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ABSTRACT In this paper, we propose a monostatic radar design for multitarget detection based on
orthogonal-frequency division multiplexing (OFDM), where the monostatic radar is co-located with the
transmit antenna. The monostatic antenna has the perfect knowledge of the transmitted signal and listens
to echoes coming from the reflection of fixed or moving targets. We estimate the target parameters, i.e.,
range and velocity, using a two-dimensional (2D) periodogram. By this setup we improve the periodogram
estimation performance under the condition of low signal-to-noise ratio (SNR) using Zadoff-Chu precoding
(ZCP) and the discrete Fourier transform channel estimation (DFT-CE). Furthermore, since the dimensions of
the datamatrix can bemuch higher than the number of targets to be detected, we investigate the sparse Fourier
transform-based Fourier projection-slice (FPS-SFT) algorithm and compare it to the 2D periodogram.
An appropriate system parameterization in the industrial, scientific, and medical (ISM) band of 77 GHz,
allows to achieve a range resolution of 30.52 cm and a velocity resolution of 66.79 cm/s.

INDEX TERMS Fourier slice theorem, joint communication and radar sensing (JCAS), monostatic radar,
OFDM, Zadoff-Chu precoding.

I. INTRODUCTION
Wireless communication systems and radio sensing systems
are two different engineering paradigms that have evolved
separately in the past. However, nowadays, with the
ever-increasing need for radio resources [1], implementing
these two technologies separately leads to an inefficient uti-
lization of the available spectrum. Despite their differences,
communication and radar detection systems share many
common features, particularly in terms of signal processing
and equipment [2]. This has led several researchers to inves-
tigate the implementation of a unified system merging both
technologies [3], [4], [5], [6], [7], [8]. Several approaches
have been proposed in previous years, among which one of
the prominent ideas is the coexistence of communications
and radar detection [9], [10], [11]. By such a model, the
radar and communication systems can be co-located and even
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physically integrated. However, they transmit two different
signals that overlap in the time and/or frequency domains.
To minimize the interference between them, both systems
need to operate simultaneously by sharing the same resources
in a cooperative way [2]. Nevertheless, with this coexistence,
managing interference becomes a challenging task [9], [12].
In addition, another approach is to merge the communication
and radar subsystems in a single device, using exactly the
unified spectral and hardware resources. Such a conception is
called in the literature joint communication and radar sensing
(JCAS) or radio frequency (RF) convergence [13]. JCAS is
significantly different from the aforementioned coexisting
communication-radar systems. Instead, by JCAS, the same
waveform is used for both communication and sensing.
In such a design, many approaches can be considered.
In [14], the authors proposed constant modulus waveforms
for dual-function radar communication systems based on
index modulation. The authors in [15] proposed a scheme
that exploits constant-modulus and similarity constraints
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to simultaneously integrate communication and sensing.
In addition, in [16], the design proposed aims to simulta-
neously achieve a desired radar waveform in one spatial
direction while transmitting an information-bearing commu-
nication signal in another spatial direction using the same
antenna array. Another work presented in [17], introduced
a novel approach called vehicular behavior-aware integrated
sensing and communication. This approach involves steering
beams based on vehicular behaviors to aid in driving tasks,
while also facilitating spectral-efficient uplink data services
through the assistance of a roadside unit.

Moreover, in [18] and [19], the authors demonstrate that
WiFi or Zigbee signals could be used for object sensing as
well, showing the possibility of exploiting communication
signals for sensing (communication-centric design). This
design strives to utilize the traditional communication wave-
forms directly or make certain alterations to achieve sensing
capabilities concurrently. In such a design, the sensing
information can be efficiently extracted from the echoes of
the target, while ensuring the primary performance of the
communication functionality [20]. As one of the pioneering
works, the authors in [3] put forth a methodology that utilizes
modulation symbols for signal processing in an integrated
sensing and communication system based on orthogonal
frequency division multiplexing (OFDM). In addition, in the
approach proposed in [21], it was shown that the allocation
of power, the number of OFDM subcarriers, the signal-to-
noise ratio (SNR) per subcarrier are parameters that have
an impact on sensing performance. In [22], the parameters
of OFDM, such as the number of subcarriers, OFDM
symbols, subcarrier interval, and pulse repetition interval,
were designed to meet diverse sensing and communication
requirements. Moreover, an alternative design was proposed
in [23] to minimize the transmit power of each subcarrier
while considering constraints related to conditional mutual
information and data rates.

Furthermore, another design called sensing-centric or
radar-centric leverages the sensing waveforms to enable sec-
ondary communication functionality concurrently. Radars,
especially those used for military purposes are known for
their remarkable long-range operation spanning hundreds
of kilometers, they present a notable advantage when
incorporating communication capabilities. This integration
allows for the establishment of long-range communications.
In [24], the authors consider the radar user as an active
participant in the multiple-access channel. They derive the
performance bounds for the coexistence of joint radar com-
munications. In [25], the proposal involves the integration of
a communication signal within the radar emission to achieve
dual functionality. This is accomplished by selecting the radar
transmit waveform from a bank of waveforms, where each
waveform corresponds to a specific communication symbol,
on a pulse-to-pulse basis. In addition, the study described
in [26] emphasizes the utilization of time-modulated arrays
presented as a means to achieve a dual-function array.
This innovative approach enables the performance of radar

functions in the main lobe while facilitating communication
capabilities in the sidelobes of the array.

Given that OFDM has been widely adopted in con-
temporary mobile communication standards [27], [28],
employing OFDM waveform for detection/radar purposes
has attracted increasing interest in recent years [2], [29],
[30], [31], [32]. In such a design, while the communication
receiver needs to perform the channel estimation (CE) before
decoding the transmitted data, the radar only needs to apply
a detection algorithm on the reflected signal to estimate the
range and velocity of targets.

In the field of parameter estimation, several detection
algorithms have been proposed, among all target detection
algorithms, the periodogram technique which is based on the
discrete Fourier transform (DFT) was widely investigated
[33]. The periodogram algorithm stands as a fundamental
technique. In [34], the authors enhance our knowledge of
the periodogram by exploring advanced techniques, such as
non-uniform sampling and fast Fourier transform (FFT).
In addition, the work proposed in [35] shows how the
likelihood function can reveal the relationship between the
carrier frequency offset and the periodogram of the received
signal. This maximum likelihood has been developed based
on zero-padded FFT, which is invoked for implementation.
The author in [33] investigated the periodogram method,
which is fundamentally based on the FFT. He showed
that the maximum likelihood estimator could be derived
for the case where there is exactly one target, which
is anything but trivial. Furthermore, the authors in [36]
presented spectral monitoring based on signal detection tools,
by which the spectral components are estimated by the
averaged periodogram non-parametric approach using an
FFT.

In addition to the periodogram, there are several detection
algorithms available for signal processing tasks. These
algorithms offer different approaches and capabilities for
parameter estimation and signal detection. One notable
algorithm is the multiple signal classification (MUSIC)
algorithm, which is based on eigenanalysis of the signal
correlation matrix. MUSIC is particularly effective in iden-
tifying the frequencies of multiple sinusoidal components in
a signal [37]. Another widely used algorithm is the estimation
of signal parameters via rotational invariance technique
(ESPRIT), which exploits the rotational invariance property
of a uniform linear array to estimate the signal parameters
[38]. Both MUSIC and ESPRIT are parametric methods
that can provide good resolution in parameter estimation.
However, it is important to consider that these algorithms
typically require a large number of samples to achieve robust
results [37], [38]. This requirement can pose challenges
in scenarios where limited data is available or real-time
processing is needed. Moreover, compressive sensing (CS) is
another approach that has gained popularity in recent years
[39], [40]. CS aims to reconstruct sparse signals from a
small number of non-adaptive linear measurements. It offers
an intriguing alternative to traditional signal processing
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methods by exploiting the sparsity of signals in certain
domains. However, the success of CS heavily relies on the
sparsity assumption, and its performance may degrade if
the underlying signal does not exhibit sufficient sparsity.
Furthermore, the matrix pencil method can provide accurate
results in some cases [41], it faces challenges when matching
frequency pairs, which can lead to errors in parameter
estimation. Some proposed techniques, such as the one
described in Step 3 of Subalgorithm 1 in [42], aim to address
this limitation by refining the matching process. However,
further research and improvements are still needed to enhance
the robustness and accuracy of the matrix pencil method in
complex scenarios.

It is worth noting that despite their strengths, algorithms
like MUSIC and ESPRIT suffer from high computational
complexity. This computational burden can limit their
practical applicability, particularly in real-time systems or
resource-constrained environments. Additionally, the per-
formance of these algorithms is heavily influenced by the
SNR [43].

In this work, we propose a new design to integrate
sensing to OFDM-based communications using co-located
monostatic radars. In terms of sensing, we adopt the peri-
odogram. The simplicity and computational efficiency of the
periodogram have made it a widely used method in various
signal processing applications. The periodogram algorithm
is mainly computed using DFT and inverse discrete Fourier
transform (IDFT). Ranges and velocities are contained in
channel characteristics, whichmeans that a precise estimation
of these parameters by the radar system requires accurate
channel state information. However, in the low SNR region,
achieving an error-free channel estimate is a daunting task.

To overcome this challenge, we introduce the DFT-CE
approach to reduce the false positive error in target selection.
Additionally, we use Zadoff-Chu precoding (ZCP) and
show that it can improve the estimation performance by
ameliorating the SNR. Furthermore, even though using FFT
and inverse fast Fourier transform (IFFT) to compute the
periodogram is generally efficient, FFT/IFFT do not take
into account the signal structure whereas a plethora of
algorithms can be even faster by considering the signal
sparsity [44], [45], [46], [47]. Consequently, we investigate
the Fourier projection-slice (FPS)-sparse Fourier transform
(SFT) [45] and discuss the trade-off to be taken between the
estimation time and the estimation accuracy.

In sum, our main contributions in this paper are
summarized as follows:

• By precoding the OFDM symbols with a Zadoff Chu
code matrix, we first reduce the peak-to-average power
ratio (PAPR) of the OFDM signal and then, decrease the
estimation error of ranges and velocities in the low SNR
region.

• Furthermore, DFT-CE is a channel estimation algorithm
used to reduce the amount of noise in the frequency bin
single-tap channel estimate. In this work, we adapt it to
filter false positive targets. By combining it with ZCP,

we come up with a better periodogram to accurately
estimate targets’ range and velocity.

• Finally, knowing that in practice the number of effec-
tive targets is smaller compared to the whole frame
dimension, the signal is sparse in the frequency domain.
We take advantage of this characteristic and apply
the FPS-SFT to reduce the computational complexity
along with the number of signal samples needed for
estimation. By comparing it with the two-dimensional
(2D) periodogram, we observe a compromise between
the execution time and the accuracy in the low SNR
region.

The remainder of this paper is organized as follows.
In Section II, we introduce the problem statement, the
system model, and the periodogram-based radar processing.
Afterwards, we theoretically demonstrate the improvements,
using the DFT-CE combined to ZCP and applying the FPS-
SFT approach for reducing the computational complex-
ity associated with the 2D periodogram processing in
Section III. Simulation results and discussions are presented
in Section IV. Finally, Section V concludes the work and sets
forth our perspectives.

II. PROBLEM STATEMENT AND SYSTEM MODEL
A. PROBLEM STATEMENT
We consider a wireless communication system consisting of
a communication antenna Tx co-located with a monostatic
radar as depicted in Fig. 1. In the downlink, the signal
emitted from the communication subsystem, is known to
the radar, and is reflected by a certain number of targets
characterized by their ranges and velocities. OFDM is one
of the leading technologies used in contemporary wireless
communication systems. Considerable attention has been
given to OFDM for its performance advantages, such as its
ability to mitigate inter carrier interference (ICI) and inter
symbol interference (ISI) by making suitable use of a cyclic
prefix (CP), as well as its robustness against frequency
selective fading in addition to its efficient spectral utilization.
In this regard, we adopt OFDM as the multiplexing scheme
since using a single signal for communication and sensing is
strongly dependent on the data structure [29]. The transmitted
signal consists of pilots used for channel estimation and net
information.

It is important to mention that channel estimation needs
to be performed for both the communication and the radar
subsystems, but in different ways and for different purposes.
At the communication receiver, as usual, the received
frequency-domain pilots are used to perform channel esti-
mation using either least square (LS)-CE, minimum mean
square error (MMSE)-CE, or any other channel estimation
algorithms. Depending on the type of pilot arrangements,
either frequency or time domain interpolation (or both) can
be performed to infer the channel on the non-pilot subcarriers
of each symbol [33], [48]. At the radar, which we treat
in this work, the entire grid of the transmitted signal is
used to perform the channel estimation [33], [48] since
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FIGURE 1. System model of the monostatic radar detection.

it knows the transmitted frames. The problem consists of
estimating the channel to efficiently approximate the ranges
and velocities of the targets using the reflected signals as
shown in Fig. 1, and further, improve channel estimation.
In this work, we focus on the downlink for simplicity,
whereas most results and insights can be easily extended
to the uplink. We also hypothesize that the interference
between the radar and the communication antenna is
negligible.

B. SYSTEM MODEL
In this section, we describe the communication and radar
channel model and explain how the radar performs the target
parameter estimation. We consider a total bandwidth Bwhich
can be divided into N small bands with central frequencies
f0,f1. . . fN−1 such that 1f =

B
N . An OFDM symbol is a

packet of N modulated data transmitted at the same time on
f0,f1. . . fN−1. The OFDM symbol duration T is thus given by
T =

1
1f . After modulating bits by quadrature amplitude

modulation (QAM), IFFT is applied to the QAM data
symbols to generate OFDM waveforms in the time domain.
Subsequently, a CP is added between consecutive symbols
to mitigate ISI. Several OFDM waveforms are summed up to
obtain anOFDM frame. The signal goes through a high power
amplifier (HPA) and the communication antenna Tx transmits
it. The channel is a multi-path channel, to which an additive
white Gaussian noise (AWGN) is added. At the radar, inverse
operations are executed. First, the CP is removed, and then
FFT is performed on the OFDM bandpass signals. Finally,
after the spectral division, the target detection algorithm is
applied. The holistic process of transmission and detection is
depicted in Fig. 2.

We assume that the complex symbols {ak,l} are generated
after QAM modulation. Taking IFFT on the zeroth OFDM
symbol ak,0, the OFDM symbol sampled at sampling time

T0 =
T
N can be represented as [33]:

x [n] = x(nT0) =

N−1∑
k=0

ak,0ej2π
nk
N , 0 ≤ n ≤ N − 1, (1)

which is the IFFT of the QAM symbols.
Taking into account the CP transmission time Tcp,

an OFDM symbol transmission time Ts becomes Ts = T +

Tcp. In terms of the number of symbols, we have Ns = N +

Ncp, whereNcp is the number of complex symbols transmitted
during Tcp. Assuming that an OFDM frame is composed
of M OFDM symbols, the transmitted signal can be
represented as:

x[n] =

M−1∑
l=0

N−1∑
k=0

ak,le
j2πk(n−lNs)

N . (2)

1) RADAR CHANNEL MODEL
We consider a baseband signal x(t) with carrier frequency fc.
The transmitted passband signal is xpb(t) = x(t)ej2π fct . For a
given reflecting target at distance d from the transmitter and
moving at velocity v, the received passband signal is impacted
by [33]:

• Attenuation factor g which depends on distance d ,
radar cross section (RCS) σRCS , carrier frequency fc
and speed of light c, and by using the Friis equation of
transmission, we obtain:

g =

√
cσRCS

(4π )3d4f 2c
. (3)

• Signal delay τ caused by the round-trip, and τ =
2d
c .

• Doppler-Shift fD caused by the velocity of the target, and
fD =

2v
c fc.

• Random rotation phase ϕ introduced when hitting the
target.

• AWGN z(t), and z(t) ∼ N (µ, σ 2).
Assuming a total number of Nt reflecting moving targets,

and taking into account all the previous constraints, received
passband signal ypb(t) is written as follows [48], [49]:

ypb(t) =

Nt−1∑
p=0

gpx(t − αp(t))ej2π fc(t−αp(t))ejϕp + zpb(t), (4)

where αp(t) = 2( dpc +
vp
c t) = τp + Bpt and Bp = 2 vpc .

At the radar, the received baseband signal y(t) is obtained
by demodulating ypb(t) as y(t) = ypb(t)e−j2π fct . Thereafter,
(4) can be rewritten as

y(t) =

Nt−1∑
p=0

gpx(t − αp(t))e−j2π fcτpte
j2π fDp tejϕp + z(t). (5)

Eq. (5) is the received signal containing attenuation gp,
channel delays τp, Doppler effects fDp and time-scale factor
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FIGURE 2. OFDM-based co-located monostatic radar transmission and detection process.

Bp. In essence, y(t) is the filtered signal of x(t) with the
channel impulse:

h(t) =

Nt−1∑
p=0

gpe−j2π fcτpe
j2π fDp tejϕpδ

(
(1 − Bp)t − τp

)
, (6)

where δ(t) is the Dirac function. A discrete-time counterpart
considering a sample time T0 is given by

h[n] = h(nT0) =

Nt−1∑
p=0

gpe−j2π fcτpe
j2π fDpnT0ejϕp

× δ
[
(1 − Bp)n− τp/T0

]
. (7)

The discrete form of (5) can thus be written as

y[n] = x[n] ⊗ h[n] + z[n], (8)

where ⊗ is the convolution operation.
Knowing that T0 =

1
1fN , the discrete-time counterpart of

(5) can be obtained by introducing (7) and (2) in (8) [48]:

y[n] =

Nt−1∑
p=0

M−1∑
l=0

N−1∑
k=0

gpak,lej2π
kn
N e−j2πk1f τpe

−j2πkBpn
N

× e
j2πklNs

N e
−j2π fDp n

N1f ejϕp + z[n]. (9)

The signal for the lth OFDM symbol is expressed as

y[n, l] =

Nt−1∑
p=0

N−1∑
k=0

gpak,lej2π
k(n−lNs)

N e−j2πk1f τp

× e
−j2πkBp(n−lNs)

N e
j2πklNs

N e
−j2π fDp (n−lNs)

N1f ejϕp + z[n].

=

Nt−1∑
p=0

N−1∑
k=0

gpak,lej2π
kn
N e−j2πk1f τp

× e
−j2πkBpn

N e
j2πkBplNs

N e
−j2π fDp n

N1f e
j2π fDp lNs

N1f ejϕp + z[n].

(10)

FIGURE 3. 2D periodogram computation process: The vertical ⇓ and
horizontal ⇒ arrows indicate FFT over columns and rows, respectively.

According to [33], a large sub-carrier distance heavily
alleviates the de-orthogonalizing effect of a frequency offset.
Therefore, it must be ensured that 1f is larger than the
Doppler shift caused by the object with the maximum relative
velocity vmax , i.e.,

vmax ≪
c1f
2fc

, (11)

which depends on the wave parameterization.
Our system parameterization satisfies (11), and, con-

sequently, (e
−j2πkBpn

N , e
j2πkBplNs

N , e
−j2π fDp n

N1f ) −→ (1, 1, 1).
Therefore, (10) can be reduced to a simpler form infra:

y[n, l] =

Nt−1∑
p=0

N−1∑
k=0

gpak,lej2π
kn
N e−j2πk1f τpe

j2π fDp lNs
N1f ejϕp

+ z[n]. (12)

2) RADAR PROCESSING
The main purpose of using the CP is to avoid ISI. For that, the
maximum channel delay τmax should be less than the cyclic
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prefix transmission time, i.e.,

max
0≤p≤Nt−1

{τp} ≤ Tcp. (13)

We regulate that range dun (respectively a velocity vun) is
unambiguous if two targets positioned at d and d + dun
(respectively at moving velocities v and v + vun) cannot be
distinguished [33], given

dun =
c

21f
, and vun =

c
2fcTs

. (14)

A distance 1d (respectively velocity 1v) is called the
radar resolution if it is the lowest distance (respectively
velocity) such that two targets positioned at d and d + 1d
(respectively moving at velocities v and v + 1v) can still be
distinguished [33], i.e.,

1d =
c

2N1f
, and 1v =

c
2MfcTs

. (15)

The maximum range and the maximum velocity are directly
defined by the parameters of the waveform as follows
[33], [50]:

dmax =
c× TCP

2
, and vmax ≤

c
2fcTs

. (16)

The first step of the estimation process is the spectral division.
Since the radar knows the transmitted frames, the channel
information can be retrieved by calculating the ratio of the
whole received signal over the whole transmitted one, which
results in the LS-CE estimate of the channel. Then, estimation
matrix H has entries as follows:

hk,l =
yk,l
ak,l

=

Nt−1∑
p=0

bpe
j2π

lNsfDp
N1f e−j2πk1f τpej8 + z̃k,l,

(17)

where hk,l , yk,l , ak,l , and zk,l are the entry at the kth row
and the lth column in matrix H , received frame matrix Y ,
transmitted frame matrix A and noise matrix Z̃, respectively;
8 is the phase obtained after the element-wise division.
A periodogram is an estimate of the spectral density of a
signal. Since in our case H is a two-dimensional signal, the
corresponding periodogram can also be written as [13]

P(s, r) =
1
NM

∣∣∣∣∣∣
N ′

−1∑
k=0

M ′
−1∑

l=0

hk,lwk,le
−j2π ls

R′

 ej2π
kr
S′

∣∣∣∣∣∣
2

,

(18)

where r = 0, . . . ,N ′
−1 and s =

⌊
−M ′

2

⌋
, . . . ,

⌊
M ′

2

⌋
-1.

Here,
⌊
M ′

2

⌋
indicates the floor of M ′

2 , and the negative
values of r allow estimating negative velocities. The problem
here can be formulated as finding the optimal s and r in
P, by which the dominant frequencies are present. Those
frequencies will represent the reflection points which are
effective targets. In (18), wk,l is the value at the kth row
and lth column in matrix W . It is a window function that

FIGURE 4. Channel MSE for LS-CE, LMMSE-based LS-CE, DFT-CE, and
LMMSE-based DFT-CE.

reduces the side-lobe levels of each dominant frequency.
N ′ and M ′ are the extended values of N and M such that
N ′

≥ N and M ′
≥ M . N ′ and M ′ can improve the

precision of the estimation but do not have any effect on
the radar resolution. As such, (18) is equivalent to taking
an M ′-FFT of each column of H then an N ′-IFFT of each
row of the previously resulting matrix as depicted in Fig. 3.
Consequently, (18) outputs dominant peaks, where targets
are supposed to be located. Due to the whiteness of the
noise, the detection threshold is equal to σ 2 ln(Pfa) [33].More
explicitly, as established in (19), any point (s, r) such that
P(s, r) ≥ σ 2 ln(Pfa) is considered as a target, otherwise it is
regarded as noise, i.e., a false target, where Pfa is the desired
probability of false alarm. Mathematically, we have

P(s, r)

{
≥ σ 2 ln(Pfa), target
≤ σ 2 ln(Pfa), noise only

. (19)

Once we obtain the list of estimates ŝ and r̂ , the
corresponding target range and velocity values are deduced
as follows:

d̂p =
cŝp

2N ′1f
, and v̂p =

cr̂p
2fcM ′T0

. (20)

III. SENSING PERFORMANCE ENHANCEMENT
A. RADAR CHANNEL ESTIMATION USING DFT-CE
As presented previously, since targets’ velocities and ranges
can be extracted from the estimated channel information,
the overall detection precision depends on the quality of
H predicted using (17). The intuition is that an accurate
estimation of H would output a precise parameter estimate.
The approach that we propose below relies on the channel
estimates using DFT-CE.

It is worth mentioning that the CP is longer than the
maximum channel delay. As such, each path delay of the
multipath channel is lower than the time required to transmit
the CP. More explicitly, to estimate ranges and velocities,

VOLUME 11, 2023 135095



M. Delamou et al.: Efficient OFDM-Based Monostatic Radar Design for Multitarget Detection

FIGURE 5. Periodogram’s normalized peaks for 5 targets, given SNR =

0 dB, N = 512, and Ncp = 128.

instead of using all the channel impulse for the whole OFDM
frame transmission time, we only use a short part of the
channel impulse equivalent to the transmission time TCP.
At extremely low SNR, the noise level is higher than many
targets’ peaks. Thus, the periodogram can pick up wrong
peaks as targets with a high probability. Using DFT-CE
eliminates all the unuseful parts where targets are less likely
to exist, which reduces the probability of the false detection
caused by these peaks.

The DFT-CE process can essentially be performed in
3 steps [51]:

• Transform the frequency-domain channel H to the time
domain using IFFT:

ĥ(n) =
1
K

K−1∑
k=0

H (k)ej2π
nk
K , 0 ≤ n ≤ K − 1. (21)

• Restrain the effect of noise by keeping only the cyclic
prefix equivalent part of the signal:

ĥr (n) =

{
ĥ(n), 0 ≤ n ≤ Ncp − 1
0, otherwise

(22)

• Convert the channel estimate back to the frequency
domain using FFT:

Ĥ ′(k) =
1
K

K−1∑
k=0

ĥr (n)e−j2π
nk
K , 0 ≤ n ≤ K − 1. (23)

The operations of converting the frequency-domain channel
to the time domain, then the time-domain channel back to
the frequency-domain counterpart are fast since the IDFT
and DFT are implemented through IFFT and FFT, respec-
tively. This improves the efficiency of channel estimation
with low complexity.

To obtain accurate channel state information, a better
approach is to use MMSE-CE, which performs better than
both LS-CE and DFT-CE. However, MMSE-CE is limited

by its high complexity and also by the fact that we need
real-time channel statistics (such as the covariance matrix),
which are hard to know in practice. Even though in [51]
the authors proposed MMSE based DFT-CE, which is
faster than the MMSE-CE, its complexity remains very high
and prohibitive for some applications when handling large
matrices.

Fig. 4 depicts the estimated mean square error (MSE)
of LS-CE, linear minimum mean square error (LMMSE)
based LS-CE, DFT-CE, and LMMSE based DFT-CE.
As shown in the figure, it is clear that LMMSE based
DFT-CE outperforms the others followed by DFT-CE.
In contrast, DFT-CE provides a good trade-off between
desirable estimation performance (compared to LS-CE) and
low complexity (compared to LMMSE based DFT-CE).

Fig. 5 and Fig. 6 present the levels of peaks according
to OFDM subcarriers index for a five-target case. When SNR
is high, all five targets are detectable, as shown in Fig. 5.
However, knowing that targets can be located at subcarrier
indexes i such that 0 ≤ i ≤ Ncp−1, when SNR becomes very
low, for instance SNR = −25 dB as presented in Fig. 6, some
or all targets peaks are confused with the noise. Subsequently,
they can be incorrectly selected in subcarrier index i, such that
i ≥ Ncp − 1, which increases the detection errors as shown
in Fig. 6. By applying DFT-CE, however, targets can still be
erroneously selected in the right subcarrier index range, i.e.,
0 ≤ i ≤ Ncp − 1, hence reducing the estimation errors as
depicted in Fig. 6b.

B. ZADOFF-CHU PRECODING
Zadoff-Chu sequences are known as a polyphase complex-
valued sequences with constant amplitude zero auto-
correlation waveform (CAZAC). Because of their good
auto-correlation properties, these sequences have many
applications especially in 3GPP Long Term Evolution (LTE)
for synchronization of mobile phones with base stations.

A Zadoff-Chu sequence of length L can be defined as:

Zseq(k ′) =

 e
j2πr ′
L

(
k′2
2 +q′k ′

)
, when L is even

e
j2πr ′
L

(
k′(k′+1)

2 +q′k ′

)
, when L is odd ,

(24)

where k ′
= 0, 1, . . . ,L − 1; q′

∈ Z; r ′ is an arbitrary integer
relatively prime to L. From a Zadoff-Chu sequence of length
L, we construct a square Zadoff-Chu matrix Zm such that:

Zseq(k ′) = Zseq(iD+ j) = Zm(i, j),

0 ≤ i, j ≤ D− 1,D =
√
L. (25)

At the transmitter, we precode the QAM symbols by
multiplying them with the matrix Zm. The precoded signal
Ap is therefore Ap = ZmA. At the receiver, the precoding
can be discarded by multiplying the precoded received signal
by (Zm)−1. It is important to mention that the precoding
preserves the power of the signal A as we theoretically
demonstrated in Appendix A. In addition, the IFFT operation
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FIGURE 6. Normalized peak level as a function of the subcarrier index for 512-OFDM with Ncp = 128 and SNR = −25dB.

which follows the precoding converts the frequency-domain
data into the time-domain representation and ensures that
the subcarriers remain orthogonal to each other in the time
domain. We provided mathematical proof of the power
conservation after the IFFT operation using Parseval’s energy
conservation theorem in Appendix B. The PAPR of the signal
obtained after this block is expressed as

PAPR =
max∥x∥2

E
[
∥x∥2

] , (26)

where x is the output signal.
One of the major drawbacks of OFDM is its high PAPR.

An OFDM signal with high PAPR is highly sensitive to
nonlinear distortion caused by an HPA. This distortion
increases the adjacent channel interference (ACI) [52], [53].
Therefore PAPR reduction techniques may be employed to
help cut it down. As demonstrated in [52], ZCP is used as
a PAPR shrinking technique. Hence, from [52], we have the
PAPR inequality expressed as

PAPRIFFT (Ap) ≤ PAPRIFFT (A). (27)

The CP adding operation which involves adding a copy of
the end part of each OFDM symbol to the beginning of the
symbol maintains the PAPR inequality at the output of the CP
block. We provided these theoretical derivations in Appendix
C. Furthermore, OFDM signals typically require high power
levels for effective transmission, especially in scenarios with
long-range or high-rate requirements. HPAs are utilized to
amplify the OFDM signal to the desired power level for
transmission. However, nonlinear HPAs can offer higher
power efficiency compared to linear amplifiers. They can
amplify the OFDM signal with less power consumption,
which is advantageous in terms of energy efficiency and
reducing operating costs.

In Fig. 7, we compute the spectrum of one QAM symbol
in the 128-OFDM signal with B = 20 MHz, with an OFDM

FIGURE 7. Spectrum of a single QAM symbol as a function of the
frequency.

signal going through a nonlinear HPA with an output:

fx =
∥x∥√

1 + ( ∥x∥
E(∥x∥)×10q/10

)2
, (28)

with state level q; ∥x∥ and E(∥x∥) are the element-wise
modulus of x and the mean of ∥x∥, respectively; 1f =

B
128 .

Here, each data symbol is within [−1f /2, 1f /2]. As a result,
the ACI of each modulated symbol in the OFDM-based ZCP,
represented by the red curve is low compared to theACI of the
OFDM without ZCP illustrated by the yellow curve. Going
through such an HPA maintains the PAPR inequality, which
implies a better SNR in the radar channel. We thoroughly
demonstrated this claim in Appendix D. In this work, we aim
to analyze the impact of ZCP on the range and velocity
estimations. By applying the previous ZCP on the OFDM
signal, we end up with a signal with lower PAPR, lower ACI,
high SNR and consequently, improved estimation of the range
and velocity.
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FIGURE 8. 2D sparse signal: The entire block is the signal frame, and each
slot represents a potential target. The dark gray slots represent the
effective targets.

C. COMPLEXITY REDUCTION
The DFT is one of the most important and widely used algo-
rithms in computational tasks, such as in signal processing,
communications, and audio/image/video compression. It is
often implemented through FFT which computes the DFT
of an n-dimensional signal with complexity O(n log n). FFT
does not make any assumption about the structure of the
signal. However, in many applications, the signal is highly
sparse in the frequency domain as depicted in Fig. 8. A signal
x is exactly K -sparse (or approximately K -sparse) in the
frequency domain if its Fourier transform contains exactly K
non-zero values and the others are zeros. That is, the Fourier
transform contains onlyK dominant values and the others are
close to zero. In radar applications, only a few targets are of
interest, such as buildings, trucks, and walls. Thus, the final
output is often sparse.

Due to the importance of processing sparse data in many
areas, several algorithms have been proposed to reduce not
only the sampling complexity but also the computational
complexity of FFT. A detailed study of such algorithms
can be found in [44], [45], [46], and [47]. Some of these
algorithms can even reach a computational complexity of
O(K logK ) for exactly K -sparse signals. The basic principle
of all SFT algorithms is to reduce the number of involved
signal samples and the computational complexity. Thus,
the significant frequencies in the signal are first localized
and then estimated, either iteratively or simultaneously.
However, most of these algorithms are only proposed for one-
dimensional signals, and the extension of these algorithms
to multi-dimensional signals is not straightforward. When
dealing with multi-dimensional signals, it is required to
create a large one-dimensional vector containing the entire
signal. After the processing step, in order to return to
the initial dimensions to determine the index of dominant
frequencies. To alleviate many of the drawbacks brought by
the aforementioned techniques, in [45], Wang et al. proposed

FIGURE 9. 2D periodogram and 2D-FPS-SFT estimate comparison for
5 targets with a 2048-OFDM, M = 560. Each target is identified by its
coordinates (n, m).

FPS-SFT, which is a multi-dimensional and iterative SFT
algorithm. It processes amulti-dimensional sparse signal with
low complexity and small samples under both noise-free and
noisy conditions. Consequently, since the signals interested in
this paper are highly sparse (K ≪ N ×M ), in this subsection,
we take a critical look at FPS-SFT algorithm in terms of its
complexity and accuracy. The details of the algorithm can be
found in [45]. Since FPS-SFT is iterative and the frequencies
recovered in a given iteration are passed to the next iteration,
in low SNR region, a frequency recovery error caused in a
given iteration is carried through the next ones. Let us assume
that the FPS-SFT algorithm executes I iterations and Q is the
least commonmultiple of the signal dimensionsN andM . For
a general case of 2D signals, each iteration uses 3Q samples,
since it is required that 3 Q-length slices are extracted to
decode the two frequency components of a 2D signal in
the frequency domain. Thus, the sampling complexity of
FPS-SFT is O(3IQ) = O(IQ). The core processing of
FPS-SFT is the Q-point single-dimensional DFT, which
can be implemented by the FFT with the computational
complexity of O(Q logQ). In addition to FFT, each iteration
needs to evaluate up to Q samples corresponding to different
frequencies. Hence, the computational complexity of FPS-
SFT is O(I (Q logQ+ Q)) = O(IQ logQ). If we let the
iteration size I equal Imax which is sufficiently large so
that FPS-SFT converges for a given K -sparse signal, the
sample and the computational complexity of FPS-SFT
become O(Q) and O(Q logQ), respectively. For K = O(Q),
FPS-SFT achieves the lowest sample and computational
complexity, i.e., O(K ) and O(K logK ), respectively, among
all considered SFT algorithms [45].

IV. SIMULATION RESULTS AND DISCUSSION
We evaluate the performance of the radar estimate in the
industrial scientific and medical (ISM) band of 77 GHz for
a total bandwidth of B = 491,52 MHz using the proposed
algorithms. The simulation parameters are inspired by the
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FIGURE 10. 2D-Periodogram and 2D-FPS-SFT estimate root mean square
error (RMSE) as function of the SNR.

FIGURE 11. 2D periodogram and 2D-FPS-SFT execution time comparison
with 5 targets versus the OFDM subcarrier number size, given
B = 60 MHz and M = 200.

5G New Radio (NR) specifications [54] and are summarized
in Table 1. In 5G NR, each frame duration is 10 ms,
corresponding to 10 subframes. The 240 KHz subcarrier
spacing configuration contains 16 slots per subframe and
14 OFDM symbols by slot. Consequently, this gives a total of
2,240 OFDM symbols per framewith Tcp = 7% × T (normal
CP). This CP length is very small and can allow the radar
to achieve only up to the coverage of dmax = 43.73 m. For
the simplicity of our simulations, we stipulate 4 slots per
subframe along with a CP such that Tcp = 25% × T , which
results in a total of 560 OFDM symbols per frame and
dmax = 156.25 m. In our simulations, we are assuming that
all N OFDM subcarriers carry useful information except the
first OFDM symbol of each frame, which contains block-type
pilots for channel estimation at the communication receiver.
We also assume that the multipath channel has a sufficiently
long coherence time, which makes it unchanged during the
transmission of an OFDM frame. The radar cross section is
assumed to be unity. For the sake of simplicity, we further

FIGURE 12. Range RMSE as a function of SNR for ZCP based LS-CE, LS-CE
and DFT-CE.

TABLE 1. Simulation parameters.

set N ′ and M ′ to be N and M , respectively. With N = 2,048
and M = 560. A Hamming window is used as the window
function in (18). This configuration allows us to achieve a
range resolution of 30.52 cm and a velocity resolution of
0.67 m/s. Such a radar can distinguish very close targets in
terms of ranges and velocities. Thus, a good parameterization
of the radar andwave characteristics is crucial to achieve good
target detection performance.

Fig. 9 shows the ordinary periodogram and the FPS-SFT
estimates of a five-sparse-signal case at SNR = 20 dB.
We plot only the useful part of the signal where targets are
located. From Fig. 9, we can observe that FPS-SFT and
periodogram estimates perfectly match each other, which
means that FPS-SFT can correctly estimate the dominant
frequencies.

Fig. 10 depicts the RMSE of the targets’ range and velocity
estimation using FPS-SFT and 2D periodogram. From the
figure, we observe that the 2D periodogram is more accurate
than FPS-SFT in low SNR regions. However, both methods
converge in the high SNR region.

Fig. 11 shows the execution time comparison of FPS-SFT
and the periodogram. From the figure, we can notice that
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FIGURE 13. Velocity RMSE as a function of SNR for ZCP based LS-CE,
LS-CE and DFT-CE.

FIGURE 14. Range RMSE as a function of SNR for Boxcar, Bartlett,
Hanning, Hamming, and Blackman window functions in comparison to
the proposed scheme.

the periodogram execution time depends on the OFDM size,
whereas FPS-SFT is almost constant only depending on the
sparsity order K of the signal while drastically reducing the
execution time.

From Fig. 10 and Fig. 11, we conclude that a compromise
is to be taken between the accuracy and the complexity of
both 2D periodogram and FPS-SFT depending on the type of
application.

Fig. 12 and Fig. 13 show the RMSE of the range
and velocity estimation for the standard periodogram using
LS-CE and DFT-CE with and without ZCP. From these
figures, we can observe that LS-CE, and DFT-CE using
ZCP outperforms the case without ZCP. Moreover, applying
DFT-CE based ZCP yields better estimates than LS-CE based
ZCP. However, all the algorithms converge in higher SNR
regions.

Fig. 14 and Fig. 15 show the RMSE of the range
estimation for the classical periodogram using Boxcar,

FIGURE 15. Velocity RMSE as a function of SNR for Boxcar, Bartlett,
Hanning, Hamming, and Blackman window functions in comparison to
the proposed scheme.

FIGURE 16. Radar image map for 5 targets within the ranges of 50 m,
51 m, 52 m, 53 m, 54 m and moving at the velocities of -5 m/s, 10 m/s,
15 m/s, 20 m/s, 21 m/s, with RCSs of 100 m2, 350 m2, 120 m2, 150 m2,
50 m2, respectively, given SNR = 5 dB.

Bartlett, Hanning, Hamming, Blackman window functions
and our proposed scheme. The figures depict the superior
performance of our scheme compared to the classical window
functions.

Fig. 16 shows a radar range-Doppler map, also called
a radar image for five targets T1, T2, T3, T4, T5 within
the ranges of 50 m, 51 m, 52 m, 53 m, 54 m and moving
at the velocities of -5 m/s, 10 m/s, 15 m/s, 20 m/s, 21 m/s,
respectively, when SNR = 5 dB. According to [55], the RCS
of a car at 77 GHz in decibel square meters is about
20 dBsm, which is equivalent to 100 m2. Based on this
value, we generated the five targets with RCSs equal to
100 m2, 350 m2, 120 m2, 150 m2, 50 m2, respectively.
These values align with potential representations of cars,
trucks, and compact vehicles. The strongest reflecting target
is T2, because of its high RCS (more than three times
the RCS of a car), which is similar to the signal reflected
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FIGURE 17. Radar image map for 5 targets within the ranges of 50 m,
50.5 m, 50.3 m, 55 m, 55.5 m and moving at the velocities of -5 m/s,
10 m/s, 15 m/s, 20 m/s, 20.5 m/s, with RCSs of 100 m2, 350 m2, 120 m2,
150 m2, 50 m2, respectively, given SNR = 5 dB.

FIGURE 18. Transmitter blocks.

FIGURE 19. The output of the non-linear HPA.

by a truck. It is worth noting that all the targets are
distinguishable in terms of range and velocity. This is because
for any given two targets, the difference of their ranges
(respectively velocities) is greater than the achievable range
resolution (respectively velocity resolution) of the proposed
scheme.

Fig. 17 shows the behavior of the proposed scheme
in the case of close targets. Thoroughly, T2 and T3 are
indistinguishable in terms of range. In fact, by projecting their
main lobes on the range axis, they are perfectly aligned, which
means that the radar can not see them as different targets in
the range axis. This is because the difference of their ranges is
less than the achievable range resolution 1d of the proposed

scheme, 1dT2,T3 = 50.5 m − 50.3 m = 20 cm < 1d =

30.52 cm. In contrast, T1, T2, T4, and T5 are distinguishable in
terms of range since the distance to each other is greater than
1d . Similarly, T4 and T5 are indistinguishable in terms of
velocity, their main lobes are correctly aligned by projecting
them on the velocity axis, this is because the difference
of their respective velocities is less than the achievable
velocity. 1vT5,T4 = 20.5 m/s− 20 m/s = 50 cm/s, which is
less than 1v = 66.79 cm/s. In addition, T1, T2, T3, and
T4 are distinguishable since the differences of their respective
velocities are all greater than 1v.

V. CONCLUSION
In this work, we proposed an improved target detection
method using several emergent techniques for the peri-
odogram estimation proceeding. The periodogram algorithm
outputs estimation in the limit of the radar resolution
which depends on the signal parameterization. Through
our simulations, we established that when dealing with
low SNRs, the estimation using LS-CE performs poorly
since the targets’ peaks are confused with noise. By using
DFT-CE, we improved the channel estimation and reduced
the target estimation error by filtering some false positive
targets. Moreover, we concluded that ZCP, in addition
to its important applications in OFDM transmission for
PAPR reduction and ICI alleviation, can also improve target
estimation performance in low SNR region. Considering
that received signals are often sparse, FPS-SFT effectively
reduces the estimation complexity but has poor accuracy in
low SNR regions. In our future works, we aim to apply a noise
reduction method to Zadoff-Chu precoded signals to provide
more accurate channel estimates at low SNR. An extended
version of those algorithms could be applied to networks
of unmanned aerial vehicles where targets are moving
in three dimensions. Furthermore, the overall estimation
performance can also be improved using machine learning,
which could be a worthwhile research direction in the
future.

APPENDIX A
PROOF OF THE POWER CONSERVATION BY THE
ZADOFF-CHU PRECODING
Let us consider the OFDM QAM matrix X = (x)i,j, the
precoded signalXp = (xp)i,j is obtained bymultiplyingXwith
Zadoff-Chu matrix Z = (z)i,k such as Xp = ZX, 1 ≤ i, k ≤ N
and 1 ≤ j ≤ M . We denote by ∥·∥ the Euclidean norm and by
xij, xpij , the ith row and jth column entry of matrices (x)i,j and
(xp)i,j, respectively; zik is the ith row and kth column entry of
matrix (z)i,k , and, we have ∥zik∥ =

1
√
N
.

We consider that Z is of dimension (N ,N ) and we denote
by XA with dimension (N ,M ), the signal at the point A in
Fig. 18 (the signal before the IFFT). The precoding matrix
is such that XA

p= ZXA. The ith row and kth column entry of
matrix XA

p can be written as xApik =
∑N

k=1 zikx
A
kj.
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Because of ZCP, the information on each subchannel is
spread across all subchannels. It means that the power along
the jth column of the matrix (x)Ai,j is the same as the one along
the jth column of (xp)Ai,j. Therefore, this is mathematically
expressed as

lim
ν→N

ν∑
i=1

∥xApij∥
2

= lim
ν→N

ν∑
i=1

∥xAij ∥
2. (29)

The mean power of XA and XA
p are respectively expressed as

follows

PXA =

∑N ,M
i=1
j=1

∥xAij ∥
2

N ×M
, and PXAp =

∑N ,M
i=1
j=1

∥xApij∥
2

N ×M
. (30)

By rewriting the expression of PXAp in (30) and substituting
using the equation in (29), we obtain:

PXAp =

∑N
i=1
j=1

∥xApij∥
2

N ×M
+

∑N
i=1
j=2

∥xApij∥
2

N ×M

+ · · · +

∑N
i=1
j=M

∥xApij∥
2

N ×M

=

∑N
i=1
j=1

∥xAij ∥
2

N ×M
+

∑N
i=1
j=2

∥xAij ∥
2

N ×M

+ · · · +

∑N
i=1
j=M

∥xAij ∥
2

N ×M

=

∑N ,M
i=1
j=1

∥xAij ∥
2

N ×M
= PXA . (31)

Hence, the signal power remains the same by precoding XA

by Zadoff-Chu matrix Z.

APPENDIX B
PROOF OF THE POWER CONSERVATION BY THE IFFT
After the IFFT (at point B in Fig. 18), the energy conservation
claim can be proven by using Parseval’s energy conservation
theorem. In the following, we denote

F =
1

√
N



1 1 · · · 1
1 W 2

· · · WN−1

1 W 2
· · · W 2(N−1)

1 W 3
· · · W 3(N−1)

...
...

...
...

1 WN−1
· · · W (N−1)(N−1)


,

whereW = e−j(2π/N ). In addition, XB and XB
p are the signals

obtained after the IFFT operation onXA andXp, respectively,
as depicted in Fig. 18.

As indicated in [56], for any signal X, the DFT and the
IDFT can be viewed as a linear operator, and can be expressed
respectively as

XFFT = FX , and X = F†XFFT , (32)

where F† is the conjugate transpose of F. As mentioned in
[56], Parseval’s energy conservation theorem states that:

∥XFFT ∥
2

= ∥X∥
2

⇔

∑N ,M
i=1
j=M

∥xij∥2

N ×M
=

∑N ,M
i=1
j=M

∥xFFTij∥
2

N ×M
.

(33)

By applying (33) to XB and XB
p , the energy of X

B and XB
p are

conserved after the IFFT, and by using (31), we derive that

PXB = PXBp . (34)

In addition, by denoting the PAPR function by P , as shown
in [52], after the IFFT, the following inequality holds:

P(XB
p ) ≤ P(XB) ⇔

maxi,j∥XB
p∥

2

E[∥XB
p∥

2]
≤

maxi,j∥XB
∥
2

E[∥XB∥2]
, (35)

where E[∥XB
∥
2] =

PXB
N×M and E[∥XB

p∥
2] =

PXBp
N×M . From (34),

we have

E[∥XB
∥
2] = E[∥XB

p∥
2]. (36)

Therefore, based on (35) and (36), we can deduce that

max
i,j

∥XB
p∥

2
≤ max

i,j
∥XB

∥
2. (37)

APPENDIX C
ANALYSIS OF PAPR INEQUALITY AFTER ADDING CP
We consider the CP adding operation between B and C in
Fig. 18. We denote by XC and XC

p , the signals obtained
after adding CP to XB and XB

p , respectively. The CP adding
operation consists of adding the last Ncp part of each OFDM
symbol (each column of XB and XB

p , respectively) at the
beginning of the symbol. In addition, from XB and XB

p with
the same dimension (N ,M ), we end up withXC andXC

p with
dimensions (N + Ncp,M ).

• The inequality in (37) holds at C since the CP-adding
operation extends the signal with elements selected from
the same sample. Therefore,

max
i,j

∥XC
p ∥

2
≤ max

i,j
∥XC

∥
2. (38)

• The mean power of XC is expressed as

E[∥XC
∥
2] =

N ×M
(N + Ncp) ×M

∑N ,M
i=1
j=1

∥xBij ∥
2

N ×M

+
Ncp ×M

(N + Ncp) ×M

∑N+Ncp,M
i=N+1
j=1

∥xBij ∥
2

Ncp ×M

=
N ×M

(N + Ncp) ×M
E[∥XB∥2]

+
Ncp ×M

(N + Ncp) ×M

∑N+Ncp,M
i=N+1
j=1

∥xBij ∥
2

Ncp ×M
.

(39)
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In the same way, the mean power of XC
p is expressed as

E[∥XC
p ∥

2] =
N ×M

(N + Ncp) ×M

∑N ,M
i=1
j=1

∥xBpij∥
2

N ×M

+
Ncp ×M

(N + Ncp) ×M

∑N+Ncp,M
i=N+1
j=1

∥xBpij∥
2

Ncp ×M

=
N ×M

(N + Ncp) ×M
E[∥XBp ∥

2]

+
Ncp ×M

(N + Ncp) ×M

∑N+Ncp,M
i=N+1
j=1

∥xBpij∥
2

Ncp ×M
.

(40)

In this work, we take Ncp =
1
4N . Therefore, from (29),

we have ∑N+Ncp,M
i=N+1
j=1

∥xBpij∥
2

Ncp ×M
≈

∑N+Ncp,M
i=N+1
j=1

∥xBpij∥
2

Ncp ×M
(41)

and from (36), the first terms of (39) and (40) are equal.
Therefore, it can be approximated that

E[∥XC
∥
2] ≈ E[∥XC

p ∥
2]. (42)

Hence, by combining (38) and (42), we end up with

P(XC
p ) ≤ P(XC ). (43)

APPENDIX D
ANALYSIS OF PAPR INEQUALITY THROUGH AN HPA
We considerXD andXD

p the response of the HPA (at the point
D in Fig. 18) taking XC and XC

p as the input, respectively.
From (28), we have

XD
=

∥x∥√
1 + ( ∥x∥

E(∥x∥)×10q/10
)2

. (44)

The state level of the HPA q is selected such that the
output is the same as in Fig. 19. Therefore the HPA is a
monotonic increasing function. Hence, for any entry xCpij and
xCpij , if ∥xCpij∥≤∥xCpij |⇒∥xDpij∥≤∥xDpij , from (42), we can deduce
that

E[∥XD
∥
2] ≈ E[∥XD

p ∥
2]. (45)

Similarly, from (38), we can deduce that

max
i,j

∥XD
p ∥

2
≤ max

i,j
∥XD

∥
2. (46)

Hence finally, from (45) and (46), we have

maxi,j∥XD
p ∥

2

E[∥XD
p ∥2]

≤
maxi,j∥XD

∥
2

E[∥XD∥2]
⇔ P(XD

p ) ≤ P(XD). (47)

We normalize the transmitted signal with the maximum
amplitude in each signal matrix. Such a normalization oper-
ation does not change the PAPR inequality. Consequently,

for a given noise variance σ 2, we denote X̃D
p and X̃D the

normalized signals. By definition, we have

SNR(X̃D
p ) =

E[∥X̃D
p ∥

2]

σ 2 . (48)

In addition, we can write

P(X̃D
p ) =

maxi,j∥X̃D
p ∥

2

E[∥X̃D
p ∥2]

=
1

E[∥X̃D
p ∥2]

. (49)

From (48) and (49), we have

SNR(X̃D
p ) =

1

σ 2P(X̃D
p )

, (50)

and knowing the inequality in (47), we obtain

1

σ 2P(X̃D
p )

≥
1

σ 2P(X̃D)
⇒ SNR(X̃D

p ) ≥ SNR(X̃D). (51)

Hence, ZCP increases the SNR in the radar channel.
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