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ABSTRACT Reliable energy supply remains a crucial challenge in the Internet of Things (IoT). Although
relying on batteries is cost-effective for a few devices, it is neither a scalable nor a sustainable charging
solution as the network grows massive. Besides, current energy-saving technologies alone cannot cope,
for instance, with the vision of zero-energy devices and the deploy-and-forget paradigm which can unlock
a myriad of new use cases. In this context, sustainable radio frequency wireless energy transfer emerges
as an attractive solution for efficiently charging the next generation of ultra low power IoT devices.
Herein, we highlight that sustainable charging is broader than conventional green charging, as it focuses
on balancing economy prosperity and social equity in addition to environmental health. We discuss the
economic implications of powering energy transmitters with ambient energy sources, and reveal insights on
their optimal deployment. Moreover, we overview different methods for modeling the energy arrival process
of ambient energy sources and discuss their application in different use cases. We highlight the potential of
integrating sustainable WET with energy harvesting from nearby transmitters and discuss enhancements in
energy receiver design. We also illustrate the role of different technologies in enabling sustainable WET and
exemplify various use cases. Besides, we reveal insights into low-complexity architectures designed at the
energy transmitters. We highlight relevant research challenges and candidate solutions.

INDEX TERMS Energy harvesting, green energy, massive IoT, radio frequency wireless energy transfer,
sustainable charging.

I. INTRODUCTION
The Internet of Things (IoT) revolution calls for the synergy
among environmental health, economic vitality, and social
advances of current and future communication networks
to promote sustainability [1]. Currently, millions of IoT
devices take care of our well-being, monitor environmental
pollution, track assets, and help manage natural resources.
As the popularity of IoT applications grows, maintain-
ing an uninterrupted operation of a massive number of
battery-powered devices becomes challenging. In fact, due to
a small form factor, most IoT devices can only carry a tiny
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battery whose effective lifetime does not match that of the
device’s electronics [2]. This means that battery replacements
can grow faster than the number of connected devices,
thus, increasing business operational costs and environmental
pollution if the electronic waste is not disposed of correctly.
Moreover, the maintenance of IoT devices that operate in
remote areas, embedded in civil infrastructure, or medical
implants, represents a risky, and possibly costly, operation.
That is why companies consider the battery lifetime critical
when estimating the maintenance costs of the network
infrastructure [2].

Two main research directions to enable (and support the
perpetual autonomy of) sustainable IoT networks from the
communication perspective are: energy-saving mechanisms
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and energy repletion [3]. Energy-saving mechanisms aim
at minimizing the energy needed for completing tasks
such as sensing, processing, and communication without
significantly degrading the system performance. On the
other hand, energy repletion comprises energy harvesting
(EH) techniques for recharging the batteries by exploiting
ambient or dedicated energy sources, also known as power
beacons (PBs).

This work focuses on sustainable radio frequency (RF)
wireless energy transfer (WET), hereinafter referred to
as WET. It is worth noticing that previous research and
development directions within the scope of WET have
focused on specific performance optimizations. This has been
done, for instance, by deploying multiple PBs, using efficient
energy beamforming strategies, and enhancing the design of
RF-EH receivers [4], [5], [6]. Specifically, the authors in [5]
optimize the deployment of directional PBs to charge mobile
sensors considering the physical space each sensor occupies
within the PBs’ coverage area. Therein, they devise a
device-to-PB assignation strategy based on individual energy
demands to minimize the total charging costs. Similarly, the
authors in [6] optimize the position, antenna orientation,
and service time allocation of mobile PBs. Therein, they
maximize a function of the per-device harvested energy
considering that PBs can move within a restricted area.
A similar line of work follows from the works proposed
in [7], [8], [9], and [10] which exploit fully moving/flying
capabilities at the PBs—a strategy also referred to as nomadic
WET—to dynamically shorten the charging distance. For
example, the authors in [7] minimize the energy expenditure
of a moving PB, i.e., the sum of propulsion energy and
transmission energy, to meet the devices’ charging demands.
Therein, the authors optimize the trajectory and charging
scheduling of the PB considering omnidirectional radiation
and an arbitrary distribution of the devices in the network.
The work in [8] studies a similar setup but considers a
directional PB that charges different groups of devices at
each stopping point. The total charging time is minimized
by optimizing the PB’s path, antenna orientation, and the
position of the stopping points for maximum received power
of the sensors within the served group. Notice that additional
spatial degrees of freedom can be exploited when using
flying PBs due to their inherent deployment flexibility and
tridimensional coverage. An example of a flying PB-enabled
scenario is studied in [9], where the authors devise the
minimum PB’s energy consumption that meets the devices’
charging demands. To achieve that, the authors jointly
optimize the charging trajectory, hovering locations, and
charging time for each group of devices. In [10], the authors
discuss the main features, potentials, and challenges of
WET for powering massive IoT deployments. Specifically,
they discuss additional enhancements in WET-enabled net-
works such as deploying radio stripes, rotor-equipped PBs,
intelligent reflective surfaces aided WET, and ultra-low
power receivers implementation. Moreover, the authors also

raise the limitations of accurate channel state information
(CSI) estimation in WET and discuss possible solutions.
It is worth mentioning other enhancements that have been
already proposed for wireless communications and that can
be exploited also for WET, such as flexible antennas [11]
realized via fluid and movable antennas. The former case
refers to a software-reconfigurable antenna whose radiating
properties can be adjusted via fluidic materials, while the
latter refers to a mechanically steerable antenna. Regardless
of the implementation, flexible antennas provide the tools
for overcoming the channel impairments by dynamically
reconfiguring the radiator. Furthermore, the integration of
renewable sources into WET-enabled networks has been also
proposed in the literature either to support the operation of the
PBs [10], [12], [13], [14], [15], [16] or to aid theWET service
for reducing PBs’ energy consumption [17]. Specifically, [12]
studies the optimal charging scheduling strategy of a network
of PB powered by renewable sources to maximize the number
of charged devices in a round, [13] focuses on the inte-
gration of ambient EH and WET, and [14] discusses the
main features, requirements, and enabling technologies for
greening WET-enabled networks. Moreover, [16] proposes
a WET-enabled architecture for realizing sustainable smart
agriculture applications, and [10] discusses variants for
integrating renewable energy to power PBs. Recently, the
authors in [18] have addressed the development of WET
from the safety perspective for high-power applications.
Therein, the authors overview RF electromagnetic field
(RF-EMF) exposure metrics and safety limits and discuss
approaches to realize safety-aware protocols. In addition,
they also discuss low-power implementations for multi-
antenna WET systems. Finally, recent works, such as [19],
have identified security threats that can result in energy
outages inWET-enabled networks and for that have proposed
blockchain-based solutions.

All in all, the aforementioned works have only focused
on greening the operation phase of WET. However, social
and economic aspects and thorough environmental impact
assessments have not been jointly discussed. Indeed, a com-
prehensive evaluation of the environmental consequences
of WET requires an accurate life cycle assessment of the
technology. Notice that such a study would encompass all
the stages in a product’s lifetime, including the extraction and
processing of raw materials, manufacturing and distribution,
operation, and ultimately, the recycling or final disposal of
the constituent materials [20]. From such a study, one can
derive the carbon footprint of a product that can be used to
label the product itself, devise better carbon trading strategies,
and promote manufacturing processes with lower carbon
footprint [21].

As illustrated in Fig. 1, herein we define sustainable
WET as the synergy among economic prosperity, social
equity, and environmental health to cope with current and
future sustainable IoT quality-of-service (QoS) charging
goals, including minimum wastage of resources. Sustainable
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FIGURE 1. Towards realizing sustainable WET.

WET strategies are fundamental for enabling new use cases
such as zero-energy devices, extreme edge devices, and
massive network deployments [4], [22]; thus, promoting
new business opportunities. It also promotes technological
innovation at both sides of the WET link to efficiently use
renewable sources during the product’s lifecycle. Besides
maximizing the end-to-end conversion efficiency, sustainable
WET also considers how to: i) efficiently power the PBs with
eco-friendly energy sources, ii) secure the energy transactions
(e.g., PB-to-PB and PB-to-IoT devices), iii) enable a flexible
deployment of the PBs, iv) minimize the overall expenses of
WET-enabled networks, and v) provide a ubiquitous charging
service with compliant levels of RF pollution. This implies
a full disconnection of WET from the fuel-based grid and
the adoption of low-complexity, safe, and energy-efficient
charging strategies, while avoiding security breaches that
compromise the potentially limited energy budget. Besides,
sustainable WET demands a proper design of the RF-EH cir-
cuitry as it also determines the overall conversion efficiency
and reliability of the system.

This article elaborates on technological enablers and
challenges of sustainable WET. Our contributions are
sixth-fold:

• We define sustainable WET for supporting IoT scala-
bility. Moreover, we discuss technological enablers to
realize the key pillars of sustainable WET indicated in
the introduction.

• We illustrate how sustainableWET reduces overall costs
compared to traditional WET and battery-powered IoT
deployments via a toy numerical example. To establish
a consistent ground for comparison, we propose scaling
the overall expenses based on the cost of the energy
consumed by the PBs’ deployments.

• We discuss the impact of ambient energy sources on
the optimal PBs’ deployment. A numerical toy example
shows that the optimal PBs’ positioning solution trades
off the energy harvested at the PBs with that harvested
at the IoT devices when employing omnidirectional
antennas.

• We discuss technological enhancement in RF-EH
receivers. We first show the impact of ultra-dense
networks in making RF-EH practically appealing. Then,
we elaborate on RF-EH configurations operating over
multiple frequency bands and input power levels.
Finally, we also discuss the benefits of multi-antenna
receivers and present a numerical example comparing
the performance of two different architectures for
ambient RF-EH.

• We highlight the benefits of low-complexity WET
strategies to achieve cost-effective solutions. Then,
we present a toy example of optimizing the number
of RF chains required by a PB to meet the charging
demands of an IoT deployment.

• We identify challenges and research directions toward
realizing our vision. We also elaborate on the possible
requirements of each candidate solution.

Table 1 summarizes the main differences between our
proposal and the discussed state-of-the-art.

II. DISCONNECTING WET FROM THE GRID
Commonly, PBs rely on the grid as the primary source for
powering IoT deployments [2], [19]. Since the energy in
the power grid usually comes from burning fossil fuels, the
resulting WET is not green by default. Besides, having the
PBs anchored to fixed positions limits their deployment and
mobility. On the other hand, battery-powered PBs are not
sustainable if batteries must be manually charged/replaced
frequently, which may turn them into unreliable/limited
energy sources for the IoT devices.

The full disconnection of WET from the fuel-based grid
not only has a positive impact on the environment but also
encourages the use of self-sufficient PBs which can provide
a ubiquitous charging service, as we discuss next.

A. GREEN WET
PBs have a larger form factor and better hardware/connectivity
capabilities than IoT devices. This allows them to incorporate
a more efficient EH circuitry that could possibly harvest from
multiple ambient sources simultaneously; hence reducing the
uncertainty of the total harvested energy. We will refer to the
PBs powered by renewable energy sources as green-powered
PBs (gPBs).

gPBs contribute to sustainable WET in the economic and
environmental dimensions since the autonomous generation
of electricity reduces the overall costs. To illustrate this,
in Fig. 2a we compare the overall costs of WET-enabled IoT
deployments, including grid-powered PBs, battery-powered
PBs, gPBs, and the baseline scenario where the devices
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TABLE 1. Related works and projection into the sustainability dimensions.

rely solely on their batteries. For this example, we deploy
a PB for every 50 IoT devices. For WET-enabled scenarios,
we adopt the Powercast TX91503 PowerSpot® RF Wireless
Power transmitter1 as the reference PB equipment, whose
cost per unit is =C100.00. Moreover, we scale installation
and operational expenses according to the cost per kWh
consumed by the PB’s network in each scenario. Specif-
ically, we adopt the values =C0.30/kWh, =C0.15/kWh, and
=C1.50/kWh for the grid-powered PBs, gPBs, and battery-
powered PBs, respectively. Besides, we consider that the PBs
operate 24/7 during the lifetime of the IoT devices’ hardware
with a power consumption of 6 W. Unless stated otherwise,
we assume that the lifetime of an IoT device’s battery is
five years and that maintenance accounts for 50% of the
installation cost of =C20.00 per IoT device. Finally, note that
the overall costs are computed over the lifetime of the IoT
devices’ hardware.

Note that the baseline scenario is the most cost-effective
solution for powering a few devices. However, as the number
of devices increases, deploying grid-powered PBs, and spe-
cially gPBs, reduces the overall costs; therefore, promoting
business opportunities and enabling more use cases. For this
example, we assume the devices’ battery lifetime is fixed and
matches the design expectations. Nevertheless, inaccurate
hardware power profiling and battery imperfections may
increase the overall costs far from expected as suggested by
Fig. 2b. We have assumed in both examples that WET is
feasible for powering even the most energy-demanding IoT
deployment shown in Fig. 2b.
Finally, it is worth noticing that the numerical values

indicated in this example are for qualitative comparison
purposes and hence do not reflect exact prices in the market.
Herein, we have assumed that the cost per kWh in the

1For more information please check https://www.powercastco.com/

FIGURE 2. Qualitative assessment of the overall costs vs: (a) number of
connected devices considering 15 years of lifetime of the IoT devices’
hardware, and (b) lifetime of IoT devices’ hardware for 100 deployed
devices and several battery lifetimes of the IoT devices.

grid-powered PB deployment is higher than that of the gPBs’
scenario, despite being more cost-effective at the generation
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point. This is because, in such systems, maintenance costs
of the power distribution network and losses can get higher
than those relying on locally generated electricity generation
as in the gPBs’ scenario. Finally, we set the highest operation
costs for the battery-powered PBs’ deployment to account for
the size/quality of the energy storage system and the frequent
maintenance needed to recharge the batteries.

B. UBIQUITOUS WET
Conveniently deploying multiple PBs is critical to eliminate
blind spots in the network and distribute the energy according
to the application requirements. It can also contribute to
social equity by promoting ubiquitous wireless charging and
enabling new use cases.

However, the optimal deployment of gPBs brings new
challenges. Traditional PBs’ deployment algorithms mostly
focus on maximizing devices’ harvested energy/rate func-
tions and/or minimizing the energy consumption, installation
costs, and/or the RF-EMF radiation of the PBs. Meanwhile,
deploying gPBs adds a new degree of freedom to the
corresponding optimization problems since the availabil-
ity/intensity of ambient energymay influence the deployment
strategies. To cope with that, the literature considers two
modeling approaches of the energy arrival of ambient sources
namely deterministic and stochastic. Deterministic models
suit applications with predictable and slowly varying energy
arrivals. For instance, it is possible to attain empirical
formulas for predicting the incident energy from ambient
sources using historical weather records [23]. When such
an approach becomes unappealing, the system can be
designed for the worst-case scenario assuming bounded
incident energy, which can be estimated with enough
accuracy. With this, a network designer can devise a (sub-
optimal) power management strategy considering the IoT
device’s energy budget at each time instant, the minimum
incident energy, maximum energy consumption, and the
battery imperfections. Another approach lies in utilizing
previousmeasurements to feed time series analysis tools, e.g.,
moving average, exponential smoothing, and autoregressive
integrated moving average, to realize short-term predictions
of the incident energy [24], Unfortunately, this approach is
not suitable for dealing with datasets with missing data, while
the memory requirements and computation time to achieve
low prediction errors could be prohibitive, especially for large
datasets. Finally, machine learning (ML) approaches, such as
the random forest algorithm, convolutional neural networks,
and long short-term memory, have shown potential for
capturing the spatio-temporal characteristics of the incident
ambient energy. Such approaches are not tied to any physical
model of the atmosphere, and thus, are simpler and require
less computational resources than state-of-the-art numerical
weather prediction methods [25].

Meanwhile, stochastic models describe the energy arrival
either as a time-correlated or uncorrelated random process.
The stochastic assumption aims at mimicking the uncertainty

of most ambient sources. For instance, Weibull and Gamma
distributions can describe the average wind power density
and solar radiation, respectively [26]. When harvesting
from a single source becomes insufficient, it is desirable
to have a hybrid EH solution that allows a device to
collect energy from different sources and potentially boost
the reliability of the IoT application. One effective way to
characterize the total average output power of a hybrid EH
solution is by using a Gaussian mixture model (GMM) [27].
With this approach, similar sources are classified into non-
overlapping clusters. Then, each cluster is modeled with a
Gaussian distribution. The final GMM consists of the sum
of the individual distributions that model each cluster. The
Kernel density estimation (KDE) method is also effective for
modeling hybrid EH solutions such as RF-EH from multiple
mobile service channels [24]. Unlike the GMM approach,
where one must specify the clusters and their locations,
KDE is a non-parametric density estimation method where
each data point corresponds to a cluster’s center. Similarly,
one can resort to stochastic geometry tools to model the
position of multiple RF sources in a service area as a
Poisson Point Process. This approach allows modeling the
harvested energy as a random variable that depends on
the spatial density of the RF sources, their transmit power,
and the corresponding energy channels.2 Further, one can
characterize the performance of the network by utilizing the
average harvested energy on a randomly selected device,
the energy coverage probability which is the percentage of
the area where the EH devices harvest more than a certain
number of energy units, and the distribution of the energy
outage probability conditioned on the locations of the RF
sources [4].

Next, we illustrate the application of an exemplary
deterministic model for optimizing a gPBs’ deployment
to maximize the received RF power of the worst IoT
device of the network. Besides, consider that the gPBs’
harvested energy is immediately available for use and that
their maximum transmit power is 1 W. Finally, inspired by
the approach adopted in [27], we model spatial variations
of the average ambient power as a weighted sum of
Gaussian functions. The Gaussian bells have been centered
at {−5, −5}, {5, −5}, {5, 5}, {−5, 5}, and {0, 0}, respectively.
As per their diagonal covariance matrices, we considered that
the value of non-zero entries is the same and equal to 5, 3, 2,
7, and 8, respectively.

Fig. 3 shows numerical results for the above scenario with
channel losses computed according to the Friis model for an
operating frequency of 1 GHz. The level lines in Fig. 3a and
Fig. 3b denote the average incident power of the ambient
(in W) and dedicated RF sources (in dBm), respectively,
at each location. Moreover, we have optimized the gPBs’
deployment via a genetic algorithm solver. Notice that the
available average ambient power at each gPBs’ position for

2We refer the reader to Section III-A for an exemplary application of this
model.
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FIGURE 3. gPBs’ deployment (blue crosses) that maximizes the minimum
average RF incident power at the IoT devices (red dots). Herein,
we present the distribution of incident (a) ambient and (b) RF power
(in W) to charge gPBs and IoT devices, respectively.

the resulting optimized deployment is different, e.g., gPBs1−5
receive {3.1, 2.5, 1.5, 3.1, 1.8} W, respectively. This gPBs’
deployment provides an average incident RF power at the
worst-positioned device, which is enclosed in the dotted-
line circle, of approximately 39 µW. Hence, when using
omnidirectional antennas, the gPBs must be close to the
IoT devices and away from the locations where the incident
ambient energy has maximum values. Moreover, depending
on the spatial distribution of the IoT devices in the service
area, some regions may necessitate deploying multiple gPBs
close to each other. Finally, the reader can observe in Fig. 3b
how the distribution of RF power provides ubiquitous access
to the charging service to the IoT devices by deploying more
gPBs in the quadrant with the highest density of deployed
devices.

For IoT applications in remote areas, and for those
that require temporal communication services, deploying a
network infrastructure with fixed gPBs may not be feasible.
As shown in Fig. 4, nomadic WET, which uses moving [6],
[7], [8], [19], [28] and/or flying gPBs [9], [16], can provide
further flexibility to meet the service requirements under
severe weather/surrounding conditions and in zones with
prohibited access. In such cases, gPBs can move/fly around
to power up the IoT deployments, collect measurements, and
return back once the mission has been completed. Notice,
though, that current regulatory frameworks for unmanned
vehicles may constrain the operating parameters of such
gPBs, e.g., maximum speed/altitude and minimum distance
from civil infrastructure and humans.

Inevitably, under some conditions, the energy demands
can far exceed the harvested energy at the gPBs, and thus
compromise the WET service. In such cases, energy trading
becomes an attractive solution to balance the energy available
at the gPBs’ network, as shown in Fig. 4. However, the
major challenge of wireless energy trading among gPBs
is that the end-to-end energy transfer efficiency may be
significantly reduced. This is because the energy undergoes
more transformations than in the case the devices are
powered by their corresponding gPBs without recurring to
energy trading. As shown in Fig. 4, one can ease this
burden by enabling distributed energy storage systems; its
constituent nodes could be seen as gPBs with larger EH
circuits and energy storage capacities with the specialized
role of transferring high amounts of energy to the gPBs via
high-power WET links.

Finally, the advent of reflecting intelligent surfaces (RISs)
in wireless systems has brought the possibility of conve-
niently reconfiguring the propagation environment. RISs
boost the conversion efficiency by implementing a low-power
reflect beamforming that guarantees a constructive inter-
ference of the reflected energy signals at the IoT devices.
This helps to extend the WET coverage and avoid obstacles,
as Fig. 4 illustrates. For passive RIS, this comes at no
extra energy consumption in RF chains or amplifiers, since
the controller of the passive reflectors is the only active
element.

III. ENHANCED RF-EH RECEIVERS
Engineering the RF-EH receivers to operate under different
input signal conditions is key for boosting the reliability of
devices’ energy supply. In this section, we discuss some of the
strategies to improve RF-EH from the receiver perspective.
We will base our discussion on the receiver architectures
illustrated in Fig. 5.

A. WET MEETS AMBIENT RF-EH
Modern cities are driven by a wide range of wireless
technologies that can provide average ambient RF power
density levels in the order of −25 dBm/cm2 [29]. Typically,
ambient RF-EH suits ultra-low power devices as the antenna
polarization mismatch, line-of-sight (LoS) conditions, data
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FIGURE 4. Promoters of sustainable WET and some use cases.

FIGURE 5. Generic architectures of enhanced RF-EH circuits: i) adaptive
dynamic range receiver, ii) generic multiantenna receiver, and
iii) broadband receiver.

traffic, and atmospheric conditions can weaken the incident
energy. Fortunately, the advent of ultra-dense networks— for
which the estimated density is around 103 cells/km2 [30]—
will considerably reduce the propagation distance of RF

signals; therefore, making RF-EH practically appealing for
recycling ambient RF energy as shown in Fig. 6. In this
example, we adopted the sigmoidal model proposed in [31]
for the RF-EH circuit described in [32] while illustrating
the chances of not satisfying a harvesting power of 1 mW.
Moreover, we consider a 1 W transmit power for the
RF transmitters while modeling their deployment as a
homogeneous Poisson point process. Besides, we consider
a log-distance path loss model with exponent 2.7 and
non-distance dependent loss of 40 dB, and channels subject
to Rician fading with LoS factor 10. We provide more details
on the performance of the multi-antenna direct current (DC)
and RF combining architectures in Section III-C.

The RF-EH circuitry has the same architecture regardless
of whether the RF source is dedicated or not. This allows an
optimized coexistence ofWETwith ambient RF-EH resulting
in a more reliable energy supply for the IoT devices in
scenarios with high ambient power density. By enabling a
dual EHmode, the IoT devices can harvest energy exclusively
from ambient RF sources, and only request energy from the
gPBs if needed. Conversely, ambient RF-EH can be seen as a
backup or complementary energy source, if available, when
WET momentarily degrades. However, notice that achieving
those operating modes may require a receiver optimized for
both low- and high-input power regimes, to harvest from
ambient and dedicated energy transmissions, respectively.
Fig. 5a illustrates an exemplary implementation of such a
receiver which has an adaptive control circuit that connects
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FIGURE 6. Outage probability of ambient RF-EH vs density of RF sources
for both single and multi-antenna RF-EH circuits considering the basic
architecture described in [32].

the corresponding rectifying path depending on the measured
input power level.

B. ADVANCED RECTENNA CONFIGURATIONS
Rectennas can be designed for multiband, and extended
dynamic range operation to boost the harvested energy.
Multiband rectennas harvest energy at different frequency
bands. As an example, one can achieve a multiband
operation by connecting the output of multiple antennas,
each optimized for a different frequency band, to different
rectifying paths, as shown in Fig. 5b. In general, they provide
a higher conversion efficiency and more reliable operation
than their narrowband counterpart. Broadband rectennas
operate over a wide frequency bandwidth, by employing
broadband/frequency-independent antennas, and typically
perform with a lower conversion efficiency than multiband
rectennas. Fig. 5c, illustrates an exemplary design of such
a receiver using a tunable architecture. That is, the local
oscillator circuit tunes the input-matching circuit operation
to that frequency range with the highest output DC power.
However, the nonlinearity of the rectifier and the matching
network hinders maintaining a high performance over the
operational bandwidth. Finally, extended dynamic range
operation techniques aim at increasing the range of input
power levels over which the power conversion efficiency
of the rectifying circuit is above 20%. To achieve that,
rectifiers must have both a high sensibility, i.e., the minimum
input power level for which the DC output equals 1 V for
specified load conditions, and a low voltage drop across the
diodes in the low-power regime. Meanwhile, in the high-
power regime, low leakage current rectifiers are preferred
to reduce power losses when the diodes are reverse-biased.
A practical solution to these design requirements consists of
incorporating multiple rectifying paths, each optimized for a
different input power level, as shown in Fig. 5a. Specifically,
one can adaptively control the number and configuration
of the rectifying blocks connected to the antenna output
depending on the available power [33]. Alternatively, one

can incorporate a boosting circuit at the input to increase the
voltage in the low-power regime and a self-biasing path to
reduce leakage currents [34].

C. MULTI-ANTENNA RF-EH RECEIVERS
To boost the harvested energy one can also rely on multi-
antenna RF-EH receivers, whose performance improves
as the number of antennas increases. In this case, the
received signal is combined in the RF, or DC domain,
or hybridly (Fig. 5 indicates the boundaries for these
domains). RF combining aims to coherently combine the
antennas’ output signals to drive a rectifier circuit at
the high-power operation regime. For this, CSI is needed
at the IoT devices. In WET scenarios, PBs cooperation
facilitates the receive CSI acquisition process, whereas an
uncoordinated training period is required in ambient RF-EH,
which may be energy costly [35]. Meanwhile, DC combining
adds the output of multiple rectifiers connected as one-to-
one with the antenna array. Although optimal DC combining
does not require CSI at the IoT devices, the fact that
each rectifier operates at low input power levels makes it
perform poorly with respect to RF combining, at least in
WET scenarios. However, DC combining provides broader
beamwidth than RF combining, since the radiation pattern
seen by each individual rectenna is broader than that of
the rectifier in the RF combining architecture in which the
incident power is collected over the array’s narrower beam.
This feature allows DC combining to harvest energy from
a broader range of incident directions which is beneficial in
multi-source ambient RF-EH. Consequently, DC combining
can outperform its RF combining counterpart in such
scenarios, as shown in Fig.6. It should be highlighted that
this conclusion is conditioned to the presence of several
strong RF sources. When the contribution of a single RF
transmitter significantly dominates the received RF power,
then RF combining may be preferable. In this example,
we have highlighted performance improvements of these
architectures for the case of 10−3 transmitters/km2 with
respect to the baseline single-antenna RF-EH circuit. Herein,
we have neglected the power consumption for tuning the
phase shifts properly in the RF combining architecture
which considerably penalizes its outage probability. Besides,
we have adopted the Discrete Fourier Transform -based
codebook beamforming approach exemplified in [35] for the
RF combining architecture, in which the codeword yielding
the highest receiving power is selected to configure the
phase shifting elements. Finally, notice that multi-antenna EH
receivers might challenge small form factor implementations,
specially at regular microwave bands.

IV. LOW-COMPLEXITY, POLLUTION-AWARE, AND
SECURE WET
For gPBs, secure energy transactions and low-complexity
WET strategies become crucial due to the limited energy
budget. Besides, safety-aware WET strategies are key to
minimize the fear to wireless and the environmental RF
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pollution to which traditional WET-enabled networks can
significantly contribute. Next, we discuss these aspects.

A. LOW-COMPLEXITY WET STRATEGIES
Energy beamforming (EB) techniques are beneficial for
improving the end-to-end conversion efficiency without
increasing the gPBs’ transmit power. Unfortunately, the net
benefits of EB are conditioned by the, often unaffordable,
cost of estimating the instantaneous CSI at the gPBs when
charging massive IoT deployments. To cope with that, data-
driven approaches become appealing, as they are more
resilient to imperfect CSI estimation by extracting relevant
features from the acquired channel samples to adapt the
EB strategies for future changes in the propagation condi-
tions [36]. In such scenarios, one can cast the beamforming
optimization problem either into a regression problem to
adjust the precoding weights or a classification problem to
find the best precoder from a given codebook.

Notably, the benefits of accurate CSI-based WET strate-
gies quickly vanish, and may even reverse, as the number of
EH devices increases due to the energy-demanding training
process [22]. That is why alternative EB strategies have been
proposed to rely on statistical CSI, received energy feedback,
and devices’ position information, which are easier to acquire
and vary slowly.

The EB’s implementation also impacts the gPB’s energy
consumption, hardware complexity, and therefore the overall
deployment cost. In this regard, analog beamforming is the
simplest architecture as it operates on a single RF chain at
the cost of single beam transmissions and poor spatial flex-
ibility. Hybrid analog-digital beamforming provides further
improvements at a reasonable cost [37] by optimizing the
required number of active RF chains to drive a larger number
of antennas given certain QoS requirements [38]. Let us
illustrate this with an example.

Fig. 7 which shows the gPB’s power consumption vs the
number of RF chains when using a digital beamforming
architecture, i.e., the number of antennas and RF chains is
equal. Herein, the problem is to minimize the gPB’s transmit
power required to meet certain levels of received RF power.
The served IoT devices are uniformly distributed in a circle
of radius 10 m. For this example, we have adopted the model
in [39] assuming a 35% efficiency for the power amplifiers
and a 0.5 W power consumption per RF chain. This model
considers that the PB’s power consumption depends on the
power amplifiers’ efficiency, their output power, and the
number of RF chains. Notice that the optimum number of RF
chains increases for a larger number of deployed devices and
higher requirements on the received RF power. Hence, one
can design a transmit array withM antennas andM RF chains
but then dynamically adjust the number of active RF chains
to operate more efficiently in a hybrid mode.

Further energy/cost reductions can be achieved by utiliz-
ing low-resolution digital-to-analog converters [40] and/or
replacing the phase shifters by switches [36]. Finally, recent

FIGURE 7. PB’s power consumption vs the number of active RF chains for
different numbers of served IoT devices and requirements on the
received RF power level.

development directions have proposed the use of lens antenna
arrays [41], [42] to further reduce implementation com-
plexity. This architecture resembles a hybrid analog-digital
beamforming architecture where the analog beamforming
part is replaced by a set of active antennas placed strategically
at the focal point of a discrete set of passive lenses.

Data-driven approaches also promise to reduce the EB
implementation complexity by i) approximating a known
computationally demanding algorithm and ii) helping design
cheaper general-purpose circuits [43]. In the former case,
the model is trained utilizing an artificial data set created
by running the candidate for substitution algorithm. In the
latter case, one can implement a neural network-based circuit
and train it during the production phase. Both applications
benefit from the fact that data-driven strategies exhibit
lower computational complexity in the prediction stage
than model-based optimization approaches as complexity is
moved from runtime to the design phase.

B. POLLUTION-AWARE WET STRATEGIES
While increasing the incident power benefits the IoT devices,
it also increases the environmental RF pollution and degrades
the QoS or even causes service interruptions of nearby
networks using the same spectrum. That is why investigating
the impact of forthcoming extensions of the operating fre-
quency ranges on the performance and applications of WET,
may provide interesting research directions in this regard.
Moreover, the exposure to high levels of RF-EMF radiation
can potentially harm humans and other living species, e.g.,
stimulation of nerves and tissue heating for frequencies up to
10 MHz and above 100 kHz, respectively. The International
Commission on Non-ionizing Radiation Protection [44],
the Federal Communications Commission [45], and the
IEEE [46] dictate/recommend regulations for operation in
the frequency range of 100 kHz to 300 GHz, for the general
public and workers, and for different parts of the human body.
These regulatory bodies provide a set of basic restrictions,
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e.g., specific absorption rate, specific absorption, absorbed
power density, and absorbed energy density, that measure
the absorption rate of electromagnetic energy by humans per
unit of body mass or area. In practice, the basic restriction
quantities are difficult to measure. Hence, reference levels in
terms of incident power density, incident energy density, and
electric/magnetic field strength, are also specified to provide
an equivalent degree of protection as the basic restrictions.

However, the lack of conclusive studies about the
long-term health effects of RF exposure at different frequen-
cies encourages false speculations about the health effects of
WET in humans. To address the fear to wireless, one can
adapt the WET strategies (e.g., EB) accordingly by sensing
the humans in the loop, e.g., using cameras, motion sensors,
and sensing the change in ambient wireless signals caused
by the presence of humans. Pollution-aware WET can also
benefit from physically large antenna arrays to exploit near-
field beamforming. In such a case, as shown in Fig. 4, the
gPB focuses the energy in a particular location as opposed to
steering it toward an angular direction. Finally, RIS-assisted
WET can also enable the regulation of RF-EMF levels in
the surroundings by limiting the exposure to non-intended
users [47]. Notice, though, that controlling the amount of RF
pollution becomes challenging when using WET strategies
with wide energy beams. Such cases may require frequent
interruptions of the WET service and/or reduction of the
transmit power levels to avoid high RF-EMF radiation levels
on humans and to reduce interference.

C. SECURE WET STRATEGIES
The performance of WET-enabled networks can be com-
promised by security attacks intended to deplete the PBs’
batteries or prevent the IoT devices from being charged [48].
Some of the attacks include repudiation of energy attacks,
beamforming vector poisoning, energy state forgery, and
greedy charging attacks. In repudiation of energy attacks,
malicious devices deny receiving the amount of energy
they agreed with the gPB. Meanwhile, beamforming vector
poisoning attacks aim at corrupting the transmit strategy
of the PBs. This can be accomplished by tampering with
the CSI, reporting incorrect received power measurements,
or jamming the energy transmissions, i.e., by causing
destructive interference at the receiver end. In energy state
forgery attacks, devices tamper with their battery level
information. Finally, greedy devices continuously request
the charging service to prevent other devices from using it.
Recently, blockchain-capable PBs, as illustrated in Fig. 1,
have been proposed for securing WET-enabled networks
against energy state forgery and repudiation of energy
attacks [19]. Blockchain is a distributed ledger technology
(DLT) where each transaction record is stored in a block.
In the context of energy transactions, each block can store
CSI, incident RF power, devices’ positions, and battery states
of the served devices, just to name a few. Before adding
a new block to the blockchain, a subset of gPBs must

verify its authenticity by running a consensus algorithm.
Once consensus has been reached, the newly created block
is appended to multiple copies of the blockchain in the
network. This allows every gPB to access all transaction
records and also makes it difficult for a malicious entity to
tamper with the information contained in the blocks. The
reason is that modifying the content of one block causes
its hashes to change and since each block points to the
previous one using this number, the attacker must compute
the hash number of subsequent blocks and convince the other
blockckain participants about the authenticity of the newly
created ledger.

Depending on the information stored in the blockchain, the
gPBs (or a centralized entity) can detect misbehavior patterns
in the network. For example, one could estimate power
consumption profiles based on the amount of transferred
energy over time, determine if the device is performing the
activity it has signed for, validate the energy request using the
device’s battery capacity, and estimate the amount of received
energy based on the records of the CSI and the location of the
devices.

Unfortunately, as the IoT network scales up, consensus is
run more frequently since gPBs must handle higher volumes
of energy transactions. Notice that sustainable strategies can
afford neither a computational-intensive competition, e.g.,
proof-of-work, nor a communication-demanding message
passing, e.g., proof-of-stake, to reach consensus.

V. KEY RESEARCH DIRECTIONS
In this section, we discuss key research directions towards
realizing sustainable WET. Table 2 summarizes this discus-
sion.

A. ROBUST GPBS’ DEPLOYMENT ALGORITHMS
Adopting a misleading model for the available ambient
energy ultimately degrades the attainable ambient energy
of model-based gPBs’ deployment optimization algorithms.
Besides, with so many variables impacting the gPBs’
deployment, onemay resort to efficient optimizationmethods
to circumvent the complexity of the corresponding problem.
Therefore, resilient approaches that account for model
imperfections, or even the lack of a model, are key in
such scenarios. One can, for instance, rely on worst-case
design approaches and strategies based on the statistics of
the ambient energy or live measurements. Moreover, meta-
heuristic algorithms also become appealing to tackle the
problem complexity as they comprise a wide family of prob-
abilistic solvers that can achieve near-optimal solutions with
high computational efficiency. Alternatively, one can rely on
efficient non-convex optimization techniques that exploit the
structure of the corresponding gPB’s deployment problem,
e.g., relaxations and convex approximations, to obtain good
sub-optimal solutions.

Regarding nomadic WET implementations, one can notice
that the spatio-temporal channel variations may hinder the
CSI estimation process. Fortunately, air-to-ground channels
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TABLE 2. Key research directions.

are LoS-dominant with limited scattering, thus one can
exploit the sparsity of the channel to device low-complexity
CSI estimation schemes. Nevertheless, for the general
nomadic WET channel online trajectory optimization algo-
rithms are more appealing to deal with the channel and
environmental variations [49]. Such algorithms must also
account for trajectory and charging co-design approaches
considering vehicle’s mechanical limits, service require-
ments, and regulations imposed by government authorities.
For instance, altitude requirements, initial/final position,
speed and acceleration limits, obstacle collision avoidance,
and prohibited zones. Moreover, notice that accurate energy
consumption models are necessary for these scenarios to
account for the road conditions, wind direction/speed, and
vehicle technology, just to name a few. Research efforts
in this direction must account for these variables and
have practical validation through experimental flights and
measurements.

B. INTELLIGENT AND ADAPTIVE WET STRATEGIES
When relying solely on ambient sources, gPBs must dynami-
cally adapt their transmit strategies to save energy for periods
when ambient energy is scarce or unavailable. Ideally, a gPB
must have an energy neutral operation meaning that the
available energy, either from the battery or the EH circuit,
must meet the energy demands at any given time. Notice,
though, that the available ambient energy and the energy
demands of the IoT devices are difficult variables to estimate
in the long term.

Fortunately, one can rely on stochastic control theory
as a potential framework for solving the optimal gPBs’
power allocation under randomly-varying network dynamics.
Particularly, the right tools for solving such a problem depend
on the availability of the states’ transition distribution, which
determines whether model-free or model-based approaches
can be used. For instance, dynamic programming is a

model-based recursive procedure in which the main problem
is decomposed into simpler sub-problems until convergence
a certain convergence criterion is satisfied. Moreover, data-
driven approaches have also become appealing recently for
solving such problems. Particularly, reinforcement learning
is a model-based/free framework for computing the best
action for a given state in a dynamic system. Notice that,
in the context of WET, one can model the state space
of the network using gPBs/devices’ batteries level, CSI
statistics, measurements/estimations of the incident ambient
energy.

C. EFFICIENT ENERGY TRADING
Fully wireless energy trading becomes challenging as the
network may experience outages due to severe reduction
in the end-to-end conversion efficiency. Hence, hybrid
wireless-wired powered networks may be preferred for
energy trading among fixed gPBs whereas for nomadic WET
implementations highly-efficient near-field WET technolo-
gies may be more attractive.

The gPBs (or a central controller) may require the energy
trading efficiency among peers, i.e., the harvested-to-spent
energy ratio for each possible transaction, for the current
network configuration to minimize the total losses. Notably,
this information aids the trading protocol to evaluate the
viability of the trading over other possible strategies, e.g., re-
deploy the gPBs, considering the achievable QoS guarantees.

D. ENVIRONMENTAL IMPACT OF WET
The potentially low end-to-end efficiency may hint to some
users that WET contributes more to carbon emissions.
Although this may hold for some WET implementations,
such as when charging smartphones, toothbrushes, and other
energy-demanding appliances, the overall environmental
impact for each WET-enabled scenario is currently unclear
and hence requires more studies. Noteworthy, proper key
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performance indicators are of paramount importance to
evaluate the true carbon footprint of the available implemen-
tations. One can consider, for instance, the carbon emissions
for every energy unit generated at the gPBs or transferred to
the devices throughout the lifetime of the network. For that
purpose, one requires, for instance, a trustworthy life cycle
assessment from the design phase to the hardware recycling
at the application’s end-of-cycle using manufacturers’ data.
Moreover, the efficiency of the gPBs’ EH components decays
with time depending on the environmental conditions they
are exposed to. For that, accurate models to consider the
aging of the EH circuitry become convenient to estimate
the long-term network performance, and thus the total
carbon emissions during lifetime operation. Finally, one
must consider that bringing eco-friendly practices to WET
implementations also implicates the analysis of additional
factors, such as the generated noise, land occupation,
ecological damage, and mining practices for the required
materials.

E. END-TO-END WET OPTIMIZATION STRATEGIES
WET systems are composed by three fundamental com-
ponents: the PB, the channel, and the RF-EH receiver.
Optimizing these components independentlymay degrade the
achievable performance since the components non-linearities
couple the system performance. For instance, the non-linear
response of the gPB’s power amplifier may distort the
amplitude and phase of the energy-carrying signal, causing
beamforming strategy to squint and thus reducing the
harvested energy. Besides, the conversion efficiency of
RF-EH receivers depends, in addition to the input power,
on the waveform characteristics of the received signal,
e.g., peak-to-average power ratio level, modulation, etc.
Therefore, proper WET optimization strategies must target
in the problem formulation the interconnection among
energy-carrying signal waveform, the transmit-receive strat-
egy, the RF-EH receiver design, and the charge/discharge
characteristics of energy storage elements, just to name a
few.

Unfortunately, tractable models for the end-to-end conver-
sion efficiency are nonexistent. That is why data-driven opti-
mization approaches may become appealing [50]. Moreover,
accurate energy consumptionmodels for the hardware and the
network protocols, information about devices’ position, CSI
statistics, or receive energy feedback are also needed to carry
out the optimization strategy.

F. SECURE ENERGY TRANSACTIONS
Computational, communication, and energy demands of
current DLTs grow exponentially with the number of
deployed IoT devices. Therefore, lightweight and scalable
DLTs become essential in this context. Special attention
must be paid to the energy efficiency and complexity of
the consensus protocols, and the design of the data structure
holding each DLTs’ block. Therefore, IoT-oriented DLTs that

account for the limited energy and computation resources at
both the gPBs and IoT devices become necessary.

For urgent transactions, gPBs can alternatively map the
available energy in the network using trustworthy information
sources, thus avoiding unnecessary queries to the DLTs.
For that purpose, a joint power and sensing paradigm,
in which a trustworthy network of energy probes continu-
ously updates the available energy to the gPBs, may become
appealing.

G. PERFORMANCE COMPLIANT WET
The unpredictability of ambient energy arrivals can challenge
the realization of autonomously operated gPBs. There-
fore, introducing new key performance indicators becomes
necessary for evaluating the performance of sustainable
WET-enabled networks. For instance, the energy conversion
efficiency of EH systems provides insights into the maximum
harvested energy for a certain amount of input ambient
energy, load impedance, transducer’s quality and orientation,
and environmental conditions, just to name a few. Moreover,
since the available ambient energy changes randomly over
time and space, one can resort to energy outage probability
metrics to evaluate the network performance. In this regard,
one can rely on i) the probability that the gPBs’ energy budget
depletes; ii) the probability of the received ambient energy
being below a threshold for a certain period of time; and
iii) the probability of an energy transfer operation to become
practically infeasible, e.g., due to the very low conversion
efficiency of the entire energy path.

The performance of the multiple components added to
the gPBs, e.g., transducers, batteries, adjustable antennas,
electric motors, and power management units, to sustain
their operations decays at different rates depending on
the environmental conditions. Besides, the fact that each
component ages differently may significantly compromise
the overall lifetime of sustainable WET-enabled networks.
In this regard, a performance decaymodel of the system based
on the individual components’ performance will become
convenient. From that one can derive the system’s lifespan
for a minimum accepted performance threshold, failure rate,
availability, and maintenance frequency, just to name a few.

VI. CONCLUSION
We introduced the concept of sustainableWET for supporting
a reliable and perpetual operation of future low-power IoT
deployments with minimum carbon footprint and compliant
levels of RF pollution. Results evinced that deploying
gPBs can reduce overall costs compared with traditional
WET and battery-aided IoT deployments. We discussed
different models for describing the availability of ambient
energy sources, and their relevance for achieving optimal
deployments of gPBs and enabling reliable ambient RF-EH.
We elaborated on different implementations for green energy
transmitters and illustrated relevant use cases. We reveal
insights towards implementing enhanced RF-EH circuits and
low-complexity multi-antenna transmitters. We emphasized
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sustainable WET strategies must comply with the regulations
for reducing the environmental RF pollution and robust
and lightweight energy trading protocols are needed for
mitigating energy leaks caused by malicious attacks. Finally,
we discuss the main research directions for achieving this
vision.
Reproducible research: The simulation results can

be reproduced using the Matlab code available at
https://github.com/Osmel-dev/sustainable-RF-WET.
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