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ABSTRACT The Grey Wolf Optimization Algorithm (GWO) replicates the leadership and foraging mecha-
nisms of the natural grey wolf and excels in solving problems in a variety of domains. However, the algorithm
tends to converge to a local optimal and has a slow convergence rate. This paper proposes an enhanced Grey
Wolf optimization algorithm (HTGWO) based on hyperbolic tangent inertia weights to solve this problem.
HTGWO employs inertia weights based on hyperbolic tangent functions to balance GWO’s global and local
search capabilities of the GWO. HTGWO has a faster convergence rate and more accurate solutions than
GWO. Five classical test functions were used to construct comparative experiments between the HWGWO
and five classical intelligent optimization algorithms. The comparison results indicate that HWGWO has
superior convergence speed, solution precision, and stability comparedwith the other five classical intelligent
optimization algorithms. Moreover, experimental evidence suggests that the HWGWO is more effective at
solving multimodal functions than unimodal functions. In addition, HTGWO can balance exploration and
exploitation by adjusting the parameters according to the characteristics of different problems.

INDEX TERMS Hyperbolic tangent, inertia weight, convergence, accuracy, unimodal, multi-model.

I. INTRODUCTION
This article proposes a method to prevent GWO from falling
into local optima, accelerate convergence speed, and improve
GWO’s ability to solve different engineering problems.
Because the hyperbolic tangent function is an S-type func-
tion, it can effectively balance the global and local searches.
Therefore, in this study, a hyperbolic tangent inertia weight
is developed to solve this problem. The main contributions of
this work can be summarized as follows. This paper proposes
a GWO algorithm based on hyperbolic tangent inertia weight
(HTGWO) to reconcile the global search and local search
abilities and find the global optimum. The method improves
the performance of the algorithm as a whole and the ability
of the algorithm to cope with different problems.

With the advancement of science and technology in recent
decades, optimization problems have become prevalent in
numerous disciplines. Researchers have used algorithms
based on swarm intelligence to identify the optimal solution
among numerous schemes and parameter values. Standard
intelligent optimization algorithms consist of the particle
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swarm optimization (PSO) algorithm [1], antlion optimiza-
tion (ALO) algorithm [2], firefly algorithm (FA) [3], Fruit Fly
optimization algorithm (FOA) [4], and Grey Wolf optimiza-
tion (GWO) algorithm [5].

Simulating the predation behavior of grey wolves opti-
mizes the GWO. This algorithm has a basic structure,
fewer parameters, and capacity for rapid implementation.
Its convergence factor adjustment and information feed-
back mechanism allow for a significant balancing of local
and global searches. GWO has been utilized in numerous
research projects because of its high accuracy and conver-
gence speed. Qiao et al. [6] proposed a GWO that increases
population diversity by employing lost wolves and mating
strategies to prevent populations from reaching local optima.
Miao et al. [7] upgraded the GWO by adding crossover and
mutation operators to the optimization process to solve the
problem of precise planning and construction of a fuel cell
system model to obtain the optimal parameters of the Proton
Exchange Membrane Fuel Cell. Fang et al. [8] designed an
adaptive grey Wolf optimizer to address the optimization
problem in 5G systems with ample design space, resulting
in improved electromagnetic interference shielding perfor-
mance and increased system stability. Lei and Ouyang [9]
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utilized GWO to compensate for the lack of robustness of
the algorithm against noise in image segmentation. This
essential technology combines enhanced GWO and KIFCM
algorithms, which can substantially enhance the robustness
of the algorithm.

Furthermore, GWO has been utilized in industrial pro-
duction. For instance, biodiesel output is directly influenced
by the process parameters. Kumar et al. [10] used a novel
hybrid genetic program, GWO, to optimize the production
process and augment its precision and resilience. GWO can
also be applied to path planning models for multiple UAVs.
Huang et al. [11] developed a hybrid discrete intelligence
algorithm based on GWO, which enhanced the global con-
vergence capability of the original algorithm and reduced the
energy consumption of UAVs in various states.

It is clear from these studies that GWO is characterized by
easy implementation, simple concepts, simple formulas, and
few parameters and is more potent than other algorithms for
exploring complex problem spaces. They are alsowidely used
in various practical applications. For this reason, we chose to
improve the GWO algorithm, which is more beneficial for
engineering applications in this field.

The remainder of this paper is organized as follows.
Section II describes the current research progress in GWO
and related work on other improvements to GWO, discusses
the strengths and limitations of existing modifications to
GWO, and presents the need for the current work. Section III
introduces the concepts and formulas of the GWO. Section IV
details the principles of HTGWO and the need for improve-
ment. Section V focuses on the experimental tests and
results. Section VI presents an application and case study of
HTGWO. Finally, Section VII summarizes the study.

II. RELATED WORK
To address some of the shortcomings mentioned earlier in
GWO. The sigmoid function was introduced to GWO to
reduce GWO computation and accelerate convergence when
solving the product backpack problem [12]. However, the
step function leads to a fast convergence in the mid-term
of the iteration. Liu et al. [13] added a lion optimization
algorithm and dynamic weight algorithm to GWO to resolve
the issues of delayed convergence and local optima. In a
typical GWO, a waiting period exists. The updated algorithm
optimizes more effectively than the original algorithm owing
to its dynamic weight and diversity. Nevertheless, the intro-
duced dynamic weight function adjusts the weight with a
fixed threshold as the boundary point along with the number
of iterations, which may result in a single weight change and
have a weak effect on optimizing the algorithm itself.

Zhang et al. [14] devised a dynamic algorithm to grant each
wolf algorithm independence without waiting for other units
to complete the comparison to eliminate the waiting period
and increase the speed. This method verifies that the enhance-
ments based on the dynamic GWO are superior to those
based on static GWO. In addition, the GWO has undergone
numerous enhancements. Although the convergence speed

was fast under the same number of iterations, the running
time of the dynamic GWO was longer than that of the GWO.
Guo et al. [15] proposed a GWO based on the tracking mode,
which addresses the constraint problem in function optimiza-
tionmore effectively. Singh [16] improved the accuracy of the
solution by modifying the circling behavior of the algorithm
and revising the position equation. These methods need to
help find global optima in some unimodal and multimodal
functions. In some complex function problems, although the
convergence speed is fast in the early stage, it easily falls into
a local optimum in the early stage of iteration.

Qin et al. [17] employed a fuzzy GWO strategy to strike
a balance between convergence and diversity, thereby accel-
erating the location of the optimal solution. In addition, the
chaotic variant of GWO [18] and a GWO based on oppo-
sitional learning [19] can effectively address the issue of
early convergence and enhance the exploration capability
of the algorithm. However, more experiments are needed
during the design phase, and there are no higher-dimensional
experiments. The performance of the algorithms in specific
problems deteriorates with increasing dimensions. To address
this issue, Sun et al. [20] proposed an equalized GWO with
refraction reverse learning, which surmounted the low swarm
population diversity of the GWO in the final iteration. Never-
theless, it only accelerates convergence and considers that the
direction of the individual solutions is limited, which has the
possibility of falling into a local optimum in the early stages
of iteration.

Ou et al. [21] proposed a method that combines the clone
selection algorithm and GWO and uses a nonlinear func-
tion to adjust the convergence factor, thus overcoming the
problems of slow convergence, low accuracy of the single-
peak function, and local optimum in the standard GWO.
Nadimi-Shahraki et al. [22] published a discrete improved
GWO that uses a local and dimension-based learning amount
hunting search to enhance the performance of the algorithm.
In addition, the AGWO [23] algorithm uses an adaptive
GWO to solve the problem by automatically adjusting the
exploration and exploitation parameters based on fitness his-
tory. Ma et al. [24] increased the search range of GWO by
combining the exploitation capabilities of GWO with the
exploration capabilities of the Aquila Optimizer to improve
the global search capability. To further solve the local opti-
mum, Liang et al. [25] used a reverse learning strategy
to increase the population diversity and then used a simu-
lated annealing algorithm to jump out of the local optimum.
In addition, Li et al. [26] used nonlinear factors and adaptive
position updating to balance exploration and exploitation and
solve the local optimum. However, all of these algorithms
suffer from slow convergence in the early iterations, and the
algorithm performance is related to the problem chosen and
cannot be adapted to a specific problem.

In addition, BGWO [27], which uses an adaptation func-
tion as a local search strategy, performs better than IGWO
[28], which does not use a balancing strategy, although
both algorithms outperform GWO. This demonstrates the
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importance of balancing the local search and searching in
the algorithm. For this reason, El-Ela et al. [29] proposed
an update mechanism by modifying the parameters of the
algorithm, thereby balancing exploration and exploitation.
Shu et al. [30] used nonlinear convergent silvers and weight-
ing factors as a balancing strategy. However, these algorithms
require more experiments to address complex functional
problems in higher dimensions, even though they acceler-
ate the convergence speed and accuracy of the GWO in
low dimensions. Hu et al. [31] employed an improved Wolf
bootstrapping of GWO to achieve better performance in an
unknown space, which both improved the convergence speed
and prevented the algorithm from falling into a local opti-
mum. However, the mechanism of the three wolves’ positions
interacting with each other at the beginning of the iterations
limits the exploration ability of the algorithm.

Existing algorithms for GWO improvement have some
limitations, such as slow convergence in the early stage and
inability to balance global and local search capabilities well,
leading the algorithms to fall into local optima. In addition,
these algorithms cannot be adapted to specific problems that
are reflected in different function problems and dimensions.
Therefore, this paper proposes a method that balances explo-
ration and exploitation, which enhances the ability of GWO
to escape from local optima by introducing a Hyperbolic Tan-
gent Inertia Weight into the position-updating formula and
improves the convergence speed and accuracy. In addition,
the method can adjust the Hyperbolic Tangent Inertia Weight
formula for different problems to improve the ability of the
algorithm to handle different problems.

III. GREY WOLF OPTIMIZATION ALGORITHM
The global search and local search for GWO algorithm steps
are as follows:

1) Initialization parameters: maximal number of iterations
M , population size N , spatial population dimension
dim, convergence factor a, and coefficient vectors A
and C.

2) According to the test function, the fitness of the initial
grey wolf individual was obtained, and the three wolves
with the best fitness were preserved: α, β, and δ.

3) X is set as the spatial coordinate component, the next
position of grey wolf i under the guidance of grey wolf
α is X1, the distance between grey wolf α and prey is
Dα , and the positions of the individual populations are
updated according to Equations (1)–(3). The position
formula of the grey wolf is as follows:

Dα = |C1 · Xα − X |

Dβ = |C2 · Xβ − X |

Dδ = |C3 · Xδ − X |

(1)


X1 = Xα − A · Dα

X2 = Xβ − A · Dβ

X3 = Xδ − A · Dδ

(2)

X (t + 1) = (X1 + X2 + X3)/3 (3)

4) Update a, A, and C according to Formula (4)-(6):

A = 2a · r1 − a (4)

C = 2r2 (5)

a = 2 − 2t/M (6)

5) Calculate the individual fitness of each grey wolf and
update the positions of α, β, and δ.

6) Determine whether the stop condition is met: If yes,
output the α-wolf optimization result. Otherwise, re-
perform steps 3-6.

IV. IMPROVED GREY WOLF OPTIMIZATION ALGORITHM
A. HYPERBOLIC TANGENT INERTIA WEIGHT
The hyperbolic tangent inertia weight updating formula is
computed as follows:

ω =
1

et/r − e−t/r

et/r + e−t/r
+ b

+ c (7)

cArgument b is used to maintain the monotonicity of the
function and define the range of values of the function.
Parameter cwas used to adjust the upper and lower bounds of
the weights. r is related to the maximum iteration and takes
a value in the range (0, M ]. The parameter t increases with
the number of iterations, with values in the range [l, r], and
|l + r| ≤ M .
When the program needs to increase the global search

capability of the algorithm, the function can be made to
decrease more slowly in the early stages by decreasing the
maximum andminimum values of t so that the inertia weights
can bemaintained for amore extended period at the beginning
of the iteration. The concave shape of the inertia weight in the
later iteration stage can increase the local search ability of the
algorithm. The range of inertia weights can also be reduced
by increasing the value of b: in the value of b gets larger, the
maximum andminimum values of the function become closer
to 0. The value of b cannot be less than one.
where b = 1.8, c = −0.3, r = M

/
5, t takes values in

the range [−M
/
2, M

/
2] starting from the minimum and

increasing with iterations, as illustrated in Fig. 1(a). where
b= 1.2, c= −0.3, r=M , t is the present number of iterations,
as illustrated in Fig. 1(b).

As shown in Fig. 1(a), the curve with hyperbolic tangent
weights is more prominent at the beginning of the iteration,
which is conducive to expanding the search scope of the
algorithm and preventing it from collapsing into the local
optimum. As the number of iterations increases, the curve
decreases until the iteration is complete, which is conducive
to the continuous reduction in the inertia weight of the
algorithm in the late iteration period and helps the algorithm
approach the optimal solution more precisely in the later
period.

Therefore, the optimal inertia weight-decreasing curve can
be obtained by adjusting the parameters of the inertia weight
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TABLE 1. Benchmark functions.

formula to balance the exploration and exploitation of differ-
ent problems.

B. IMPROVED GREY WOLF OPTIMIZATION ALGORITHM
The steps of the HTGWO algorithm are as follows:

1) Initialization parameters: maximum number of itera-
tions M , population size N , spatial population dimen-
sion dim, convergence factor a, and coefficient vectors
A and C .

2) The fitness of the initial grey wolf individual was
obtained according to the test function, and the three
wolves with the best fitness were preserved:, α, β,
and δ.

3) Update inertia weight ω according to Formula (7).
4) The updated position formula is shown in Formula 8:

X1 = ω · Xα − A · Dα

X2 = ω · Xβ − A · Dβ

X3 = ω · Xδ − A · Dδ

(8)

5) Update parameters a, A, and C according to Formula
(4)-(6).

6) Calculate the individual fitness of each grey wolf and
update the positions of α, β, and δ.

7) Determine whether the stop condition is met: If yes,
output the α Wolf optimization result. Otherwise,
repeat Steps 3 to 6.

The HTGWO method enhances the inertia weight of the
GWO algorithm using the hyperbolic tangent inertia weight.

V. EXPERIMENT AND RESULT
A. EXPERIMENTAL DESIGN
Equipment and software: Windows 10, 16 GB memory, main
computer frequency of 2.3 GHz, MATLAB R2016a. Five
classical test functions were selected to compare the opti-
mization performance of the HTGWO with the other five

classical swarm intelligent optimization algorithms. The five
classic test functions The evaluation functions are listed in
Table 1. To facilitate the experiment, the parameters used in
Equation (7) are b = 1.2, c = −0.3, M = 200, r = M , and t
is the present number of iterations.

The six algorithms were run 30 times in three different
dimensional environments, with a population of 10 and a
maximum number of iterations of 200 and boundary of±600.
This study introduces the logarithmic mean value (MBFL) to
calculate the current optimal adaptation value:

MBFL(t) =
1
G

G∑
i=1

log10(gbest(i)(t)) (9)

where G is the maximum number of runs of the algorithm
and is the current optimal value of running the t iteration for
the i time.

B. EXPERIMENTAL RESULTS AND ANALYSIS
1) COMPARISON OF AVERAGE CONVERGENCE CURVES
OF 6 ALGORITHMS
In Fig. 3–7, the vertical coordinate is theMBFL value, and the
horizontal coordinate is the number of iterations. As shown in
Fig. 3 to Fig. 7, HTGWO does not fall into the local optimum
with the increase in iterations in low dimensions (dim = 30)
and high dimensions (dim = {100, 500}). Additionally, the
convergence speed and solving accuracy were superior to
those of the other five algorithms. As shown in Fig. 3 to Fig. 5,
PSO, FA, FOA, and GWO, all fall into local optima rapidly,
whereas HTGWO approach the globally optimal solution
faster. It can be seen from Fig. 6 and 7 that PSO, FA, and
FOA rapidly fall into the global optima. Compared with PSO,
FA, and FOA, GWO still falls into the local optimum with a
higher convergence accuracy, and HTGWO finds the global
optimal 0 at a faster speed.
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FIGURE 1. Inertia weight decline curves.

FIGURE 2. Flow chart of HTGWO algorithm.

Moreover, it can be observed from Fig. 3 Fig. 4 and Fig. 6
Fig. 7 that HTGWO performs well in handling unimodal
function problems and effectively handles multimodal func-
tion problems. Moreover, the downward trend of the curve
shown in Fig. 6 to Fig. 7 demonstrates that HTGWO can find
the optimal global value of 0 when dealing with the optimal
solution of multimodal functions. The HTGWO algorithm
has a faster convergence speed and greater solving accuracy
than the other five intelligent optimization algorithms.

In Fig. 7, the convergence curve of HTGWO converges
faster in the early stage compared with the other algorithms.
With the convergence of inertia weights, after 20 iterations,
the focus from the global search to the local search starts
to decrease. At approximately 30 iterations, the convergence
curve starts to drop sharply, which means that the balancing
strategy of HTGWO can locate the global optimum faster,
and this phenomenon is almost the same in the three dimen-
sions. The other algorithms are significantly less capable of
exploring multimodal functions than the HTGWO.

2) COMPARISON BASED ON DESCRIPTIVE STATISTICS
The solution scales were 30, 100, and 500. The six algo-
rithms were independently run 30 times, and the maximum,

minimumi, average, and standard deviation of the obtained
optimal adaptation values were compared, as shown in
Table 2.
Table 2 illustrates the mean value and standard deviation

of the optimal value independently run 30 times by six algo-
rithms in the low dimension (dim = 30) and high dimension
(dim = {100, 500}). As seen from Table 2, even though the
value of HTGWO on the three unimodal test functions of
F1, F2, and F3 does not get the global optimal value of 0,
it can still obtain a result near the global optimal value. It is
also an optimal solution with a higher precision than other
algorithms. Furthermore, the average value of the optimal
solution under the test of multimodal test functions F4 and F5
can converge to the optimal solution in three different dimen-
sions. Compared with the other five algorithms, HTGWO has
a minor standard deviation of the optimal solution in three
dimensions, indicating that it has higher stability than the
other five algorithms. Therefore, HTGWO has a faster con-
vergence speed, higher solution accuracy, and higher stability
than the other five intelligent optimization algorithms.

Fig. 8 shows a box plot of each function in three different
dimensions for each box, with the center mark indicating
the median, the top and bottom of the box indicating the
75th and 25th percentiles, respectively, and the dashed lines
extending to the largest and smallest non-outliers indicated by
dots along the way. As shown in Fig. 8, HTGWOoutperforms
the other four algorithms in all worst performance cases
and converges smoothly without outliers, implying that the
algorithm does not fall into a local optimum prematurely.
In addition, HTGWO on the test function can provide supe-
rior mean, quartile, and minimum results compared with the
other algorithms. The above results show that the HWGWO
has an excellent exploration capability. Compared to other
algorithms, HTGWO has almost no outliers, which means
that it is more stable and competitive.

From the positions of the values and the maximum and
minimum values in Fig. 8, it can be concluded that the
HTGWO does not converge as fast as the algorithm on the
multi-modal functions F4-F5 in the later stages of the uni-
modal functions F1-F3. Moreover, by comparing the location
of the maximum value and the quartiles, the early conver-
gence speed of the multimodal function is also faster than
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FIGURE 3. Average convergence curves of F1 (dim = {30, 100, 500}).

FIGURE 4. Average convergence curves of F2 (dim = {30, 100, 500}).

FIGURE 5. Average convergence curves of F3 (dim = {30, 100, 500}).

FIGURE 6. Average convergence curves of F4 (dim = {30, 100, 500}).

that of the unimodal function. In addition, the speed of con-
vergence in the early part of the HTGWO iteration is less
affected by the change in dimension, as can be seen by the
amount of data before the median line in the box plots of
the three different dimensions. Only on the unimodal func-
tion, F3 exhibits a higher number of values produced before
the median. The change after the median indicates that the
convergence speed in the middle and late iterations of the
algorithm is less affected by the dimension.

In summary, the hyperbolic tangent inertia weight strategy
adopted in this study has a positive impact on enhancing the
optimization performance of theGWOalgorithm. To a certain

extent, it solves problems such as low convergence speed,
inadequate solving accuracy, and insufficient stability of the
GWO.

VI. CASE STUDY
A. HTGWO FOR OPTIMAL POWER FLOW PROBLEM
The optimal power flow (OPF) is a classical optimization
problem in power systems, where the objective is to find an
equilibrium point that minimizes the cost of power generation
while satisfying all conditions and demands. It can be formu-
lated as a nonlinear functional problem with the possibility of
a local optima because the row domain is non-convex [32].
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FIGURE 7. Average convergence curves of F5 (dim = {30, 100, 500}).

TABLE 2. Comparison of the mean value and standard deviation of the solution functions of the 6 algorithms.

The objective function of the OPF can be written as

min
∑
g∈G

f
(
pGg

)
(10)

subject to:
∑
g∈G

pGg =

∑
d∈Db

pDd +

∑
b′∈Bb

pLbb′ + GBb v
2
b (11)

G is the set of generators in the power-system network. Let
Db be the demands of bus b; let Bb be the set of b connected
by a line (bb’); variable pLbb′ is the real power flowing into
bb’; and parameter vb is the voltage at bus band pDd is the
real power consumed by load d. Adjust the parameters of
the most appropriate inertia weight function for the problem
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FIGURE 8. Box plots of benchmark functions (dim = {30, 100, 500}).

where b = 2.2, c = −0.1, M = 1000, r = M /5, and t is
in the range [−M/4, M/2 + M/4]. Each test function was
iterated 1000 times in a fixed dimension, and the results of
the HTGWO and GWO are shown in Fig. 9. This shows
that HTGWO outperforms GWO in terms of accuracy and
convergence speed, and avoids local optima. In addition, its
performance in this problem was better than GWO, which
proves the accuracy and effectiveness of HTGWO in OPF
problems for engineering applications. Regarding the OPF
problem, designers can adjust the inertia weight parameters
according to a specific problem, and this scheme can be used
as a reference.

B. HTGWO FOR FREQUENCY OFFSET ESTIMATION
Orthogonal frequency division multiplexing (OFDM) has
been widely used in wireless communication systems
because of its effectiveness in enhancing the spectral robust-
ness. However, OFDM is susceptible to carrier frequency
offsets (CFOs), which affect the performance by affecting
the signal-to-noise ratio (SNR). Therefore, CFO estimation
has become the main technique for minimizing the frequency
impact. The CFO estimation associated with GWO can min-
imize the necessity of center wavelength accuracy during
laser transmission, thus enhancing and minimizing perfor-
mance. The necessity of center wavelength accuracy during
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FIGURE 9. Convergence of HTGWO and GWO for optimal power flow problem.

FIGURE 10. Frequency offset compensation by HTGWO and GWO.

FIGURE 11. Best score of HTGWO and GWO for frequency offset compensation.

laser transmission enhances the performance of OFDM sys-
tems [33]. The signal was assumed to have uncompensated
frequency detuning. Equation (11) is the cost function that

generates a histogram from the complex phase values of
the signal multiplied by a complex sine with frequency W0.
This metric is the difference between the sum of the four
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largest histogram cells and the four smallest cells. This case
aims to optimize the value of w0. j is the population, t is
the number of iterations, and p is the parameter associated
with SNR.

Cdata = C ∗ exp (j ∗ w0 ∗ t) + p (12)

SNR (fe) ≥
SNR

1 + 0.5947SNR sin2 π fe

(
sinπ fe

π fe

)2

(13)

p = 10(−SNR/20) (14)

For this problem, the parameters of the inertia weights are
set as b = 1.2, c = −0.3, M = 1000 r = M /5, and t
takes values in the range [− M /2, M /2]. HTGWO and GWO
are used to compensate for the frequency dispersion, and
the results, as shown in Fig. 10, indicate that HTGWO is
significantly better than GWO in compensating for the fre-
quency dispersion and has fewer dispersion points. The best
score for HTGWO was higher than that for GWO (Fig. 11).
From the above two points, it is clear that HTGWO is more
effective than GWO in compensating for the frequency of
the CFO problems. An algorithm can be used to solve this
problem, and the exact parameter design depends on the
problem requirements.

VII. CONCLUSION
This paper proposes HTGWO to address the slow con-
vergence problem and local optimization of GWO. The
HTGWO utilizes the characteristics of hyperbolic tangent
inertia weights to improve the inertia weights of the GWO.
HTGWO has significantly improved its global search ability
and local search ability, mainly because its search efficiency
is better than that of the other algorithms. Experiments
demonstrate that HTGWO has the characteristics of faster
convergence, higher accuracy, and higher stability than other
algorithms. In the application, the algorithm is simple to
implement in programming, which is convenient for subse-
quent research. Moreover, the characteristic of HTGWO is
that the inertia weight strategy can be changed according to
specific problems.

Different problems require manual adjustment of the test
parameters suitable for the problem of the parameter strat-
egy, which is the main limitation of the method. Therefore,
in future work, developing methods that can adaptively adjust
parameters is the main direction, given that the method also
has relatively good performance in engineering applications.
Therefore, the adaptive adjustment of parameters should be
combined with practical engineering problems to increase the
ability of the method to solve different engineering problems.
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