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ABSTRACT Proteins hold multispectral patterns of different kinds of physicochemical features of amino
acids in their structures, which can help understand proteins’ behavior. Here, we propose a method based on
the graph-wavelet transform of signals of features of amino acids in protein residue networks derived from
their structures to achieve their abstract numerical representations. Such abstract representations of protein
structures hand in hand with amino-acid features can be used for different purposes, such as modelling
the biophysical property of proteins. Our method outperformed graph-Fourier and convolutional neural-
network-based methods in predicting the biophysical properties of proteins. Even though our method does
not predict deleterious mutations, it can summarize the effect of an amino acid based on its location and
neighbourhood in protein-structure using graph-wavelet to estimate its influence on the biophysical property
of proteins. Such an estimate of the influence of amino-acid has the potential to explain the mechanism of
the effect of deleterious non-synonymous mutations. Thus, our approach can reveal patterns of distribution
of amino-acid properties in the structure of the protein in the context of a biophysical property for better
classification and more insightful understanding.

INDEX TERMS Amino acids, graph signal processing, graph wavelet, protein property, residue interaction
graph.

I. INTRODUCTION
The vast expansion of protein sequence and structure data,
combined with breakthroughs in experimental and compu-
tational methods, is advancing our understanding of links
among protein structure, sequence, dynamics, and function.
This knowledge is utilized to gauge how proteins interact
with other molecules, peptides and potential drug targets [1].
Protein structures and functions have been investigated by a
range of experimental and theoretical methods [2], [3], [4].
Network analysis, which converts the protein structure into a
network of amino-acid residue, is a computational approach
that has lately been investigated. The network-based analysis
of interactions [5] among amino acids in protein structure has

The associate editor coordinating the review of this manuscript and

approving it for publication was Walter Didimo .

created a unique paradigm in protein systems research [6].
Undirected networks of amino acids and their associations
also known as Residue interaction networks are being used
to represent protein structures [7]. According to Zhou et al.
[7], [8] and del Sol and O’Meara [9], residue interaction net-
works reveal topological information and have the potential to
reveal the major biophysical properties of a protein molecule.
Dokholyan et al. [10] have shown that some network features
are related to protein unfolding, folding rates to some extent,
and some crucial residues which act as nucleation for protein
folding, tend to have substantial betweenness values in the
protein transition states. Jung et. al. [11] has shown that the
proportion of change in average path length normalised by
protein’s size to the edge removal probability, exhibited a
strong correlation with unfolding rate of proteins. Bagler and
Sinha [12] discovered that the network based coefficient of
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assortativity shows a positive correlation with folding rates
of proteins. Bagler and Sinha [12], [13] determined the most
visited residues in networks that is dependent on shortest path
and betweenness to identify important residues for protein
function. Recently Graph convolutional network [14], [15]
has also been used for modelling protein properties.

In the evolution of organisms, the mutation in their genetic
content is an essential driving force. Specific genetic muta-
tions, e.g. single nucleotide polymorphism (SNPs), can be
deleterious and cause disease in individuals. Single amino
acid polymorphisms (SAPs) are due to SNPs that induce
amino acid mutations and are suspected to be associated
with different types of phenotypes and disorders. There is
an underlying assumption that single amino acid polymor-
phisms linked to disease can be predicted to some extent using
network topological properties. According to Li et al. [16],
neighboring residues of a mutation site can help to detect its
relationship with disease as such aberrations generally occur
at residues with high degree or centrality. Functional modules
in proteins have also been studied using network param-
eters. Park and Kim [17] used structure-based correlation
mutation analysis to discover residues and module clusters
with different functional significance in rhodopsin, encoding
typical coevolutionary information in the amino acid net-
work. However, finding the exact mechanism through which
a SAP influences protein and cause disorder is not a trivial
problem. Linking the property of an amino-acid residue to
a biophysical property of protein can provide mechanistic
insight into their mutation’s deleterious effect.

Therefore, we first developed a unique approach based
on graph wavelets to engineer features that can impart
tremendous improvement in modelling biophysical prop-
erties of proteins using machine learning algorithms. Fur-
ther we utilized it to predict the possible effect of a SAP
on a biophysical property of protein. A major advantage
of graph wavelet transform is that it fractionates signal
into the multi-resolution pattern of scores corresponding to
detailed information of hidden modules in the graph. Our
method, ProteinGW, amalgamates multispectral information
of physicochemical and network-based properties of amino
acids (nodes) and their interactions in the protein structure.
Here, we have shown that ProteinGW derived features can
be used for predicting protein folding rate (regression) and
classification of transmembrane-globular, Soluble/Insoluble
proteins, α-helices/β-strands. We have retrieved our data
fromRCSB/PDB [17], [18], which represents most structures
of proteins. ProteinGW also helps in measuring the effect of
mutations in multispectral feature scores, which can be used
to explain its deleterious effect.

There have been a few methods to predict the effect of
mutations on protein function and dynamics. Most often,
sequence-based methods like SIFT [19] rely on available
protein sequences and their characteristics, such as, position-
specific substitution matrix (PSSM). Whereas structure-
based methods mostly rely on machine learning approaches

which need training datasets. Capriotti et al. proposed I-
mutant2.0 [20], which uses features such as pH, temperature
and mutation type features to train support vector machines
to predict the effect of mutations. Similarly, AUTO-MUTE
2.0 [21] trains a machine-learning model using features like
ordered identities of amino acids, pH, temperature and statis-
tical contact potential in the protein structures.

Another method, DynaMut [22], has been implemented
to estimate the impact of mutations on dynamics and
stability of proteins due to vibrational entropy changes.
Whereas a method with the name SDM [23] constructs an
environment-specific amino acid substitution matrix using
alignment to follow evolution rather than using machine
learning to assess the effect of the mutation. Most of the
previously proposed methods lack explainability about the
mechanism of influence of an amino acid on the property
of the whole protein. Due to lack of such clarity of the
influence of an amino acid on protein property, researchers
often do not trust predictive methods for new protein struc-
tures. Therefore, we further developed steps for estimating
the importance of multispectral features and explainability in
machine learning models in addition to predicting the effect
of mutations.

II. METHOD
A. WEIGHTED RIG MODEL
Our method builds a graph of protein molecules individu-
ally, where vertices represent the graph G(V, E) as amino
acid in the protein, and edges between amino acid residues
represent the distance between them. Generally, a network of
residues in a protein is modelled using a residue interaction
graph (RIG). In a RIG-based network, an adjacency matrix is
made as per the criteria: if the physical distance between two
residues (vertex) is less than or equal to a certain threshold,
they are connected. We have used a weighted version of RIG-
based network that can include both long and short-range
interactions. Long-range interactions are important for pro-
tein function prediction since they are accountable for keep-
ing the structure of protein unimpaired. Distance between
residues is calculated using three-dimensional coordinates of
atoms in protein structure available in the PDB (Protein data
bank) files. We have considered the center of residue to be
its alpha carbon (Cα) atom. Let the residues (vertices) be Vi
and Vj with Cα coordinates being (xi, yi, zi) and (xj, yj, zj) in
the PDB structure, the physical distance (di,j) between them
is calculated as

dij =

√(
xj − xi

)2
+

(
yj − yi

)2
+

(
zj − zi

)2 (1)

Here, i and j correspond to two residues in protein struc-
ture. These vertices are considered to be connected if this
distance is less than or equal to some threshold (rc). Hence,
we have used rc = 8Å. The weighted RIG model assigns
weight to the edge lying between two residue distances which
is proportional to the sequence distance between the two
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amino-acids (residue) locations. The edge weights in the
weighted RIG model are calculated as

weighted RIG(i, j) = {|j− −i| if di,j <= rc, otherwise 0}

(2)

In our internal investigation, we found that the weig-
hted RIG model tends to give better performance than the
boolean RIG model. Therefore in this study we have used a
weighted RIG model.

B. SPECTRAL GRAPH THEORY
The weighted RIG of a protein, is just an example of the
weighted undirected graph where amino acids are nodes con-
nected by edges. A weighted undirected graph G comprises
a defined set of vertices V and a positive set of weights w:
E → R assigned to edges E of the graph. Let the number
of vertices be defined by N = |V|. The weighted adjacency
matrix (NxN) derived from the weighted RIGmodel serves as
a finite weighted graph for spectral graph theory. The degree
of vertices in the graph is defined as the sum of weights of
edges incident on the vertex. For the degree of vertexm, it can
also be defined as d (m) =

∑
n Am,n where Am,n is the weight

of the edge between vertices m and n. With respect to the
adjacency matrix. Thus, a diagonal degree matrix would be:

D (i, j) = {d(i) if i = j, otherwise 0} (3)

A non-normalized Laplacian operator for the RIG graph is
defined by L = D - A. Here, we have used the normalized
form of Laplacian operator given by:

Lnorm = D−1/2 LD−1/2
= I − D−1/2AD−1/2 (4)

The RIG matrix is symmetric and hence can be diagonal-
ized, which suggests eigenvalue decomposition would be
Lnorm =UλU,whereU is eigenbasismatrix and λ is the diag-
onal matrix of eigenvalues of Lnorm. The eigenbasis matrix
U is associated with orthonormal eigenvectors denoted as χl
for 0 ≤ l ≤ N − 1. Their counterpart eigenvalues λl satisfy
Lnormχl = λl χl . The symmetric nature of Lnorm suggests that
the eigenvalues are real, non-negative and can be arranged in
ascending order as 0 = λ0 < λ1 ≤ λ2 . . .≤ λN−1, assuming
that RIG is connected.

C. SPECTRAL GRAPH WAVELET (SGWT)
The definition of SGWT [1], [24] suggests that it fixes a non-
negative real-valued kernel function g: R+

→ R+, which is
analogous to Fourier domain ψˆ∗ in the following equation

(T sf )(x) =
1
2π

∫
∞

−∞

eiωxψ∗(sω)f̂ (ω)d(ω) (5)

The kernel function g applied on node signal (AA fea-
tures) behaves as a bandpass filter and also requires that
g(0) = 0 and lim

λ→∞

g(λ ) = 0. At each scale, SGWT

coefficients of node signal (AA features) are produced by
wavelet operators acquired as rescaled kernel function of
graph Laplacian. We have used the Mexican hat filter in

PyGSP (https://pygsp.readthedocs.io/en/stable/) for Graph
signal processing applied on AA features which is defined
as the second order derivative of a Gaussian.

However, for a graph Laplacian in a finite dimension,
this can be achieved by eigenvectors and eigenvalues of the
Laplacian matrix (L). Precisely, the wavelet operator is set
by Tg = g(L). For a signal f(AA feature), Tgf gives wavelet
coefficients at each scale (s). We have taken 4 scales in which
AA features are decomposed into. Depending upon the action
performed by this operator [24] on eigenvectors χl , it is
defined as

Tgχl = g(λl) χl (6)

Thus, it can be said that the operator works on RIG signal f
(AA feature) by attuning every graph Fourier coefficient as

Tg f̂ (l) = g(λl) f̂ (l) (7)

Then the wavelet operator at each scale would be T sg = g
(sL). This is defined on the basis of the kernel function
(g(λ )) domain being continuous [24]. Further, the spectral
graph-wavelet at scale s, centered on vertex n(AA) would be
ψs,n = Tsgδn where δn is impulse on a single vertex (AA). Thus
wavelet coefficients can be contemplated as inner products of
f(AA feature) with the wavelet ψs,n i.e

Wf (s, n) =< ψs,n, f > (8)

D. IMPLEMENTATION DETAILS
Our method of protein property prediction using graph
wavelet (ProteinGW) first builds a weighted RIG model of
each protein and puts amino acid features (physiochemical,
network-based and conservation) as signals on the graph
obtained (Fig. 1). Signals for the amino acid ( or nodes in
RIG) captured are molecular weight, hydrophobicity, amino
acid frequency, conservation score, bulkiness, polarity, turn
tendency, coil tendency, flexibility, partial specific volume,
refractive index, compressibility, and some graph properties
such as node degree, node weighted degree, clustering coeffi-
cient. Here, the node degree is the number of edges connected
to the vertex and the node weighted degree is the sum of
weights of edges incident on that vertex. The clustering coef-
ficient is defined as the geometric average of subgraph edge
weights i.e.,

Cu =
1

deg(u)(deg(u) − 1)

∑
vw

(ŵuvŵuwŵvw)1/3 (9)

Here, Cu becomes 0 when deg(u) < 2 and the edge weights
(ŵuv) are normalized by maximum weight in the network
i.e., ŵuv = wuv/max(w).
ProteinGW yields wavelet coefficients at four scales by

default. ProteinGW applies hard thresholding by finding an
optimal percentile threshold on those wavelet coefficients
during training of the model. This threshold is learned during
the training process and is then used on the test dataset.
Thus, for 15 features on 4 scales, the total feature space
becomes 15∗4 i.e 60. The ProteinGW fractions the dataset
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into training and test sets and trains machine learning mod-
els with 5-fold cross-validation. For evaluation of the pre-
dictive model, ProteinGW uses Accuracy, ROC AUC(Area
under the Receiver operator Curve), Macro-F1(computed
using the arithmetic mean of all the per-class F1 scores),
and MCC(Matthews correlation coefficient) scores for clas-
sification tasks and R2(coefficient of determination) which
denotes goodness of fit, RMSE(Root mean square error) for
estimation of protein-folding rate. Here, we have compared
random forest with other machine learning models such as
XgBoost, AdaBoost, K-Nearest Neighbors, Gaussian Naive-
Bayes, Logistic Regression, SVM(support vector machine)
for Transmembrane/Globular, all-α/all-β, Soluble/insoluble
classification task. Additionally, for protein folding rate
estimation using the ProteinGW approach, we compared
random forest regressor with ElasticNet, Decision Tree,
K-Nearest Neighbors, SVR (support vector regression),
Ridge, Lasso, and Linear regressions. Further, to add explain-
ability to the trained Random forest predictive model,
ProteinGW finds feature importance at each scale for all
physicochemical/network properties. Finally, change in top
predictive features at disease-specific mutation sites in pro-
teins is also studied. We have used publicly available
resources [25] to determine the association of amino acid
network properties with disease-associated mutation.

E. DATA SOURCES
For modelling folding rate, 52 single-domain two-state fold-
ing proteins were used. Information for those proteins was
gathered from multiple sources [2], [26]. The same set of
52 proteins was used for alpha/beta modelling. Whereas for
modelling transmembrane/globular properties, we collected
237 transmembrane and 59 globular proteins from the PDB
database. For modelling solubility, we used those proteins
in the list published by Han et al. [27] which have a PDB
structure.

III. RESULTS
Each amino acid has its own set of physicochemical charac-
teristics that influence protein’s overall behavior and folding
rate. As a result, extracting features based on amino acid prop-
erties is necessary and appropriate when comparing proteins
and studying their function.We used known physicochemical
characteristics of 20 amino acids, such as molecular weight,
hydrophobicity, amino acid frequency, bulkiness, polarity,
turn tendency, coil tendency, flexibility, partial specific vol-
ume, refractive index, compressibility, and some graph prop-
erties such as node degree, node weighted degree, clustering
coefficient (supplementary methods) [28] and conservation
score [29]. We also used the network properties of amino
acids in the residue interaction graph (RIG) as features for
classifying protein based on Transmembrane/Globular, solu-
ble/insoluble, alpha/beta properties and estimating the protein
folding-rate of proteins (Fig.1). ProteinGW positions signals
of each property on the weighted RIG of each protein before
applying graph-wavelet transform. Further, after finding a

consensus cutoff to reduce noise and non-relevant compo-
nents for wavelet signals, it calculates overall multispectral
feature scores, which can be used in machine learning tech-
niques. Overall, ProteinGW calculates 60 features scores
where for every property of amino acid, we have 4 scores
corresponding to 4 resolution levels of wavelet.

A. THE PREDICTIVE POWER OF GRAPH-WAVELET-BASED
FEATURE EXTRACTION
1) TRANSMEMBRANE-GLOBULAR CLASSIFICATION
First, we used our approach to predict the transmembrane-
Globular property of proteins. Globular proteins have a wide
range of three-dimensional structures and functions like catal-
ysis, transport, cellular signalling etc. On the other hand,
a transmembrane protein’s orientation in the membrane is
always very unique. The membrane-spanning portions of the
polypeptide chain that contact the hydrophobic environment
of the lipid bilayer are primarily made of amino acid with
nonpolar side chains which separate these domains. Because
peptide bonds are polar and there is an absence of water in
the bilayer, all peptide bonds are forced to establish hydrogen
bonds [30]. In order to model globular/transmembrane prop-
erty using graph wavelets, we collected 237 transmembrane
proteins and 59 globular proteins. Multispectral features
scores or, in other words, graph wavelet-based feature scores
(GWFS) were calculated following the process mentioned
in the methods section. Further, we used various machine
learning models using GWFS and compared their perfor-
mance. Different measures of evaluation of classification like
accuracy, Macro F1 score, ROC-AUC (Receiver Operator
Characteristic – Area Under Curve), MCC (Mathew’s cor-
relation coefficient) are shown in Fig. 2A (supplementary
Fig. 1, supplementary table 1). Here, error bars denote stan-
dard deviation to measure variability in performance of eval-
uated machine learning models. These values are obtained
on 5-fold cross-validation. We used a random forest-based
classification model for further analysis because it has shorter
error bars with an accuracy of 0.93, 0.88 Macro-F1, 0.86
ROC-AUC and 0.77 MCC scores.

2) SOLUBLE-INSOLUBLE CLASSIFICATION
We further tried to model the solubility of proteins using our
approach. Successful recombinant protein synthesis necessi-
tates high levels of protein expression and solubility, which is
often difficult to achieve. Multiple errors during recombinant
protein synthesis impede protein research, especially struc-
tural, functional, and pharmacological investigations that
require soluble and concentrated protein samples [31], [32].
As a result, predicting solubility and engineering protein
sequences for increased solubility is a contentious issue in
research. Multiple intrinsic factors like molecular weight,
amino acid composition and hydrophobicity of residues
affect protein solubility [33], [34]. Therefore, we used
GWFS extracted using such amino-acid properties with
machine learning classifiers to predict the solubility proteins.
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FIGURE 1. The pictorial flow chart of ProteinGW pipeline. Protein structures were collected for each protein
function to be modelled. A dictionary consisting of the distance matrix, sequence, etc. was created for each
protein. Weighted RIG (adjacency matrix) was created. Then, a network-specific to each protein is built
using a weighted-RIG matrix. Further, physicochemical properties/network properties for each amino
acid (node) are placed as a signal on the graph, the optimal threshold is calculated to threshold wavelet
coefficients. Finally, a machine learning model is trained.

Performance evaluation of various machine learning tech-
niques using 5-fold cross-validation revealed that random
forest was superior in classification with the accuracy of
0.79, 0.78 Macro-F1, 0.79 ROC-AUC, 0.57 MCC scores (see
Fig. 2B, supplementary table 2).

3) ALL-α, ALL-β CLASSIFICATION
Another protein classification problem that we tried to solve
using our approach is determining α and β content. All-α,
all-β, α + β, and α/β are the four structural classifica-
tions that globular proteins fall into. All-α and all-β pro-
teins are classified as being almost entirely made up of
α-helices and β-strands. Separate segments of α-helices and
β-strands (mostly antiparallel) were identified for α+β pro-
teins composition, whereas mixed segments of α-helices and
β-strands were characterized for α/β proteins (mainly
parallel). We evaluated the performance of our wavelet-based
feature engineering on the classification of all-α and all-
β proteins. α-helices and β-strands classification is also
done by deriving features in the wavelet domain with fre-
quency cutoff using hard thresholding after finding the
optimal threshold. Mostly we observed the performance of
all machine learning models (features from ProteinGW are
used), very close in terms of Accuracy, Macro-F1, ROC

AUC, andMCC scores (supplementary table 3). However, the
best performance showed 0.75 accuracy, 0.73Macro-F1, 0.75
ROCAUC, 0.57 MCC scores. We compared the performance
of our method (ProteinGW)with 3 previously published tools
for predicting solubility, namely, Protein-Sol [35], GraphSol
[36] and DSResSol [37](supplementary Fig. 2). We found
that ProteinGW had better performance than other 3 methods
tested for solubility.

4) PROTEIN FOLDING RATE PREDICTION (REGRESSION)
After measuring the performance of our method on 3 protein-
classification problems, we used ProteinGW for the predic-
tion of the fold-rate of protein. The rate of protein folding
is a metric for determining how quickly (or slowly) a pro-
tein folds from its unfolded form to its native 3D structure.
Protein folding rates research helps in better understanding
of differences in protein folding kinetics that can contribute
to illnesses like prion and Alzheimer’s disease etc [38]. We
evaluated our method for modelling protein folding rate, for
which we collected protein structures [12], [39] and their
protein-folding rates. Their features were engineered using
ProteinGW. Regression models were trained on the train-
ing dataset, and the performance was evaluated on test data
with 5-fold cross-validation. RMSE and R-value of various
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FIGURE 2. Performance of various machine learning models using 5-fold cross-validation after feature extraction using the graph-wavelet approach.
(A) MCC, Accuracy, Macro-F1, ROC-AUC are compared for modeling classification of transmembrane and globular proteins. Various machine learning
models i.e. XgBoost, AdaBoost, KNN, Gaussian naive Bayes, logistic regression, SVM, and random forest, are compared. (B) MCC, Accuracy, Macro-F1,
ROC-AUC is compared for modelling classification of soluble and insoluble proteins by various machine learning model (C) MCC, Accuracy, Macro-F1,
ROC-AUC is compared for modelling classification of all-α and all-β proteins. (D) The correlation value (R) for protein folding rate estimation is
shown. Features extracted from ProteinGW are fed into the machine-learning models. ElasticNet, Decision Tree, Random Forest, KNN, SVR, Ridge,
Lasso, and Linear regression are compared. (E) Root mean squared error (RMSE) for protein folding rate prediction is shown.

regression models i.e., linear, lasso, ridge, SVR, KNN, ran-
dom forest, decision tree, elastic net evaluated using features
engineered from our method and are shown in Fig. 2D and 2E
(supplementary table 4). It is evident from Fig. 2D and 2E
that random forest has performed best among all models with
R=0.81 and RMSE=1.68.Whenwe compared the RMSE for
folding rate prediction reported by three other methods (Pred-
PFR, FoldRate, SWFoldrate) [40], [41] (see supplementary
table 5), we found that their performance was lower than
ProteinGW.

B. COMPARING GRAPH WAVELET WITH OTHER
GRAPH-SIGNAL BASED METHODS
We compared our approach against other methods which can
use structure-based networks and amino-acid properties on
nodes to model the biophysical property of proteins. One
suchmethod is based on the graph Fourier transform, recently
proposed in our report [41]. The other method we used
for comparison is based on a convolutional neural network
which also uses graph structure to combine signals of an
input vector of quantified property of amino acids. In the
field of protein function modelling, the Convolutional Neural
Network (CNN) based Deep Learning has been a tremendous
success, but it takes a lot of data samples to train a network of
deep learning. In practice, getting a high number of training

samples is too difficult, and under the constraints of a small
dataset, it is most likely to overfit. We may, however, use the
Fourier transform to get the amplitude of the signals required
to reproduce any signal [41]. However, the Fourier trans-
form has a basic limitation that all characteristics of a signal
are global in scope. On the other hand, wavelet transform
allows efficient access to localized frequency information
about the signal [24]. Thus, we compared the performance
of CNN, GFT (Graph Fourier Transform) (see supplementary
methods), and ProteinGW when reducing the fraction of the
training dataset to evaluate the robustness and consistency of
these methods.

For modelling transmembrane/Globular property, we con-
secutively reduced the number of training samples to evaluate
the performance of the model when trained with fewer data
points which can be seen in Fig. 3A with Macro-F1 Score
ranging from 0.87 at nearly all fractions for ProteinGW.
However, the performance of graph-classifying CNN [24],
[42] is comparatively less for all sizes of training data. In
addition, the performance of CNN degrades progressively
when this fraction is reduced slightly. We have also com-
pared our method with the graph Fourier transform-based
filtering method [41], as shown in Fig. 3A (supplementary
table 6). Graph wavelets are seen to perform consistently,
and performance is 92% (accuracy) even when the fraction
of training data is 50%. We also performed a comparison
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FIGURE 3. Comparison of ProteinGW with other methods and feature-weights for their amino-acid properties. (A) Accuracy of protienGW, convolutional
neural network (CNN) and graph Fourier Transform (GFT) at the different number of training data points, The training fraction is reduced from 0.85 to
0.50. The importance of the feature score was calculated using a Random forest-based model. (B) The importance of graph wavelet-based features scores
(GWFS) on different scales in modelling the biophysical property of proteins. Four wavelet scales are demonstrated in estimating the protein-folding rate.
The figure shows conservation score, node weighted degree, refractive index, Node degree, and residue count at scale 4 (corresponding to low frequency)
are crucial, while polarity exerts more importance at scale 1. Similarly, polarity at scale 3 also appeared to have detectable importance. (C) Similarly, for
transmembrane-globular, polarity, Molecular weight at scales 1 and 4, conservation score at scale 3, coil tendency at scale 4, the refractive index at scales
1 and 2 and turn tendency at scales 1 and 3 have turned out to be more important. (D) Four wavelet scales are illustrated in classifying All-α and all-β
Proteins. Here, molecular weight, coil tendency, compressibility, bulkiness at scale 4 emerged to be most prominent. (E) Likewise, for the classification of
soluble and insoluble proteins, the refractive index at scale 4 and flexibility, node degree, residue frequency and partial specific volume at scale
1 appeared to be more important.

for all-α and all-β classification and found that ProteinGW
showed consistency throughout even on decreasing the num-
ber of data-points in training data (see Fig. 3A, supplementary
Fig. 3), (supplementary Table 7). While the accuracy of Pro-
teinGW reduced from ∼0.80 to 0.78 at 0.50 fraction of the
training set, CNN model showed a larger reduction (from
0.66 to 0.59). Further, GFT accuracy ranged from 0.67 to

0.53. Further assessment was carried out for solubility. ROC
AUC for ProteinGW varied from 0.73 to 0.66 as training data
was reduced from 85 to 50 percent of the whole data (supple-
mentary Fig. 3). While for GFT, it ranged from 0.63 to 0.59
(supplementary Table 8). Similarly, 0.61 to 0.58was the range
for CNN. Overall, such analysis reveals that our method out-
performs other tested methods at all sizes of the training set.
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C. PATTERN AND IMPORTANCE OF GRAPH
WAVELET-BASED FEATURE SCORES OF AMINO
ACIDS IN DETERMINING PROTEIN’S
BIOPHYSICAL PROPERTY
Our approach of multispectral decomposition for analysis of
residue interaction network of protein with the signal on the
node has rarely been used. Hence it becomes important to
study the behavior of extracted features and make insight into
their pattern. We studied the trend in the importance of the
scores based on the multispectral representation of physico-
chemical and network properties of amino-acid residues for
each protein functionmodelling.We extracted the importance
of graph wavelet-based feature score (GWFS) at 4 scales
from the random forest machine learning model. Features
that were most important for explaining protein-folding rate
were conservation score, node-weighted degree, refractive
index, node degree and residue frequency signals at scale 4
(low frequency), while hydrophobicity, and polarity have
some importance at scale 1 (high frequency). The direction-
ality of correlation of GWFS w.r.t the property of protein
is shown in supplementary table 9. Similarly, conservation
score and polarity at scale 3 also appeared to be mildly
important (Fig. 3B). Since in wavelet transform, low fre-
quencies (high scales) correspond to global information of
a signal (or cumulation of many interactive residues with
the same physiochemical property); it indicates that when a
large number of residues with certain properties (like node-
degree, refractive index) are connected with each other, then
the folding rate is high. Whereas, if there are smaller groups
of tightly connected residues with such property or when the
structure is composed of smaller modules, the folding rate is
slow.

We also calculated the importance of amino acid properties
and their distribution pattern on the residue graph for the
classification for transmembrane and globular proteins (see
Fig. 3C). Properties that appeared to be most salient based on
random forest-based classifiers were polarity and molecular
weight at scales 1 and 4. Such a result can be explained by the
fact that proteins with higher globularity have polar amino
acids at the surface with less interaction with each other
(higher value of high-resolution signal, scale-1). In contrast,
transmembrane proteins have nonpolar amino acids dispersed
on the surface such that polar amino-acid interact with each
other at the core, leading to a higher value of low-frequency
spectrum of polarity (scale-4) of polarity (see Fig. 3C and
supplementary table 9). A similar argument could be given for
coiled-coil tendency, whose low-frequency component seems
to be important. It indicates that there could be larger modules
of interacting residues with a high coiled-coil tendency in
globular proteins. Other interesting patterns in the importance
of GWFS for modelling transmembrane/globular properties
were for conservation score at scale 3, the refractive index at
wavelet scales 1 and 2 and turn tendency at scales 1 and 3.

Similarly, for the classification task of alpha and beta
proteins (shown in Fig. 3D), molecular weight, coil tendency,

compressibility, and bulkiness at scale 4 emerged to be fore-
most in their classification. It is well known that coiled-coil
structures stabilize alpha-helices, so larger modules of inter-
acting residue with high coil tendency would be more com-
mon in alpha proteins. However, for differentiating soluble
and insoluble proteins, our model showed refractive index at
scale 4 (low resolution) appeared to be more important than
other feature scores. Other features which showed detectable
importance were flexibility, node degree, residue frequency,
and Partial specific volume at scale 1 (see Fig. 3E). Overall,
the importance of GWFS corresponding to a few residue
properties and wavelet scales provides insights into how
different types of amino acids interact to make different
modules.

D. GRAPH WAVELET-BASED FEATURES ADD
EXPLAINABILITY TO THE EFFECT OF MUTATIONS
ON PROTEIN’S BIOPHYSICAL PROPERTY
Our approach provides an advantage of measuring the mul-
tispectral intensity of the score of predictive and important
features at every amino acid. Such as, for the classification of
transmembrane/globular protein, we can get the graph-based
multispectral score of the most predictive feature (polarity)
on every amino acid. Such information of feature score from
every amino acid can be used to explain the importance of
every amino acid in determining the class of protein as a trans-
membrane or globular. Therefore, we further investigated the
utility of our methods for finding the possible mechanism
of the effect of disease-associated mutations. We curated the
disease-associated mutations in proteins used in our study for
modelling globularity and protein folding rate with the help
of Uniprot [1] and HuVarBase (HUmanVARiantdataBASE)
databases [25] (supplementary table 10). Out of the mutations
mentioned in supplementary table 10, we could find an expla-
nation of their possible effect using our model, as elaborated
below.

1) CASE STUDIES BASED ON TRANSMEMBRANE/GLOBULAR
PROPERTIES OF PROTEINS
We first investigated the percentile of GWFS of each amino
acid for top properties identified using feature-importance
provided by random forest classifiers. Further, we inves-
tigated if high GWFS (high percentile) for top predictive
features for an amino acid for globularity prediction could
explain their mechanism of influence. Such as, one of the
globular proteins Lamin A 17-70 coil1A dimer stabilized by
C-terminal capping (PDB ID:6YF5) is mentioned to have
a mutation in arginine to Glycine/Proline (at Position:25),
which causes disease Emery-Dreifuss muscular dystrophy 2
[25] (autosomal dominant version) (EDMD2). Our initial
analysis shows that the associated specific location (at posi-
tion: 25) has a moderately high polarity-based average (mean
of all layers) GWFS (∼ 75th percentile) among all amino
acids (supplementary table 11). We also found another muta-
tion in residue 50 in the PDB structure Lamin A (6YF5),
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FIGURE 4. Relevance of transmembrane/globular property in the effect of disease-causing mutation (A) Percentile Scores of top features i.e. polarity,
bulkiness, flexibility, refractive index, clustering coefficient, partial specific volume, turn tendency, and coil tendency for proteins structures with PDB id:
3DZQ (EPHA3, Lys207Asn, Pancreatic ductal carcinoma), 2BBA (EPHB4, Glu59Lys, Capillary malformation-arteriovenous malformation), 6YF5 (LMNA,
Arg50Pro, Emery-Dreifuss muscular dystrophy), 6YF5 (LMNA, Arg25Pro, Emery-Dreifuss muscular dystrophy) and 4Y63 (ABO gene, Glu223Asp). For every
feature, it represents the average value across all four levels of the wavelet spectrum. (B) Probability scores of proteins (same as in subpart a) before and
after mutation of the original class of the proteins. For 2BBA and 3DZQ it shows a probability of being transmembrane. For comparison with the null
model, the average change in probability for mutations at 10 random sites is also shown for every protein. (C) Visualization of 4Y63 mutation site and
probability of belonging to transmembrane class before and after mutation.

which is associated with EDMD2(autosomal dominant). The
residue 50 in LAMIN A structure (PDB id: 6YF5) also has
moderately high polarity-based average GWFS (∼ 75 per-
centile) (see Fig. 4A). When we estimated layer-wise GWFS
for polarity, both the residue locations (25 and 50) in 6YF5
had a rank below 72 percentiles in the fourth layer of wavelet
(supplementary Table 12), which is important for modelling
globularity (see Fig. 3C and supplementary Table 9).

We also found high polarity-based GWFS at a residue
in Human EphA3 kinase protein, which is most fre-
quently mutated in lung cancer and other cancers, includ-
ing melanoma, glioblastoma, and pancreatic [43], [44] and
hepatocellular carcinoma and head and neck squamous cell
carcinoma [44]. In the structure of Human EphA3 kinase
domain in complex with inhibitor AWL-II-38.3 (PDB ID:
3DZQ) the mutation in residue position 207 from Leucine
to Asparagine (Leu207asn) is known to be associated with
the disease Pancreatic ductal adenocarcinoma (Position:207).
The polarity-based GWFS at residue 207 is high among all
amino-acids (85.63). Among our set of PDB structures used
to model globularity, we also found another protein EphB4
kinase domain inhibitor complex (PDB ID: 2BBA), with a

mutation ( Glutamic acid to Lysine at position 59) known
to be associated with Capillary malformation-arteriovenous
malformation. Our result shows a high percentile score of
polarity (81.422) of residue position 59 in the structure of
ephB4 kinase. The percentile scores of major top predic-
tive features for the above-discussed proteins are shown
in Fig. 4A. The average percentile and wavelet level-wise
rank of polarity-based GWFS is shown in supplementary
Table 11 and supplementary Table 12.

Further, we investigated the impact of mutations through
a change in predicted globularity using our trained model
for the transmembrane/globular property of proteins. The
estimated probability for Lamin A structure (6YF5) being
globular decreased only by 15 percent (from 0.71 to 0.60)
on replacing arginine by proline (at Position:25) (Fig. 4B).
Whereas for Lamin A structure (PDB ID: 6YF5) the esti-
mated probability for being globular decreased from 0.79 to
0.58 for same change at position 50 (Arg50pro). We also
simulatedmutations on 10 randomly chosen residue locations
on Lamin A structure (6YF5) and estimated changes in the
predicted probability for globularity. The average change in
the probability of globularity by 10 random mutations was
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almost equal to replacements at residue positions 25 and
50. On the other hand, for transmembrane protein structure,
Histo-blood Group ABO System Transferase (PDB Id:4Y63)
the estimated probability after mutation at 223 from Glu to
Asp was reduced by 40 percent ( from 0.99 to 0.55, Fig. 4C).
At the same time, the drop in the probability of transmem-
brane property due to 10 random mutations in Histo-blood
Group ABO System Transferase (PDB Id:4Y63) was ∼25
percent. Similarly, for transmembrane proteins structure with
PDB IDs 3DZQ(EphA3), 2BBA(EphB4), the probability
of being trans-membrane reduced from 0.86, 0.96 to 0.41,
0.38 on mutations at residues 207 and 59, respectively. The
substantial reduction of more than 50 percent in the proba-
bility of being transmembrane due to mutation Lys207Asm
in EphA3 provides support for a possible loss of surface
localization of EphA3 reported to be influencing cancer
development [44]. The simulated mutations at 10 random
sites in both protein structures 3DZQ and 3BBA caused a
reduction of only 25 percent. We have also shown a visu-
alization of mutation in Histo-blood Group ABO System
Transferase (4Y63, Glu223Asp) and the probability of the
protein belonging to the transmembrane class before and
after mutation. Overall, our result highlighted the loss of
transmembrane property due to mutation at site with higher
polarity-based GWFS as a possible cause of the deleterious
effect of corresponding mutations (Glu223Asp in Histo-
blood Group ABO System Transferase, Lys207Asm EphA3
and Glu59Lys in EphB4). We further confirmed our model
with experimentally validated effects of mutations in protein
EPHA3 (pdb:3DZQ) published by Liasbeth et al., [44]. Our
predictions for the effect of mutations on the transmembrane
property of protein EPHA3 were concordant with experi-
mentally measured changes in cell-surface localisation (see
supplementary Fig. 4).

2) CASE STUDIES ON THE EFFECT OF MUTATIONS ON
FOLDING RATE
We also curated known disease-associated mutations in pro-
teins which we used for modelling folding rate. Here we
investigated percentile scores for important features in Pro-
tein folding rate prediction after taking the average of their
values at four levels of the wavelet spectrum. One such pro-
tein is tumor suppressor protein P16INK4A (PDB id: 2A5E)
with a mutation at residue 53 from methionine to isoleucine
(Met53Ile) linked to Melanoma, cutaneous malignant. The
corresponding residue position 53 has a high percentile score
for conservation score (76.76) and a relatively higher per-
centile score for flexibility (see Fig. 5A) (supplementary
Table 13). We also investigated other mutations in protein
P16INK4A, namely glucine to glycine at residue location 119
(Glu119Gln) reported in biliary tract tumors and valine to
alanine at 95 (Val95Ala), causing Non-small cell lung car-
cinoma. We also considered the case of the crystal structure
of Bovine Carbonic Anhydrase II (CAII) (PDB id: 1V9E) as
the mutation in its human homologue at location 94 (histidine
to tyrosine) is linked to Osteopetrosis. The corresponding

location in Bovine CAII protein has slightly high GWFS
based on conservation, the refractive index, which appeared
as an important feature for folding rate (see Fig. 5A).
We further used our pre-trained model to check whether

there is a change in the estimated folding rate of protein upon
mutation at mentioned sites leading to disease. The changes
in Protein folding rate due to simulated mutations are shown
in Fig. 5B. The change for 2A5E(Met53Ile) was recorded
to be 4.10809 (Fig. 5C), and for 1V9E(His94Tyr) it was
12.11 (526% change). Similarly, for 2A5E(Val95Ala) and
2A5E(Glu119Gln) the change is 4.10527 and 4.10739 (sup-
plementary Table 14). The effect on folding rate by mutations
at random sites in both protein structures 2A5E and 1E9Ewas
not comparable to deleterious mutation studies here. Thus,
our method generated the hypothesis of the impact on folding
rate by the deleterious mutations investigated here, which can
help researchers in designing relevant experiments.

IV. DISCUSSION
Our study demonstrates a generalisable use of spectral
graph-wavelets in extracting features of proteins. Here we
have not targeted to study only one particular property of
protein but focused more on our novel framework using
which relevant features can be extracted from protein struc-
tures. ProteinGW amalgamates the amino-acid properties
and residue network topology to extract features useful for
modelling various physical properties of proteins. Spectral
graph wavelet helps ProteinGW impart the understanding
of the global and local importance of a feature for better
prediction for a specific property of the proteins. However,
our method also finds an optimal threshold for each residue
wavelet coefficient for the refinement of noise in the signals.
We have shown the performance of our method for Trans-
membrane/Globular, Soluble/Insoluble, all-α/all-β Proteins
classification and estimation of protein-folding rate. Nev-
ertheless, the proposed method can be used for modelling
any protein property. Our method has also outperformed
CNN and feature extraction using Graph Fourier transform
to predict four protein properties. To evaluate the folding
rate prediction, we also compared RMSE with three other
methods.

One major drawback of using the graph Fourier-based
approach is that it does not allow estimating the effect of
each amino acid on the biophysical property of proteins.
On the other hand, graph-wavelet-based method allows the
investigation of the effect of each residue property lead-
ing to predicting its association with known deleterious
effects (disease-causingmutation). Thus, ProteinGWexhibits
explainability to predictive modelling using wavelet features
to impart a better understanding of feature importance for
each property individually. If the training-set is available,
ProteinGW has the potential to highlight the importance of
amino-acids w.r.t given the property of protein. The result
of our analysis suggests possible links between proteins
EPHA3 (PDB id: 3DZQ), LMNA (PDB id: 6YF5), EPHB4
(PDB id: 2BBA) and polarity score at residue sites 207,
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FIGURE 5. Finding relevance of folding rate in the effect of disease-causing mutation (A) Percentile Scores of top features i.e. bulkiness,
conservation score, flexibility, refractive index, clustering coefficient, partial specific volume, residue frequency, molecular weight for proteins
2A5E(Met53Ile, Melanoma, cutaneous malignant), 1V9E(His94Tyr, Osteopetrosis, autosomal recessive 3), 2A5E(Val95Ala, Non-small cell lung
carcinoma), and 2A5E(Glu119Gln, A biliary tract tumor). (B) Change in Protein folding rate of proteins (same as in subpart a) before and after
mutation. The average change in probability for mutations at 10 random sites is also shown for every protein. (C) Visualization of 2A5E mutation
site (Met53Ile, Melanoma, cutaneous malignant) and protein folding rate predicted, actual before mutation, and protein folding rate after mutation.

50 and 59, respectively which could be responsible for their
known associations with different disorders. Especially for
cell membrane proteins EPHB4 and EPHA3, the effect of
the simulated mutations at a single relevant residue location
(Glu59Lys and Glu207Asm) were much higher. Such results
show how a perturbation in the signal of physicochemi-
cal properties of a single amino acid without changing the
residue-interaction graph can have a wide effect. The under-
lying cause of such a wide effect could be the 3-dimensional
modular arrangement of physicochemical effects such as
hydrophobicity and the strategic location of residues link-
ing different modules. Notice here a module describes the
community of connected residues sharing the same physic-
ochemical property signals. Hence, besides the structure of
the residue-interaction graph, the pattern of connected com-
ponents of the physicochemical signal at different resolutions
also decides the importance of a residue. Our method can
capture such patterns in the structure of proteins to generate a
hypothesis related to the effect of exonic mutations that could
be further used for a detailed study.

Our approach based on graph wavelet transform of residue
interaction graph also opens an avenue to classify pro-
teins. Structure-based classification of proteins (SCOPE)
has remained a relevant problem, at the same time, find-
ing the cause of the influence of mutations is also impor-
tant for the current post-genome-sequencing era. ProteinGW

holds promise for resolving both the problems with its
elegant use of graph-wavelet. Finally, graph-wavelet based
feature-extraction from protein structures using ProteinGW
could also be helpful in the unsupervised classification of
proteins. Therefore, ProteinGW could prove to be a useful
resource for many researchers. A limitation of ProteinGW is
that it is dependent on a training set for reporting the possible
effect of mutations. Such as to estimate the possible effect of a
mutation on solubility, we need a training-set which includes
the structure of the soluble and insoluble protein. However,
given the current availability of high-confidence predictions
of protein structures (such as alpha fold [44], [45], ourmethod
could be highly useful for predicting multiple kinds of the
physical properties of proteins. Thus, with the support of
structure prediction methods like ‘‘alpha fold’’ our approach
could help in resolving the issue of estimating the mechanism
of the effect of exonic mutations genome-wide. Hence in
future, we hope to collect more training-set for multiple other
types of protein properties to achieve a better overview of the
effect of mutations.

CODE AVAILABILITY
The code is available at http://reggen.iiitd.edu.in:1207/
ProteinGW/. It is also put on GitHub (https://github.com/
reggenlab/ProteinGW)
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