ5, RAVDESS and TESS, the convergence rates of EO
are better than BBO_PSO and MOBFA, but not as excellent
as BiEO, which shows that the proposed method improves the
performance of EO.

Table 4 illustrates the running time of the algorithms.
Notably, BIEO demonstrates superior efficiency compared
to other algorithms in eNTERFACEOS5, RAVDESS, SAVEE,
and TESS. The number of selected features is a key factor
affecting the efficiency of feature selection algorithms.
BiEO stands out by utilizing a minimal number of features
to accomplish classification. The algorithms exhibit high
execution efficiency in eNTERFACEO5 and SAVEE, but
they run the slowest in TESS. Because TESS contains many
samples, while eNTERFACEOS and SAVEE have a small
amount of data.

From the above discussion, it’s clear that BiDE excels
in classification accuracy, precision, recall, F1-Score, the
number of selected features and running time. Con-
sequently, it is a highly suitable choice for English
SER.
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2) SIMULATION RESULTS ON THE RF CLASSIFIER
Table 5 presents recognition accuracy and the number of
selected features through the RF classifier.

The accuracy obtained with RF is superior to that acquired
by KNN. Table 5 illustrates that BiEO yields the best
results in eNTERFACEQOS5, RAVDESS, SAVEE and TESS.
Its accuracy in the four emotion datasets is 0.5279, 0.5862,
0.6752 and 0.9941, and it outperforms EO, BBO_PSO and
MBFOA. Through the Wilcoxon rank sum, EO, BBO_PSO,
MBFOA and BiEO perform well in 1, 2, 1 and 4 datasets,
respectively. In eNTERFACEQS, their statistical data appears
similar, and the Wilcoxon rank sum is unable to differentiate
the experimental data of BBO_PSO and BiEO in TESS.
The Friedman test reveals that the average ranks of EO,
BBO_PSO, MBFOA and BiEO are 3.5, 2, 3.5 and 1,
and the P-Value is 0.0129. EO is superior to MOBFA in
eNTERFACEOQOS5 and RAVDESS, but MOBFA excels EO in
the other databasets. BiEO also utilizes the fewest features
to implement recognition. The features obtained by EO,
BBO_PSO and MBOFA are higher than BiEO in the datasets.
Table 5 provides the evidence of the superiority of MDE in
English SER.

Figure 8 presents the precision, recall and F1-Score of the
algorithms. The algorithms have the best precision, recall
and F1-score in TESS, followed by SAVEE, RAVDESS and
eNTERFACEOS. BiEO demonstrates superior performance
in eNTERFACEOQS5, RAVDESS and SAVEE, and BBO_PSO
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FIGURE 8. The precision, recall and F1-Score of the algorithms.

TABLE 8. Comparison the results with existing methods.

Reference Dataset classifier  Accuracy
Ref. [33] eNTERFACEOS KNN 41%
Ref. [35] RAVDESS KNN 80%
Ref. [26] RAVDESS KNN 69%
Ref. [26] RAVDESS RF 76%
Ref. [36] RAVDESS KNN 61%
Ref. [33] SAVEE KNN 57 %
Ref. [26] SAVEE RF 62%
Ref. [36] SAVEE KNN 56%
Ref. [34] TESS KNN 93%

outperforms the other algorithms in TESS. Figure 8 illustrates
that BiEO selects the most relevant features in the speech
emotion datasets, and it provides a balance between precision
and recall.

Figure 9 presents the confusion matrices of BiEO.
In eNTERFACEOS, the emotions of Disgust, Fear, and
Sadness have higher confusion compared to Anger and
Happiness. In RAVDESS, Calm has the highest recognition
accuracy, while Neutral is the smallest. In SAVEE, Happy,
and Neutral affect the recognition of Angry, and Neutral
causes serious interference of Disgust. In TESS, BiEO
achieves 100% recognition accuracy in Angry, Fearful and
Sad emotions.

Figure 10 depicts the convergence cures of BiEO.
In eNTERFACEOS, BBO_PSO has fast convergence perfor-
mance in the first 70 iterations, but BiEO performs better
than other algorithms after that. BIEO not only has excellent
convergence, but also has global optimization. In RAVDESS
and SAVEE, the convergence curves of BiEO are better
than EO, BBO_PSO and MOBFA, followed by BBO_PSO.
In TESS, BiEO has the fast convergence rate, followed by
BBO_PSO, MOBFA and EO.

Table 6 is the running time of the algorithms. The time
of the algorithms on RF is significantly higher than that on
KNN, because RF has higher time complexity than KNN.
BiEO exhibits the fastest execution efficiency, and the time
difference of the other algorithms is not significant. Among
the algorithms, eNTERFACEOS and SAVEE require longer
running time, whereas RAVDESS and TESS execute more
quickly.
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FIGURE 9. Confusion matrices.

The experimental results of the algorithms on KNN and RF
classifiers demonstrate that BiEO has the best performance,
and the multi-swarm approach utilize fewer features to
promote the search for optimal solutions. It improves
population diversity and preserves the opportunity to find the
optimal solution. The data from BiEO proves that it is suitable
for English emotion recognition.

3) DISCUSSION

In order to further test the effectiveness of the proposed
algorithm, we further analyze the performance of BiEO
on other datasets and state-of-the-art algorithms. Table 7
describes the experimental results of BiIEO in EMO-DB
[28] where the first four rows are the results of KNN,
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FIGURE 10. Convergence curves.

and the last four rows are the results of RF. The table
reveals that the classification accuracy of BiEO is better
than EO and BBO_PSO and MOBFA. The Wilcoxon rank
sum indicates that BiEO and other algorithms have no data
similarity. In precision, recall, F1-Score, the number of
selected features and running time, BiEO also demonstrates
excellent performance. This indicates that the proposed
method is not only suitable for emotional recognition in
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English language, but also for recognition in other languages.
The algorithm has the characteristic of robustness. Table 8 is
the results with existing methods. From the Tables 3 and 5,
we known that the proposed algorithm obtains an accuracy
of 49%, 55%, 56% and 98% in eNTERFACEOS5, RAVDESS,
SAVEE and TESS based on KNN, and an accuracy of 52%,
58%, 67% and 99% based on RF. The algorithm is superior to
[26], [33], and [34] in eNTERFACEOQS and TESS, but BiEO
has poor performance in RAVDESS. The algorithm identifies
emotional features that are more prominent or well-reported
in the eNTERFACEOS and TESS datasets. The algorithm
may not perform well when RAVDESS emphasizes diverse
emotional cues.

V. CONCLUSION

SER research involves identifying emotional features using
feature selection methods. However, it is infeasible to search
all subsets. In this paper, we propose an improved equilibrium
optimizer for feature selection to recognize speech emotion.
Feature extraction is first performed on speech signals, and
then BiEO determines the meaningful acoustic features. The
efficacy of this algorithm lies in the abilities of multi-swarm
to systematically search for emotional feature space and
identify optimal features that contain intricate patterns for
accurate emotion classification.

The performance of the proposed algorithm has been
tested in eNTERFACEOS5, RAVDESS, SAVEE, and TESS
with EO, BBO_PSO, and MOBFA. Based on the results
of KNN and RF classifiers, BIEO exhibits excellent per-
formance in accuracy, precision, recall, F1- Score, the
number of selected features and running time. To further
verify the robustness of the algorithm, we compare it with
other algorithms and in EMO-DB database. The results
reveal that the algorithm has excellent emotion recognition
performance.

In the future, we can apply our proposed algorithm to
real speech recognition scenarios and various corpus datasets.
Although KNN runs fast, its performance is not as good as RF.
We try to find a classifier suitable for emotion recognition and
the proposed algorithm.
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