
Received 28 October 2023, accepted 23 November 2023, date of publication 27 November 2023,
date of current version 30 November 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3337043

Hardware-Based Software Control Flow
Integrity: Review on the State-of-the-Art
Implementation Technology
SENYANG LI , WEIKE WANG , (Member, IEEE),
WENXIN LI, (Graduate Student Member, IEEE), AND DEXUE ZHANG
College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China

Corresponding authors: Weike Wang (wangweike@sdust.edu.cn) and Dexue Zhang (dexuezhang@sdust.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 62201325, in part by the Shandong
Provincial Natural Science Foundation under Grant ZR2020QF027, and in part by the Qingdao West Coast New Area Science and
Technology Project under Grant 2021-25.

ABSTRACT Code Reuse Attacks (CRA) represent a type of control flow hijacking that attackers exploit to
manipulate the standard program execution path, resulting in abnormal processor behaviors. In response to
the security concern, proposals for Control Flow Integrity (CFI) verification have emerged. The CFI scheme
diligently monitors program jumps during execution, effectively restraining abnormal program execution
and robustly safeguarding against CRA. This paper provides a comprehensive analysis and synthesis of
the current state of hardware-based CFI implementations. In this survey, we initially discuss common
attack methods and variations of predominant CRA, elucidating the general procedural steps intrinsic
to such attacks. We delve into the protective capacities inherent in contemporary hardware-based CFI
implementations. By conducting a thorough examination and organization of diverse research endeavors
on hardware-based CFI, we systematically classify CFI based on implementation methodologies, including
label verification, instruction encryption, stack edge detection, instruction tracing, sensitive data isolation,
and basic block validation.We provide comprehensive explanations and critical evaluations for each category
followed by comparative analyses while offering personal insights on the evolution of hardware-based CFI.

INDEX TERMS Code reuse attacks, control flow integrity, hardware-based CFI implementations.

ABBREVIATIONS
CFI Control-Flow Integrity.
CRA Code reuse attacks.
CFH Control Flow Hijacking.
ROP Return-Oriented Programming.
JOP Jump-Oriented Programming.
FG-CFI Fine-Grained Control Flow Integrity.
CG-CFI Coarse-Grained Control Flow Integrity.
TE Trace Encoder.
DEP Data Execution Prevention.
ASLR Address Space Layout Randomization.
CFG Control Flow Graph.
FPGA Field-programmable gate array.

The associate editor coordinating the review of this manuscript and

approving it for publication was Byoung Wook Choi .

AES Active Encryption Standard.
RAB Return Address Buffer.
PTM Program Trace Macrocell.
PT Processor Trace.
TPIU Trace Port Interface Unit.
MPU Micro Processor Unit.
IPT Intel Processor Trace.
MU Match Units.
TLB Translation Lookaside Buffer.
FF Flip-Flop.
LUT Look UP Table.
BBB Basic Block Boundar.
RAS Random Access Storage.
MAC Massage Authentication Code.
PUF Physically Unclonable Function.
RoCC RocketChip with custom coprocessor.

VOLUME 11, 2023

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 133255

https://orcid.org/0009-0004-8324-0911
https://orcid.org/0000-0003-4964-917X
https://orcid.org/0000-0002-2404-7415


S. Li et al.: Hardware-Based Software CFI: Review on the State-of-the-Art Implementation Technology

I. INTRODUCTION
A. THE CURRENT CHALLENGES IN EMBEDDED SYSTEM
SECURITY
Recently, the rapid advancements in both the integrated
circuit industry and the Internet have led to the seamless
integration of embedded devices into various aspects of
everyday life and industrial processes. These devices find
extensive applications in various domains including health-
care, autonomous driving, industrial robotics, smart homes,
and smart cities, permeating every aspect of contemporary
existence. The widespread adoption of embedded devices has
significantly enhanced productivity and quality of life. How-
ever, this rapid acceptance has also given rise to a multitude
of cybersecurity challenges.

In the past five years, data from CVEdetails.com has
revealed a significant increase in reported vulnerabilities,
reaching tens of thousands annually. Notably, the year
2022 recorded an alarming 25,082 reported vulnerabilities.
The aforementioned statistics highlight the significant chal-
lenges encountered in ensuring the security of embedded
devices. Additionally, data obtained from IEEE Spectrum
reveals that a majority of embedded programs are written in
the C language, which unfortunately lacks the support for CFI
mechanisms. The programming languages used provide an
opportunity for attackers to exploit security vulnerabilities,
such as stack overflow [1], integer overflow [2], and format
string overflow [3], thereby enabling the manipulation of pro-
gram control flow data. Consequently, attackers possess the
capability to manipulate the execution sequence of programs
on processors, initiating malicious assaults on critical devices
and systems that pose significant risks to human life, property,
and information security. This type of attack, which manipu-
lates program execution through stack overflow, is referred to
as a Control-Flow Hijacking (CFH) [4]. Due to its aggressive
nature and ability to bypass existing safeguards in embedded
devices effortlessly, CFH attacks remain a paramount and
pivotal threat within the realm of embedded device security.

The CFH attack represents a prominent method that
exploits memory buffer overflows to manipulate either the
return address of a program or the destination of a jump
instruction. As a result, it gains control over the program’s
flow and facilitates the execution of malicious attacks against
the targeted system. The CFH attacks can be categorized
into two types: code injection attacks [5] and code reuse
attacks [6]. In code injection attacks, attackers exploit the
vulnerability present in the program’s storage region, which
lacks boundary checkingmechanisms. They identify the loca-
tion of the return address or branch instruction and then
manipulate memory through buffer overflow. This manipu-
lation redirects the modified return address to the location
where malicious code was introduced by the attacker. Dur-
ing program execution, the processor executes the injected
malicious code block, thereby achieving the objectives of the
attacker, which may include compromising the target com-
puter system, exfiltrating sensitive information, or causing
harm to system integrity. Both code reuse attacks and code

injection attacks exploit buffer overflows to hijack the control
flow. However, code reuse attacks eliminate the need for
explicit injection of malicious code. Instead, attackers skill-
fully construct concise code fragments known as ‘‘gadgets’’
using compiled assembly instructions from the program.
Each instruction within these gadgets serves a specific pur-
pose, with attackers adeptly interconnecting them to achieve
equivalent functionality as the injected malicious code. As a
result, code reuse attacks exhibit enhanced concealment and
pose greater challenges for defensive measures. Common
manifestations of code reuse attacks include Return-Oriented
Programming (ROP), Jump-Oriented Programming (JOP),
and return-into-libc attacks.

ROP attacks [7], [8], [9], which were initially introduced
in 2007 and subsequently recognized as Turing complete,
revolve around the manipulation of return instructions. These
attacks exploit stack overflow vulnerabilities to manipu-
late the return address of a function, thereby coercing the
processor into executing specific instructions designated by
malicious attackers. In contrast, JOP attacks [10], [11] pri-
marily rely on both direct and indirect jump instructions
to tamper with the program’s execution flow by modifying
target addresses associated with function calls and jumps.
The return-into-libc [12] attack represents an initial man-
ifestation of the ROP attack strategy, where the attacker
manipulates the return address to facilitate a jump and sub-
sequent execution of a targeted function within the libc
library, evading defense mechanisms to achieve their objec-
tives. However, this attack’s effectiveness is limited due to its
reliance on only a restricted subset of functions from shared
libraries. This limitation poses challenges for the successful
execution of broader attacks. To expand the attack scope,
Shacham et al. [10] extended the concept of return-into-
libc by linking short instructions in a specific logical order
that concludes with a ret instruction, thereby implementing
program logic known as the ROP attack. Therefore, ROP and
JOP attacks are considered prominent mainstream method-
ologies within code CRA.

B. THE CURRENT STATE OF DEFENSE AGAINST CODE
REUSE ATTACKS
In response to the continuous evolution of attack tech-
niques, security researchers have developed and implemented
diverse defense technologies to provide a certain level of
protection for embedded devices. Nevertheless, CRA has
demonstrated the ability to circumvent specific prevailing
defense mechanisms, primarily owing to their distinctive trait
of circumventing the need for injecting malicious code into
the target system. An example of this is Data Execution
Protection (DEP) [13], which modifies the execution permis-
sions of memory’s code regions by designating data segments
as non-executable and code segments as non-modifiable.
When a shellcode is executed through a buffer overflow,
DEP triggers an error signal to effectively protect against
code injection attacks. However, DEP remains vulnerable

133256 VOLUME 11, 2023



S. Li et al.: Hardware-Based Software CFI: Review on the State-of-the-Art Implementation Technology

in the context of code reuse attacks, as established attack
methodologies have demonstrated the ability to bypass its
protective measures [14].

Address Space Layout Randomization (ASLR) [15], dif-
ferent from DEP, introduces randomization to the stored
return addresses to prevent attackers from determining the
location of return instructions within the stack. Even if attacks
are successful in overflowing the stack, computing the posi-
tion of the return address presents a significant challenge.
As a result, modifying critical data to initiate powerful code
reuse attacks becomes more difficult. However, vulnerabili-
ties still exist in both coarse-grained and fine-grained ASLR
implementations, and malicious actors can bypass this defen-
sive mechanism [8]. Although DEP and ALSR increase the
difficulty of implementing code reuse attacks, they both need
the support of an operating system and are difficult to imple-
ment for resource-constrained embedded systems.

The landscape of defense strategies has been disrupted by
code reuse attacks, challenging the erstwhile attack pattern
centered on the assumption that attackers were restricted to
triggering malevolent code injections solely from external
sources. To address the imminent threat posed by code reuse
attacks, Abadi et al. [16] introduced a pioneering method-
ology for implementing CFI, which combines software and
hardware techniques. At the core of CFI lies the concept of
imposing stringent constraints on the program’s control flow,
ensuring its execution aligns with a predetermined transfer
flow graph. By enforcing this constraint, the program’s tran-
sitions are confined within a secure scope, thereby endowing
CFI with remarkable efficacy in mitigating CFH attacks and
providing an efficient defense against CRA. The Control
Flow Graph (CFG) is an analysis of the sequence in which
instructions are executed during program execution, and con-
structing a program jump relationship graph based on these
jumps is crucial for implementing CFI. The accuracy of CFG
is an important metric of CFI, and based on the accuracy
of CFG CFI can be classified as fine-grained CFI [17], [18]
and coarse-grained CFI [19], [20], [21]. Both schemes have
their advantages and disadvantages, coarse-grained compared
to fine-grained, coarse-grained scheme security performance
will be much lower and can be bypassed by complex code
reuse attacks [22], [23], [24], [25], [26], [27], [28]. However,
this approach reduces the frequency of legitimate verification
of program jumps during program execution. Therefore, the
implementation cost of this solution is relatively low, which
meets the application requirements of practical embedded
systems.

Currently, CFI in a processor can be achieved in both
Software [29], [30], [31], [32], [33], [34], [35] and hard-
ware. BCI-CFI [34], an implementation of software-based
fine-grained CFI on the Linux kernel, exhibited an aver-
age execution overhead of 19.67%, with the peak overhead
attaining 31.2% in test programs. This elevated execution
overhead bears the potential to induce diminished proces-
sor performance, heightened power consumption, squandered

resources, and compromised system stability. Consequently,
the feasibility of applying software-based fine-grained CFI to
real-world applications becomes questionable. Consequently,
the implementation of various software-based CFI schemes
on physical processors often faces significant challenges pri-
marily due to the notable increase in execution overheads.

In response to the challenges arising from software-based
CFI, researchers have introduced hardware-based CFI tech-
niques [35], [36], [37], [38], [39], [40], [41], [42], [43],
[44], [45], [46] In terms of hardware, security experts
design hardware circuits for processors or integrate addi-
tional storage capacity and instruction set extensions to
implement CFI. Hardware-based CFI significantly reduces
processor execution overhead. For instance, HCIC [42] suc-
cessfully implemented CFI by developing hardware circuits
within existing processors, resulting in a minimal average
execution overhead of 0.95%. This demonstrates the effec-
tiveness of hardware-based CFI in mitigating the limitations
arising from high software execution overheads. However,
incorporating external hardware circuits often introduces
increased complexity, and implementing hardware-based CFI
may require compiler modifications for software instrumen-
tation, thereby amplifying the associated implementation
challenges. Nonetheless, designing an external hardware
circuit is frequently intricate, and modifying it afterward
becomes inflexible; additionally, integrating additional hard-
ware circuits will also expand the processor chip’s area.

To enhance the adaptability of hardware-based CFI and
eliminate the need for compiler support, researchers pro-
pose utilizing the processor’s existing hardware modules to
actively monitor program instruction execution in real-time
and trace the program’s control flow. Notable among these
hardware modules is Intel’s PT module [47], which effec-
tively collects control flow transition information from the
CPU. Conversely, Program Trace Macrocell (PTM) [37]
tracks the historical data related to instructions executed by
ARM cores and subsequently compresses this instructive
information. Subsequently, researchers analyze the decom-
pressed data to gain insights into the program’s control
flow during execution, a crucial process for CFI validation.
TE [48] is an open-source RISC-V processor instruction
tracking compression module that compresses executed
instructions into data packets. These packets are analyzed
by researchers to obtain the program’s control flow during
execution, providing insights into its behavior. Alternative
hardware-based CFI solutions involve modifying the pro-
cessor framework to support novel extended instructions
designed for CFI validation, such as TrustFlow-X [40],
HAFIX [46], and HCFI [49]. Coprocessors also emerge
as a viable avenue for implementing CFI. For instance,
Nile [50] assumes the role of monitoring various events dur-
ing program execution to optimize and scrutinize processor
behavior. By leveraging thismodule, security experts can exe-
cute CFI and conduct validation without requiring compiler
modifications or additional instructions, thereby significantly

VOLUME 11, 2023 133257



S. Li et al.: Hardware-Based Software CFI: Review on the State-of-the-Art Implementation Technology

simplifying the deployment complexities of CFI. Further-
more, utilizing an autonomous coprocessor for CFI validation
enhances the inherent adaptability of hardware-based CFI
implementation. However, this approach has certain limi-
tations as it solely detects whether the processor has been
attacked and cannot proactively defend against malicious
attacks.

C. MAIN CONTRIBUTIONS
This present paper summarizes and analyzes recent research
on implementing control flow integrity for mitigating against
CRAs. In contrast to Sayeed et al. [51] review of software and
hardware for control flow integrity, we focus on an overview
of the work on implementing CFI in hardware, focusing
on the characteristics of the hardware. Compared with the
similar Kumar et al. [52] who proposed a new classification
method for the review of the control flow integrity of the
hardware-assisted mechanism, we carried out a classification
review of the current hardware implementation of CFI from
the perspective of the implementationmethod of the hardware
control flow integrity.

This article’s primary contributions encompass.
• We provide a comprehensive analysis of CRA methods
and present a concise summary of the general steps
involved in executing such attacks.

• From a novel perspective, we categorize existing
hardware-based CFI implementations into six distinct
categories based on their implementation methods, elu-
cidate diverse hardware features employed, and provide
critical evaluations.

• We conducted a comprehensive comparative analysis
of diverse methods for implementing CFI, consider-
ing their respective advantages, disadvantages, security
implications, execution overheads, and resource utiliza-
tion. Based on these findings, we provide insights into
the future development trends of hardware-based CFI.

In the subsequent sections of this article, we embark on
a comprehensive exploration. Section II meticulously elab-
orates on CRAs, encompassing an elucidation of distinct
features, including those beyond ROP and JOP.Moving to the
third segment, we provide a methodically categorized sum-
mary of capabilities achievable through prevailing control
flow integrity defenses. In the following part, we categori-
cally introduce existing efforts in the field of hardware-based
CFI implementations. Transitioning to the fifth division,
we engage in a thorough comparative analysis that succinctly
dissects various implementation approaches while highlight-
ing their characteristics and hardware attributes. Overall,
this article systematically and comprehensively delves into
hardware-based CFI implementations by unveiling their
strengths and limitations while concurrently paving the way
for future innovations in this domain.

II. CODE REUSE ATTACKS
Both code injection attacks and code reuse attacks exploit
stack overflow to manipulate stored return addresses and

FIGURE 1. The comparison between the process of ROP attack and the
process of normal program execution.

associated parameters on the stack. However, their distinction
lies in the attack code they employ. Code injection attacks
require malicious code to be injected from external sources
into the application’s memory space. In contrast, code reuse
attacks leverage pre-existing instructions within the program
to construct a series of program chains known as ‘gad-
gets.’ The gadgets used in ROP attacks consist of instruction
sequences culminating in a ‘ret’ instruction.

The DEP mechanism acts as a defensive measure against
code injection attacks by modifying memory attributes to
make data writable but non-executable, effectively thwarting
code injection attacks [53]. However, the predominant threat
in contemporary times is the code reuse attack, which can be
further classified into two archetypal variants based on the
terminal instruction of the repurposed code segment: ROP
and JOP.

ROP attacks involve the chaining of sequences of gadgets
that culminate in ‘‘ret’’ instructions, while JOP attacks rely
on sequences ending with ‘‘jmp’’ instructions. These forms of
CRAs have emerged as significant threats to modern systems,
necessitating robust countermeasures for their mitigation.
The ROP attack relies on indirect function calls and return
instructions. When a function call instruction ‘‘call’’ is exe-
cuted, the processor performs a context-preserving operation
through the stack to preserve the address of the subsequent
instruction following the function call. Subsequently, the
processor executes the instructions within the invoked func-
tion zone. Concluding this series, the final instruction within
this region is a return instruction ‘‘ret.’’ By executing this
instruction, the return address is retrieved from the stack and
assigned to the processor’s program counter (PC), facilitating
a context-restoration operation.

In a typical processor execution (illustrated on the left side
of Fig. 1), the stack serves as a crucial component for manag-
ing function calls and returns. It stores the return addresses of
various functions, allowing the program to progress smoothly
from one function to another. However, this orderly process
is disrupted when a ROP attack is initiated (As depicted on
the right side of Fig. 1). During an ROP attack, the attacker
carefully identifies specific instruction locations within the
target program to construct a sequence of gadgets. These
gadgets are short snippets of code that end with a ‘‘ret’’

133258 VOLUME 11, 2023



S. Li et al.: Hardware-Based Software CFI: Review on the State-of-the-Art Implementation Technology

FIGURE 2. JOP attack process.

instruction, which causes the processor to jump to the next
gadget in line. To carry out such an attack, the attacker takes
advantage of a stack overflow vulnerability. By overflowing
certain buffers or variables on the stack, they can overwrite
the original return addresses with addresses pointing to their
chosen gadgets instead. When executing these manipulated
code segments embedded with malicious logic, known as
payloads or exploits, allows attackers to achieve their objec-
tives. The processor no longer follows its regular flow from
function A to D but rather diverges into executing each gadget
in succession – gadget1 followed by gadget2 and so on. Each
gadget performs specific actions desired by the attacker and
may include instructions like loading values into registers or
modifying memory contents. By skillfully chaining together
these gadgets through careful selection and arrangement of
their respective return addresses on the stack, attackers can
effectively bypass security measures and gain unauthorized
control over targeted systems. The consequences of suc-
cessful ROP attacks can be severe. Attackers could exploit
system vulnerabilities for purposes such as gaining unautho-
rized access or privilege escalation within an organization’s
network infrastructure. Therefore, understanding how ROP
attacks work is essential for developing effective countermea-
sures against them and ensuring a robust system.

The JOP attack, like ROP, exploits the program’s existing
code to manipulate the processor and control the program’s
execution flow. However, there are distinctions between these
two approaches. JOP attacks manipulate the program’s con-
trol flow by utilizing the indirect jump instruction ‘jmp’ and
the indirect call instruction ‘call’. The target address for the
indirect jump is obtained from a specified register, which can
be modified by attackers by altering the parameter values
stored in the stack. Consequently, these modifications enable
attackers to exploit JOP attacks on the processor using both
indirect call and jump instructions.

As illustrated in Fig. 2, the JOP attack model involves
the attacker’s search for target gadgets and subsequent incor-
poration of their addresses into a data region known as the
dispatch table. This dispatch table includes a dispatch gadget
pointer that refers to the table itself. This pointer interacts
with a specific register, triggering a jump to the address stored
in that register, corresponding to a gadget’s address. Upon
execution of the gadget, control is redirected back to the dis-
patch gadget pointer, which then indicates the address of the

next gadget within the dispatch table. This iterative process
traverses through the addresses in the dispatch table, thereby
facilitating a successful JOP attack. The comparison between
ROP and JOP attacks reveals distinct methods for modifying
target addresses. ROP exploits stack overflow vulnerabilities
to manipulate return addresses, while JOP alters the value
of the register containing indirect jump instructions through
stack overflow. This divergence in attack techniques renders
existing ROP defense mechanisms ineffective against JOP
attacks.

Beyond ROP and JOP attacks, a range of other code reuse
attack variants exists, including GOT Overwriting [54], [55],
Speculate execution [56], [57], [58], Sigreturn [2], Return-to-
libc [59], and ROP’s variant Call-Preceded [27]. An inclusive
overview of significant attack techniques is delineated in
Table 1, encapsulating attack methods, techniques, core con-
cepts, and defining traits for each attack.

The analysis of the provided Table 1 reveals that prevailing
CRA techniques exploit vulnerabilities specific to processors,
such as stack overflow, branch prediction errors, and side-
channel attacks. These vulnerabilities enable unauthorized
access to the processor, facilitating manipulation of the pro-
gram’s control flow or acquisition of sensitive data. The
diverse objectives and methods employed in these attacks
highlight their wide-ranging nature. Focusing on code reuse
methods discussed earlier, the essence of these attacks lies
in an attacker’s ability to manipulate the program’s execu-
tion sequence. Therefore, when implementing CFI strategies
within a processor context, it is crucial to first obtain the
program’s CFG, which represents its standard execution
sequence.

By analyzing the prevalent code reuse attacks, we present a
comprehensive outline of the implementation steps involved
in executing code reuse attacks as shown in Fig. 3. In the
initial phase, the attacker acquires the program’s source code
and employs relevant gadget search tools to identify available
gadgets within the program. The locations of these gadgets
are recorded in preparation for the subsequent step of stack
overflow, where in modifications are made to both the return
address and register value. During this phase, defenders
can employ ASLR to introduce variability in code locations
upon each program execution, thereby disrupting previously
obtained gadget addresses and significantly enhancing attack
complexity. However, it is important to note that ASLR pro-
tection can still be circumvented through information leakage
attacks [60], [61]. The second step involves executing a
stack overflow attack, wherein the attacker utilizes functions
like strcpy(), strcat(), sprintf(), and others to inject payloads
into the stack to manipulate the value of the return address
stored on the stack as well as registers associated with indi-
rect jump addresses. To mitigate against modifications to
these values caused by stack overflow, De Asmit et al. [39]
proposed PUFCanary, which entails storing a section of
secret bytes at the boundary of the stack. When a stack
buffer overflows, these secret bytes are altered. By verify-
ing these secret bytes for detecting potential stack overflow

VOLUME 11, 2023 133259



S. Li et al.: Hardware-Based Software CFI: Review on the State-of-the-Art Implementation Technology

TABLE 1. Main code reuse attack techniques at present.

FIGURE 3. The general procedure for conducting CRA attacks.

occurrences, this approach effectively addresses issues
related to buffer overflow attacks on stacks. However, it is
important to note that this method is currently only imple-
mented in simulation and requires further validation before
deployment within an actual system. The third step of the
attack involves the execution of a meticulously crafted series
of gadgets by the attacker, following a specific logic, ulti-
mately leading to program control flow hijacking. In this step,
related research endeavors aim to narrow down their focus by
utilizing these available gadgets, with BBB-CFI [41], divid-
ing the program into blocks, and employing an instruction
tracking module that enforces jump instructions to target
only entry addresses of basic blocks. This approach effec-
tively reduces 90% of potential gadget exploitation. It greatly
increases the difficulty of code reuse attack implementation.

III. THE FUNCTIONS IMPLEMENTED BY CFI
The CFI technology is employed to detect unauthorized
transfers within a program. During program execution, CFI
verifies the target addresses associated with indirect jump,
indirect call, and return instructions to ensure legitimate redi-
rection of the program. This capability effectively defends
against various code reuse attack techniques. Obtaining
a comprehensive understanding of the authorized target
addresses of the program requires acquiring the CFG,
which encompasses all valid execution pathways and target
addresses during routine program operation.

The CFG encompasses comprehensive details regarding
all authorized transfer destinations throughout the program’s
execution. Security professionals extract and process the
jump-related data of the program, with some referring to the

133260 VOLUME 11, 2023



S. Li et al.: Hardware-Based Software CFI: Review on the State-of-the-Art Implementation Technology

FIGURE 4. CFG transformation based on basic block Information in
FastCFI [37].

extracted content containing jump-related details as ‘‘meta-
data’’ [62]. This ‘‘metadata’’ constitutes crucial information
that needs to be extracted before deploying CFI. Dur-
ing program execution, the processor utilizes this metadata
information to authenticate target addresses for each jump
instruction including conditional branch, unconditional jump
instructions, and system call instructions.

The CFG plays a crucial role in the implementation of
CFI. Currently, there are various techniques available for
extracting CFG, including static, dynamic, and hybrid meth-
ods. Prominent tools used for extracting program control flow
include the LLVM compiler, Python scripts, and GDB debug-
ging tools. Before extraction, the executable file of the target
program is obtained and then disassembled using the corre-
sponding processor’s toolchain to generate the corresponding
assembly file. By analyzing and parsing the instructions in
the assembly file, the program can be divided into distinct
basic blocks. Each basic block consists of a jump instruc-
tion followed by a sequence of consecutive instructions that
ensure no self-looping within the block occurs. Basic blocks
can be classified into three types based on their contained
jump instructions: indirect jump blocks, indirect function call
blocks, and function return blocks.

Subsequently, the CFG extraction tool establishes
inter-block jump relationships by considering the presence
of jump instructions within each basic block, encompass-
ing both conditional branches and unconditional jumps.
By computing the target addresses of these jump instructions,
the tool identifies all potential target basic blocks, thereby
constructing a CFG that visually represents the program’s
transfer connections. The specific composition of this CFG
is depicted in Fig. 4. Following the construction of the
program’s CFG, CFI technology ensures that the target pro-
gram functions as intended based on the delineated pathways
within the CFG.

Taking Fig. 4 as an illustrative example, each segmented
basic block corresponds to a node, with directed arrows
denoting paths between nodes that signify valid transitions.
func1 is partitioned into four fundamental blocks: A, B, C,
D, and E, with directed arrows indicating connections to their
authorized target blocks. Thus, the CFG can be symbolized

as a set G = (N, L), wherein N signifies the collection of
nodes within the CFG, and L signifies the assortment of valid
pathways for each node. The legitimate transfer destination
for node A is F, and any transition from node A to B during
program execution would constitute an unauthorized transfer.
However, there are certain limitations associated with the
prevailing approach of constructing CFGs. Extracting CFGs
for large-scale programs using existing tools can present chal-
lenges. Furthermore, static methods of CFG extraction cannot
encompass dynamic target nodes generated based on input
parameters during program execution [37]. The precision of
the extracted CFG directly correlates with the security level
of CFI, where greater precision in CFG construction results
in heightened CFI security. Nevertheless, current extraction
tools often experience inaccuracies that impact to some extent
both the precision of CFI and the scope of CFI detection.
During program execution, CFI assesses if the program’s
transfer paths align with the CFG. Based on techniques
applied to authenticate the validity of target addresses dur-
ing program execution, existing approaches to CFI can be
categorized into coarse-grained CFI [19], [20], [21], [63],
[64] and fine-grained CFI [17], [18], [32], [65]. Moreover,
depending on whether historical branch information is inte-
grated into target address validation, it can be classified as
stateful CFI [66], [67], [68], [69], or stateless CFI [39],
[44], [62]. Additionally, considering whether CFI is tailored
to thwart ROP attacks or JOP attacks allows segmentation
into backward-oriented CFI [70], [71] and forward-oriented
CFI [72]. Subsequent sections will provide more comprehen-
sive insights into these functionalities.

A. COARSE-GRAINED CFI AND FINE-GRAINED CFI
Coarse-Grained Control Flow Integrity (CG-CFI) represents
a CFI technique that compromises security for reduced over-
head, aiming to enhance the practicality of CFI schemes.
Several studies [20], [21], [63], [64] have implemented
CG-CFI with a shared characteristic: centralized manage-
ment of target addresses for indirect jumps without assigning
distinct identifiers to each valid target address. Evaluation
results demonstrate that the average execution overhead
remains below 5%. However, this reduction in overhead
comes at the expense of security, making CG-CFI vulnerable
to bypass attacks. Fig. 5 illustrates a model showcasing the
bypass of CG-CFI. func1 directly jumps to func2 and func3
through function direct call instructions, resulting in both
functions having the same ID (ID1). func2 indirectly jumps to
func4, and func3 indirectly jumps to func4 and func5. Since
both func2 and func3 jump to the same function (func4), the
entry labels of the target functions are the same.

Consequently, even though func2would not normally jump
to func5, an attacker exploiting stack overflow to modify
the target address of an indirect function call could lead
to an illegal path where func2 jumps to func5. In such a
case, CFI would not recognize this target address as illegal.
During normal program execution, the ‘ret’ instruction’s valid
target is the subsequent instruction after the indirect call.

VOLUME 11, 2023 133261



S. Li et al.: Hardware-Based Software CFI: Review on the State-of-the-Art Implementation Technology

FIGURE 5. The defense and bypass model of coarse-grained CFI.

To restrict runtime program transfer paths, a code instrumen-
tation approach incorporates labels at the entry addresses of
function blocks. Before executing the function call instruc-
tion, a verification process ensures coherence between the
function label and the entry ID of the destination function
block, thereby validating the legitimacy of the target address.
Similarly, upon completion and return from a function block,
authentication is performed on the label associated with the
return address for its legitimacy.

The Fine-Grained Control Flow Integrity (FG-CFI)
approach distinguishes itself from Coarse-Grained CFI by
individualizing each valid target address through the assign-
ment of unique verification labels. However, it will incur high
execution overhead and increase the capacity of code storage.
While effectively addressing the limitation of low granularity
in CG-CFI, the increased number of labels necessitates addi-
tional processor executing time for verifying target addresses
of branch instruction during program execution, resulting in
escalated processor overhead and performance decline.

Moreover, while FG-CFI effectively restricts the target
addresses of function call instructions, its protection mecha-
nism for ‘‘ret’’ instructions is comparatively weaker, making
it susceptible to be bypassed by ROP. As illustrated in Fig. 6,
an ROP bypass attack on FG-CFI is demonstrated. In Fig. 6
func2 and func3 both have func4 as their target function.
Therefore, during the return of func4, the legitimate labels
include ID22 and ID32. As a result, when func4 returns, it can
return to both func2 and func3 as valid targets. Attackers can
exploit this scenario to bypass FG-CFI by returning to func3
in step 3 without FG-CFI’s validation. In Fig. 6, each function
is assigned a unique entry ID to prevent attackers from freely
navigating through legitimate targets using indirect function
calls. However, since multiple functions can redirect to a
single function, multiple valid target addresses may arise
when a function performs a return operation. Consequently,
FG-CFI still faces the risk of being circumvented by attackers.

FIGURE 6. The defense and bypass model of fine-grained CFI.

To enhance the security of FG-CFI and mitigate bypass
attacks, certain approaches leverage the Shadow Stack tech-
nique. This technique leverages the program’s inherent
execution rules: upon a function call event, the processor
stores the address of the subsequent instruction on the stack.
Subsequently, during the execution of the ‘‘ret’’ instruction,
the processor retrieves and transitions to that designated
address from the stack.

The Shadow Stack establishes a secure storage realm
within the processor, secluded from attackers’ purview, thus
deterring their attempts to manipulate stack contents. During
a function call, the processor records the return address both
on the conventional stack and the Shadow Stack. When the
‘‘ret’’ instruction is executed, the processor compares the
return address from the stack against the trusted address
contained in the Shadow Stack. A match signifies the validity
of the return address, whereas a mismatch deems it invalid.

However, the conventional implementation of a stack intro-
duces an approximate execution overhead of 10% [73].
Furthermore, in the traditional shadow stack approach, return
addresses are typically dispersed rather than densely packed
together, resulting in each return address occupying a sep-
arate cache line. This incurs costs depending on the calling
pattern of the program. Moreover, as the synchronization
between the shadow stack pointer and execution exists,
adversaries can manipulate the stack pointer to point to any
desired return address and even modify it to reference expired
return addresses based on entries from previous shadow stack
frames.

B. STATEFUL CFI AND STATELESS CFI
During the process of transforming program control flow, the
validity of these changes can depend on previously executed
transformations. As illustrated in Fig. 7, both transitions from

133262 VOLUME 11, 2023



S. Li et al.: Hardware-Based Software CFI: Review on the State-of-the-Art Implementation Technology

FIGURE 7. An illustrative program fragment that performs conditional
jumps based on the program context.

A to C and from B to C are considered valid, as well as the
transformation from C to D. However, only the sequential
transformation from A to C to D remains valid. Conversely,
if the sequence of transformations is B to C to D, it is
deemed invalid. This ability to determine the accuracy of
branch transitions based on contextual insights characterizes
stateful CFI or dynamic CFI [66], [67], [68], [69]. Studies
such as those in [66], and [67] utilize Intel processors’ Per-
formance Monitoring Unit (PT) to record execution context
paths during program execution. Additionally, this approach
necessitates protection against attackers attemptingmalicious
write maneuvers on the defense data.

During the validation of control flow transformations, this
technique examines runtime contextual data to evaluate the
appropriateness of program transition targets. In contrast,
static CFI solely evaluates whether runtime jump relation-
ships adhere to statically established CFG transformation
relationships. If these transformations remain coherent, static
CFI maintains their legitimacy.

Consequently, dynamic CFI provides enhanced security
compared to static CFI. However, hardware assistance is
required for dynamic CFI to obtain runtime contextual
insights.

C. FORWARD CFI AND BACKWARD CFI
JOP attacks manipulate the target addresses within registers
of indirect jump instructions through stack overflow, while
ROP attacks hijack the program’s control flow by tamper-
ing with return addresses via stack overflow. These distinct
attacks employ different gadgets, with JOP attacks rely-
ing on gadgets culminating in ‘‘jmp’’ instructions, whereas
ROP attacks leverage gadgets culminating in ‘‘ret’’ instruc-
tions. Consequently, CFI techniques tailored to safeguard
against JOP attacks may not effectively defend against ROP
attacks. Therefore, CFI can be divided into forward CFI
and backward CFI according to whether it defends against
a JOP attack or ROP attack. Forward CFI is a technique
that validates the legitimate target addresses of indirect jump
instructions, while Backward CFI focuses on protecting the
target addresses of ‘‘ret’’ instructions.

FIGURE 8. Application preparation workflow with ABCFI: Compilation,
Code Instrumentation, Assembly/Linking, and execution [72].

IV. HARDWARE IMPLEMENTATION OF CFI TECHNIQUES
The current research focus revolves around achieving
robust security and minimizing execution overhead in the
implementation of CFI. This section aims to categorize
hardware-based CFI techniques based on their implementa-
tion methods, encompassing six aspects: Label Verification,
Instruction Encryption, Stack Edge Checking, Instruction
Tracking, Sensitive Data Isolation, and Basic Block Valida-
tion. We will present relevant works in hardware-based CFI,
analyze their advantages and disadvantages, and summarize
the implementation approaches within each category.

A. LABEL VERIFICATION
Label verification is a commonly employed approach for
implementing CFI. Notable studies such as [45], [46], [49],
and [51] proactively acquire the legitimate CFG of the pro-
gram by inserting instructions to establish labels at the call
points of the target execution program based onCFG analysis.
The label validation instruction, positioned at the call point,
serves as a unique identifier for the target address. During
program execution, a comparison between the label of the call
point and the label of the called point determines whether the
program’s target address adheres to its CFG.

The ABCFI [72] workflow depicted in Fig. 8 presents a
generic process for implementing label-based CFI, consist-
ing of an offline stage and an execution stage. During the
offline stage, the program’s assembly code is inserted with
labels, and the processed assembly code is linked to gen-
erate executable files for program execution. Subsequently,
the CFI-protected processor executes the modified program
code to protect the safety of the program jump through the
verification of the label.

HCFI [49] implemented a fine-grained static CFI scheme
on SPARC SoC processors, enhancing information security
by extending a secure shadow stack and label registers within
the processor core. To prevent unauthorized modification of
the shadow stack and label register values, dedicated instruc-
tions for accessing these elements were introduced through an
expanded instruction set, thereby strengthening CFI security.
In the offline phase, a Python script (200LoCs) was used
by the instruction instrumentation tool to insert SetPCLabel
and SetPC instructions in the delay slot after indirect call,

VOLUME 11, 2023 133263



S. Li et al.: Hardware-Based Software CFI: Review on the State-of-the-Art Implementation Technology

direct call, and return instructions. Additionally, the CheckPC
instructions were then inserted before the first instruction
of each function to effectively mark and differentiate valid
target addresses for branch instructions. During execution,
direct and indirect call instructions initially execute extension
instructions that store the target address label in the label
register and save the function’s return address in the shadow
stack. Subsequently, upon executing the first instruction of
the target function, it retrieves the stored label from the label
register to validate against its corresponding address. After
function execution completes, a comparison is made between
stored return addresses in the shadow stack with the current
return address before executing any return instruction. In the
event of any discrepancies, the program will utilize the return
address from the shadow stack for continued execution and
error logging.

In comparison with HAFIX [46] by forcing the program
to return to the active target program, HCFI [49] extends
CFI defense further by introducing dedicated instructions and
a shadow storage array to address security concerns related
to stack expansion and active tags triggered by setjmp and
longjmp. Additionally, a 128∗1-bit bitmap is incorporated
to store function recursive index flags, enabling support for
recursive calls. The proposed solution modifies the Lenon3
softcore and deploys it on the Xilinx m1605-rev. e Field-
Programmable Gate Array (FPGA). Test results demonstrate
that the HCFI [49] incurs an execution overhead of less
than 1%, registers’ hardware overhead increases by 2.52%,
and Look-UP Table (LUT) increases by 2.55%. This scheme
successfully achieves fine-grained CFI with JOP and ROP
protection at a cost of less than 1%. Furthermore, it supports
recursive function calls, setjmp, and longjmp while main-
taining low CFI overhead for enhanced security. However,
this approach requires software instrumentation along with
complex instruction set expansion and processor architecture
modification, contributing to its intricacy. Moreover, deploy-
ing shadow stack and label registers on the chip leads to
increased processor area overhead as well as constraints in
shadow stack capacity.

HAFIX [46] implemented fine-grained static backward
CFI on Intel Siskiyou and SPARC processors. This approach
involved expanding the instruction set and incorporating a
dedicated label memory to indicate the activity status of
functions. Additionally, it enforced that return instructions
within a function only returned to the active function. Dur-
ing the offline phase, each function was assigned a unique
label by the compiler, which was stored in the label memory
to represent its state during program execution. By exclu-
sively constraining the target address of return instructions to
reside within the active function region, this implementation
effectively reduces available attacker gadgets and overcomes
capacity limitations associated with shadow stacks found in
HCIC [42]. Notably, no operating system support is required
for deploying this scheme on the Siskiyou processor and
LEON3, demonstrating its scalability. Furthermore, the test
results demonstrated an overall execution overhead of 2%.

Resource evaluations conducted using Xilinx PAR indicated
a register increase ranging from over 2% to under 3% for
both schemes, with a negligible increase in LUTs of less than
1%. However, it is crucial to note that this scheme exclusively
ensures backward CFI protection while remaining vulnerable
to forward-edge attacks. Moreover, its implementation neces-
sitates modifications in processor architecture and compiler
support for precise label insertion at designated locations.
In scenarios involving multiple function calls, the presence
of multiple active functions may compromise strict program
return to the nearest caller location, thereby posing a potential
security risk.

Similar to HAFIX [46], the work by Davi, Lucas et al. [45]
also implements CFI based on function state, with a notable
distinction. The proposed scheme by Davi, Lucas et al.
achieve both forward and backward CFI technology, pro-
viding comprehensive defense against code reuse attacks.
To accomplish this, the scheme introduces two novel label
instructions, CFIBR and CFIRET, for regulating return
addresses. Each target function is marked with CFIBR at its
entry instruction to assign a unique label. Additionally, the
subsequent instruction following a function call is associ-
ated with CFIRET. During program execution, the CFIBR
instruction stores the label of the current function in the label
memory to indicate its active status. Upon executing a call
instruction, it enforces that the following instruction must be
a CFIBR instruction and stores the label of the called target
function in the label memory as well. When a ret instruction
executes, it verifies whether both the target instruction is a
CFIRET instruction and if its corresponding tag is active to
ensure validity of return addresses. However, it should be
noted that this scheme falls under the coarse-grained CFI
category which makes it susceptible to bypass risks.

ABCFI [72] presents an optimized implementation of
fine-grained static CFI using labels, offering a signif-
icant implementation over conventional label-based CFI
approaches. Unlike the label-based CFI techniques employed
in previous works such as CFI [45], [46], [49], which require
unique labels before the call and target points to achieve
FG-CFI, ABCFI [72] addresses the challenges associated
with these operations. Conventional methods involve the
processor performing two crucial tasks during instruction
jumps: storing the pre-jump label and validating the post-
jump label. This results in substantial area overhead and
execution costs. In response, ABCFI introduces the concept
of a ‘‘Slot’’ with a bit width of n, representing the lowest n bits
of an instruction address. This approach utilizes the branch
instruction slot to differentiate between branch instructions
and target functions, eliminating the need for labels before
branch instructions. Consequently, it reduces the number of
inserted labels into the program, alleviating label storage
issues during execution. Additionally, this scheme introduces
a new instruction called ‘‘endbr,’’ placed before the target
instruction. Subsequently, it enforces that only ‘‘endbr’’ is
executed after a branch instruction. To further distinguish
valid target addresses, it replaces the lowest n bits of endbr’s

133264 VOLUME 11, 2023



S. Li et al.: Hardware-Based Software CFI: Review on the State-of-the-Art Implementation Technology

TABLE 2. Summary and comparison of the work of tag verification to achieve CFI.

address with corresponding bits from the branch instruction
at the call point. This refinement enhances target address
distinction and overall CFI security.

The unique approach of ABCFI [72] avoids the neces-
sity of instrumenting call points, thereby eliminating the
need for registers to store labels for verification. Conse-
quently, it effectively reduces resource consumption and
execution overhead without compromising security. In com-
parison, HCFI [49] and FIXER [39] exhibit area overheads
of 2.5% LUTs and 2.9% area overhead respectively. Deploy-
ing ABCFI on Xilinx Zynq VC707 demonstrates that the
scheme only requires 10 LUTs without label register sup-
port and incurs an execution overhead of less than 0.55%.
However, as the scheme is based on code instrumentation,
it results in a final code overhead of 8.16%. Additionally,
while it achieves forward CFI, it remains susceptible to ROP
attacks.

As shown in Table 2, we have summarized the CFI
execution overhead and resource consumption of various
existing label verification implementations. It is evident that
CFI implemented through label verification optimally uti-
lizes processor resources and often obviates the need for
internal processor architecture modifications, thereby facil-
itating deployment and achieving fine-grained CFI with
enhanced security and minimal execution overhead. Never-
theless, the table also highlights certain limitations associated
with label-based CFI implementations.

• To prevent the unauthorized disclosure of tag data, label-
based CFI technology necessitates the allocation of
dedicated storage space and the extension of instructions
for accessing this space. This safeguards against tamper-
ing by attackers but introduces additional overhead in
terms of both area and execution.

• The efficacy of label-based CFI implementation heavily
relies on static CFG analysis. Consequently, the protec-
tion scope of label-based CFI hinges on the precision
of CFG extraction and code coverage. Present CFG
extraction tools struggle to achieve accurate CFG extrac-
tion, limiting their ability to indirectly jump to target
addresses. As a result, label-based CFI implementation

FIGURE 9. The instruction encryption architecture employed in
FH-CFI [36].

fails to assign labels for indirect jump target addresses,
leaving a vulnerability.

• The placement of extended instructions within branch
instruction positions requires the support of code instru-
mentation tools. However, the security of these tools is
not guaranteed and may introduce new vulnerabilities.
Additionally, these tools typically access and modify the
source code to insert verification instructions at appro-
priate locations. This creates a reliance on the source
code, rendering the tool unusable in scenarios where the
source code is unavailable or unmodifiable.

B. INSTRUCTION ENCRYPTION
In contrast to CFI implemented through label verification,
CFI implemented via instruction encryption [36], [42], [74],
[75], [76] demonstrates reduced dependence on the source
code and eliminates the need for expanding the instruc-
tion set or employing code instrumentation tools for adding
source code size. Instruction encryption facilitates dynamic
encryption and decryption of instructions while ensuring the
protection of indirect jump instructions.

VOLUME 11, 2023 133265



S. Li et al.: Hardware-Based Software CFI: Review on the State-of-the-Art Implementation Technology

To initiate a code reuse attack, the attacker first analyzes the
positioning of program branch instructions and subsequently
manipulates them. To address issues related to instruction
address obscurity, HCIC [42] implemented CFI by employ-
ing hamming distance calculations and XOR encryption on
both the return address of the ‘ret’ instruction and the target
instruction of the branch instruction. This approach resulted
in the establishment of coarse-grained static CFI. During pro-
gram execution, when a ‘call’ instruction is executed, EHD1
is derived by computing the Hamming distance between a
randomly generated key_1 from the Physically Unclonable
Function (PUF) and the return address of the target func-
tion. Subsequently, both the function’s return address and
EHD1 are pushed onto the stack. Upon execution of the ‘ret’
instruction, similar calculations are performed to determine
EHD2 using the current return address and key_1 value.
A comparison between EHD2 and EHD1 is then conducted
to verify equality, thereby detecting any tampering with the
return address.

Compared to the return address encryption method used by
Qiu et al. [76] using a basic XOR operation, the EHD-based
encryption approach significantly enhances the security of
the return address. To safeguard ‘call’ and ‘jmp’ instructions,
XOR encryption is applied to the initial instruction of all
functions. This process utilizes key_2 generated by PUF and
the address of the initial function instruction before program
memory loading. Since the same key is used for encrypting
all function’s initial instructions, this scheme qualifies as
coarse-grained CFI. However, it lacks sufficient capability
to differentiate between all valid target addresses. Despite
HCIC [42] generating two distinct keys through PUF, these
keys are not inherently random, thereby introducing a poten-
tial vulnerability related to key exposure.

In contrast to the approach proposed by Sullivan et al. [74],
HCIC [42] refrains from making modifications to the com-
piler or extending the instruction set. Additionally, it incurs
a minimal overhead of only 0.78% in binary code execution.
Compared with the study conducted by de Clercq et al. [34],
testing outcomes obtained from the RIPE framework demon-
strate that HCIC [42] exhibits an average execution overhead
of just 0.95% and achieves a false positive rate of 0%. How-
ever, it requires modification of the processor and relies on
hardware circuitry that is exclusively compatible with a single
processor, thus presenting limitations in terms of portability.
Furthermore, this scheme’s adoption of a coarse-grained CFI
approach remains susceptible to potential circumvention.

The overall architecture of FH-CFI [36] is illustrated in
Fig. 9. Similar to HCIC [42], FH-CFI employs PUF to gen-
erate two distinct keys, which are utilized for encrypting the
destination address of both the first instruction and the return
instructionwithin each function. In contrast to HCIC, FH-CFI
implements a fine-grained defense against JOP attacks and
ROP attacks. Moreover, FH-CFI adopts a different approach
by utilizing the function call and function jump instruction
addresses along with key_2 to encrypt the length of the initial
instruction within the called function before loading it into

processor memory. This unique method ensures that function
call and jump instructions are exclusively direct to valid
instructions, thereby enhancing effective target differentia-
tion. when a function call or jump instruction is executed,
FH-CFI will decrypt the first instruction of the target function
based on the address of the branch instruction itself to protect
the program transfer target.

The protection of return addresses is verified through mes-
sage verification codes. When a function call instruction is
executed, both the target return address and key_1 are pushed
into the calculation module of the message verification code.
Once the computation is completed, both the message verifi-
cation code and return address are stored in the function stack.
Upon encountering a return instruction, the corresponding
return address is popped from the stack. The popped return
address will be subjected to similar calculations as those
performed during the computation of themessage verification
code, to validate its legality.

Subsequently, the computedmessage verification codewill
be compared with its counterpart saved in the function stack.
If they do not match, it indicates an attack on the integrity of
return addresses; otherwise, this verified return address will
be sent to the PC for further execution.

FH-CFI [36] encounters a many-to-one issue with the
de Clercq et al. [34] scheme, wherein multiple function
call instructions calling the same function can only one
function decrypt the first instruction of the called function,
thereby causing decryption errors for other function call-
ing instructions and resulting in program execution errors.
However, FH-CFI effectively resolves this predicament by
introducing novel nodes amidst multiple nodes targeting the
same destination. These additional nodes enable direct tran-
sitions to the shared target without necessitating encryption
and decryption processes. By encrypting and decrypting the
initial instruction within these new nodes, security experts
indirectly address the security challenges posed by multiple
nodes converging onto a common destination. Nevertheless,
integrating new nodes amplifies both program execution
overhead and code capacity. Finally, rigorous testing on
Raspberry Pi 3 validates this methodology’s effectiveness in
preventing exploitable vulnerabilities for potential attackers
when compared to studies conducted by Qiu et al. [75] (false
negative rate of 0.91%) and LEA [76] (false negative rate
of 0.26%), FH-CFI approach exhibits zero false negatives.

Table 3 compares CFI implementation using the introduced
instruction encryption approach described above. Table 3
shows that this method requires sophisticated yet lightweight
encryption algorithms to enhance security while minimizing
execution overhead. Unlike label-based CFI, it incurs min-
imal memory overhead and imparts comparatively modest
execution overhead. It also enables efficient CFI implementa-
tion without requiring compiler modifications or instruction
extensions, which is impossible with label-based CFI.

However, the many-to-one challenge inherent in instruc-
tion encryption often results in coarse-grained schemes
generated through instruction encryption methods. While

133266 VOLUME 11, 2023



S. Li et al.: Hardware-Based Software CFI: Review on the State-of-the-Art Implementation Technology

TABLE 3. Comparison of related work on instruction encryption.

FIGURE 10. Stack frame modification for canary placements [78].

FH-CFI [36] proposes a solution for this issue, its appli-
cation requires an increase in code capacity and introduces
key exposure vulnerability if attackers successfully bypass
the instruction encryption mechanism. Moreover, encrypting
control flow transfer instructions mandates hardware-based
implementation of lightweight algorithms to mitigate exe-
cution overhead and entails precise alterations to processor
architecture. Furthermore, inherent deficiencies within the
encryption algorithm may lead to false positives or incom-
plete coverage resulting in false negatives as demonstrated
by Qiu et al. [76], as outlined in Table 2.

C. STACK EDGE DETECTION
The adoption of stack edge checking technology plays a
crucial role in achieving CFI verification, serving as a piv-
otal strategy. By adopting this approach, the implementation
of CFI reduces its reliance on CFG graphs and eliminates
the need for encrypting and decrypting individual branch
instructions, as depicted in Fig. 10. This implementation
ensures the security of both branch instructions and their
associated arguments by introducing canary words into the
stack. The direct execution strategy involves incorporating
canaries near the control program’s data transfer points within
the stack vicinity, as discussed in [39], [65], [77], [78], [79],
and [80]. However, this method requires additional dedi-
cated storage space and a mechanism to generate random
canaries to ensure security and randomness. Consequently,
including these features increases processor area resource
consumption and necessitates code instrumentation, thereby
contributing to increased execution overhead. Noteworthy

FIGURE 11. Canary Engine architecture is used to generate stack secret
words in PUFCanary [39].

advancements in this field include Li et al.’s work [70] and
the Zipper Stack [80], which introduced indirect stack edge
detection technology. This approach modifies the stack struc-
ture, applies a lightweight Advanced Encryption Standard
(AES) encryption algorithm [81], and performs Hash calcu-
lations to verify the message authentication code of transfer
instructions. By employing this strategy, data integrity within
the stack is fortified against malicious tampering. Impor-
tantly, this approach not only reduces execution overhead but
also minimizes resource utilization.

PUFCanary, proposed by De et al. [39], is a hardware-
based security technique designed to protect buffers within
the embedded RISC-V architecture from code injection and
code reuse attacks. The block diagram of PUFCanary is
illustrated in Fig. 11. This method utilizes PUF and a true
random number generation (TRNG) module to detect stack
overflow by generating canaries based on insertion addresses.
In contrast to Zhu et al.’s [77] approach, where canaries were
stored within buffer RCB before being allocated to the stack,
this scheme eliminates the need for canary storage, effectively
reducing resource consumption. Test results demonstrate a
minimal overhead of only 2.2% for this implementation, sig-
nificantly lower than the 3.2% execution overhead observed
in Zhu et al.’s [77] work.

Contrary to the conventional StackGuard [78] canary
scheme, which uniformly inserts identical canaries across all
buffer positions, PUFCanary [39] generates distinct canaries
based on their intended locations within the stack. Conse-
quently, even if an attacker acquires knowledge of a canary,

VOLUME 11, 2023 133267



S. Li et al.: Hardware-Based Software CFI: Review on the State-of-the-Art Implementation Technology

launching a successful attack remains infeasible. To elabo-
rate, PUFCanary leverages PUF responses and True Random
Number Generation (TRNG) outcomes to generate unique
canaries. During program execution, the PUF delivers a
response corresponding to the specific position of each
canary within the stack. This response is then XOR with
a TRNG-generated random number to produce the respec-
tive canary value. The generated canaries are subsequently
placed into the stack after branch instructions. To ensure
precise insertion of these unique canaries, an analysis of
the assembler file is conducted before program execution
to identify stack addresses requiring placement. Through
collaboration with the compiler and code instrumentation
technology, instructions for both setting up and verifying
these unique canaries are integrated into the code. When the
key placement instruction in the program is executed, canary
calculation and canary push operations will be performed.
Later, when the canary verification instruction is executed,
a new canary will be calculated in the same operation as
the placement canary instruction, and the new canary will be
comparedwith the canary placed in advance to verify whether
the stack is subject to a stack overflow attack at this time.
This method can not only protect the control flow instructions
from being modified but also protect the data flow from being
modified, expanding the protection scope of CFI.

The work of [39], [77], [78], and [79] necessitates the
generation of canaries and the execution of additional instruc-
tion operations to insert the canary at a designated position
in the stack. This approach impacts both processor area
and execution overhead, requiring supplementary hardware
module support and compiler assistance. Therefore, related
work has been proposed by designing a new stack struc-
ture combined with a message verification code. However,
implementing CFI based onmessage authentication code ver-
ification often results in processor halts during new Message
Authentication Code (MAC) calculations, thereby reduc-
ing processor execution efficiency and amplifying execution
overhead. Mashtizadeh et al. [65] implemented a lightweight
AES [81] algorithm through hardware to enhance pointer
integrity detection and improveMAC calculation speed. Nev-
ertheless, due to frequent function calls and returns, this
method incurred an average expense of 52%. Differencing
fromMashtizadeh et al.’s [65] approach, the Zipper Stack [80]
utilizes a hash algorithm for computing the hash value of
the return address. Subsequently, a chain structure verifies
the message authentication code of the stack’s return address
to counteract code reuse attacks. Specifically, upon function
call, the hash value is computed based on the current return
address and storedwithin a designated register called the TOP
register. Upon function return, recalculating the hash value
based on the return address allows comparison with the stored
hash value in the TOP register; equality leads to removal of
that specific return address from stack memory. The reliable
TOP register makes it impractical for attackers to bypass hash
checks; however, this strategy incurs an execution overhead
of 23%.

In a notable contribution, Li et al. [70] introduced an
innovative Stack mode that incorporates a Dislocated Stack
and buffer Return Address Buffer (RAB). This enhanced
stack includes an additional RAB space with a predetermined
capacity, designed to store recent return addresses for stack
push and pop. The RAB buffer functions as a cache for
return addresses during MAC computation, providing a time
interval for uninterrupted MAC code computation to prevent
processor halts. However, it still faces challenges related
to processor halts when executing multiple call instructions
successively. In this study, Lazy verification and batch ver-
ification techniques are implemented based on the stack
structure. In the initial approach, return addresses entering
the Dislocated Stack are considered potentially subject to
rewriting, while return addresses solely residing in RAB
are deemed secure and trustworthy. This approach intro-
duces additional stack pointers denoted as q and v within
RAB, which serve the purpose of recording whether ongoing
entries require calculation and verification for theMAC code.
Because it needs to ensure the security of the return address so
lazy verification computes the MAC for each return address
entering and exiting the Dislocated Stack, to further reduce
the verification count, batch verification is employed to
validate the entire volume within RAB. This strategy signif-
icantly reduces both calculation and verification instances,
effectively mitigating the processor’s execution overhead.
The final two verification methodologies were tested on the
Xilinx Zynq VC707 board using varying RAB sizes and
SPEC CINT 2000 benchmark suite. In lazy verification mode
with a RAB size of 8, execution overhead amounts to 1.23%,
accompanied by consumption of 1699 LUTs and FFs 1056.
For batch verification with an RAB size of 4, execution
overhead is reduced to 0.78%, consuming only 546 LUTs
and 321 FFs. This novel stack structure enables concurrent
execution of message authentication code computation and
processor operations, thus enhancing overall processor effi-
ciency. Moreover, Lazy Verification reduces over 99% of
MAC verification on function returns and Batch Verification
cuts down 78% of MAC calculations.

Two proposed verification methodologies effectively
reduce the frequency of message authentication code ver-
ifications and subsequently mitigate processor execution
costs. This achievement is attained while maintaining a
reasonable area overhead, thereby demonstrating practical
feasibility. However, the stack structure currently exists only
in simulation without real-world implementation on specific
processors.

Therefore, functional validation of this approach remains
pending. Importantly, this scheme exclusively protects
against ROP attacks but may still be vulnerable to other
potential attack vectors.

PUFcanary [39] and DiffGuard [77] (as listed in Table 4)
employ Canary word valuation within the stack, necessitat-
ing code instrumentation and reliance on the source code,
which could potentially introduce supplementary security
vulnerabilities to the source program. Moreover, due to

133268 VOLUME 11, 2023



S. Li et al.: Hardware-Based Software CFI: Review on the State-of-the-Art Implementation Technology

TABLE 4. Comparison of stack detection related work.

the constant need for calculation and verification of data
within the stack, its execution cost exceeds that of label
and instruction encryption. While this approach enhances
CFI security at the expense of execution cost, stack edge
detection extends its protective scope beyond solely the
return address to encompass crucial parameters within the
stack. Li et al. [70] and Zipper Stack [80] circumvented
dependence on the source code by reshaping the stack
structure, thereby eliminating the need for code instrumen-
tation support. Notably, Li et al. [70] approach achieved
additional reduction in execution overhead, indicating sig-
nificant potential for enhancing in CFI through stack edge
detection.

D. INSTRUCTION TRACKING DETECTION
The CFI implemented by inserting canary words in the
stack detection method requires code instrumentation. Code
instrumentation will process the program execution code in
the offline stage, which increases the deployment time of
CFI. Hardware auxiliary modules such as instruction tracking
modules PTM [37], PT [47], TE [48], and co-processors are
the key to implementing CFI based on instruction tracing
detection. They obtain the current program transfer path
by analyzing the processor instruction execution informa-
tion and detecting whether the current path complies with
CFG. Moreover, the implementation of CFI through tracing
and detecting instruction execution information obviates the
need for code instrumentation, thereby effectively reducing
program capacity and execution overhead. This approach
also facilitates dynamic CFI implementation compared to
label-based or stack detection methods. Furthermore, code
instrumentation is inherently insecure, potentially giving rise
to additional security concerns. To circumvent the neces-
sity of code instrumentation for CFI implementation, recent
research has shifted its emphasis towards leveraging the
instruction trace and debug modules embedded within the
processor itself. Certain endeavors were established based on
Intel’s processor trace [47], [85], [86] while others imple-
mented CFI through utilization of processor debug tools
[87], [88]. Furthermore, there has been significant interest
in implementing CFI using processor auxiliary modules,
as demonstrated by examples such as the CFI scheme rely-
ing on processor counters [82] and its implementation on

the open-source RISC-V processor [48]. FastCFI [37] inge-
niously employed FPGA resources to design a dedicated
hardware detection circuit for CFI, effectively analyzing and
verifying control flow-related instructions dispatched by the
instruction execution information tracking module PTM [37]
of ARM processors. As a result, dynamic fine-grained for-
ward and backward CFI detection is achieved, all without
necessitating code instrumentation. Similar to Intel’s PT [47]
module, PTM [37] serves as an integral instruction monitor-
ingmodule within the ARMprocessor, capable of condensing
instruction execution information during runtime (as shown
in Fig. 12). In the context of FastCFI [37], PTM establishes
data communication with the FPGA-based CFI detection
module through the Trace Port Interface Unit (TPIU) inter-
face. While relying on CFG, this approach diverges from
Anthony et al.’s [48] methodology which involved stor-
ing indexable and searchable metadata in RAM after CFG
processing.

The designer of Fast-CFI [37] developed an automated
tool capable of extracting the CFG from the binary file of
the target program, which serves as input for generating a
Verilog HDL file. This Verilog HDL file contains transfor-
mation details for each basic block within the CFG diagram.
Subsequently, the conversion information of basic blocks
will be stored in hardware circuits and utilized by the CFG
Checker module on FPGA for runtime verification. This
processing approach accelerates the verification process of
branch instruction target addresses but incurs significant con-
sumption of FPGA resources.Moreover, for excessively large
execution programs, comprehensive verification of all control
flow information transformations may become impractical
on FPGA due to the proliferation of numerous CFG nodes
resulting from program execution. The storage limitation
concerning nodes poses an additional constraint on CFI
implementation.

To address this challenge, Fast-CFI [37] presents a novel
solution involving both CFG compression technology and
CFG subgraph verification technology. The former technique
leverages the inherent security of direct branch addresses,
which are effectively protected through Write OR Execute
mechanisms to ensure address integrity. To reduce node size
within the CFG, Fast-CFI introduces a process for compact-
ing direct branches.

VOLUME 11, 2023 133269



S. Li et al.: Hardware-Based Software CFI: Review on the State-of-the-Art Implementation Technology

FIGURE 12. The system platform of instruction execution information
tracking and decoding is proposed in FastCFI [37].

The latter technique involves deploying and verifying crit-
ical CFG subgraphs within the CFG Checker. This novel
approach focuses on implementing and verifying pivotal
data’s CFG to safeguard it against potential leaks. The effi-
cacy of the proposed scheme [37] was demonstrated through
its implementation on both the Altera DE1-SoC development
board and the Cyclone V FPGA development board. Rig-
orous testing was conducted using the RIPE [89] program
test set to assess the security of program execution. The
outcomes reveal the scheme’s proficiency in countering ROP
and JOP attacks, effectively thwarting specific dynamic CFH
endeavors. To evaluate program execution overhead, SPEC
CPU2006 [90] benchmarks were employed.
The results underscore the scheme’s efficiency, demon-

strating an exceedingly low execution overhead of just 0.36%.
In comparison to CFI detection accomplished through soft-
ware means, which yields an execution overhead ascribed
to [85], Fast-CFI [37] execution overhead becomes inconse-
quential. Moreover, contrasted with a similar endeavor [83]
utilizing PTM and the TPIU interface, with an execution
overhead reduction of over 30%, Fast-CFI [37] surpasses it
due to the avoidance of code instrumentation. In summation,
Fast-CFI unifies the capabilities of processors and FPGAs
to achieve dynamic fine-grained forward and backward CFI
with minimal overhead. Importantly, this achievement is
realized without necessitating code instrumentation or modi-
fications to the processor architecture.

The contributions encompass the introduction of CFG
compression technology and subgraph CFG technology.
However, this solution relies on PTM support and has poor
portability. Moreover, this solution parses the data pack-
ets generated by PTM to obtain information about the
instructions during program execution, which means that the
solution can only detect the attack after the attack occurs and
cannot prevent attackers from launching attacks in advance
so this scheme cannot be applied to security scenarios such
as banking and autonomous driving. Nile [50] serves as a
specialized coprocessor for analyzing trace information logs
generated during processor instruction execution, facilitating
the detection of program execution processes. In contrast to
PUMP [91], which involves altering the processor pipeline,
Nile enhances its flexibility by interfacing with the RISCV

processor through the Rocket Custom Coprocessor (RoCC)
[92] interface.

Nile [50] is a coprocessor used to analyze and detect
the trace information logs of processor instruction execution
during program execution. Compared to PUMP [91], which
modifies the processor pipeline, Nile improves its flexibility
by communicating with the RISCV processor through the
RoCC [92] interface. Nile receives commit logs sent by the
processor through the RoCC interface, including undecoded
instructions, current instruction PC value, next instruction
PC value, current instruction storage address, and register
address, as well as data accessed by the current instruction.

These data are broadcasted in packet form to multiple
configurable MU units. The MU units are used to parse the
packets in the commit log and obtain current instruction exe-
cution information for monitoring different events. By using
the Nile function, this scheme utilizes the Nile to implement
shadow stack and plays a role when configuring two MU
units to monitor call instructions and ret instructions. One
MU unit writes return addresses into shared memory space
while another MU unit reads them and compares them with
ret instruction return addresses for detectingROP attacks. The
advantage of this scheme is that it can balance the security and
execution overhead relationship by configuring the number of
MU, and this coprocessor can track instruction information
in out-of-order executed processors in parallel effectively
reducing execution overheads. However, this scheme has an
area overhead of 15% and requires operating system support
with limited applicability to embedded systems. ACE-M [35]
uses the memory protection unit MPU to monitor control
flow errors during program execution.MPU can configure the
read and write execution permissions of the code area. Before
program execution, use the LLVM [95] compiler to insert
the MPU permission configuration function. This function
can configure permissions for specific code areas. Accord-
ing to High-level read and write permissions will overwrite
low-level read and write permissions rule the permission con-
figuration function will configure higher permissions for the
target execution area before the execution of the call instruc-
tion and before the execution of the ret instruction, ensuring
that only the part of the area called by the call instruction and
returned by the ret instruction can be performed. Through the
configuration of permissions, only specific code areas can be
executed to ensure the legality of program transfer. Therefore,
this solution can ensure the security of program execution.
However, the permission configuration of the hardware MPU
needs to be implemented in software, and the execution
program needs to be code instrumented, resulting in the exe-
cution overhead of this solution reaching up to 56%.

In Table 5, a succinct overview of the instruction track-
ing modules, namely PTM [30], Intel Processor Trace, and
TE [41], employed within the current processor ecosystem
is provided. Upon comparative analysis of these method-
ologies, it becomes evident that FastCFI [37] emerges as
a frontrunner in terms of performance. This solution inge-
niously employs supplementary FPGA resources to establish

133270 VOLUME 11, 2023



S. Li et al.: Hardware-Based Software CFI: Review on the State-of-the-Art Implementation Technology

TABLE 5. Comparison of related work on instruction execution information tracking detection.

a hardware-assisted enforcement CFI mechanism external
to the processor, effectively surmounting the resource con-
straints often encountered by contemporary processors.

Leveraging the powerful computational capabilities inher-
ent in FPGA technology, FastCFI [37] manages to maintain
an impressively minimal execution overhead of only 0.36%.
Furthermore, the CFI implemented on FPGA exhibits high
portability and can be upgraded for security defense in spe-
cific application scenarios with great practicality.

E. ISOLATE SENSITIVE DATA
Employing data isolation, particularly through shadow stack
implementations, stands as a prevalent strategy for achiev-
ing CFI. Among these, the shadow stack is very represen-
tative, exemplified by its capability to effectively thwart
ROP attacks by storing return addresses independently. The
structural depiction of the shadow stack model is show-
cased in Fig. 13. In the domain of shadow stack application,
De et al. [39]. presented FIXER, as a significant contribu-
tion. A notable aspect of FIXER is its utilization of custom
instructions to effectively manage the shadow stack and Pol-
icy Matrix Memory, both located external to the processor,
by leveraging the RoCC [92] interface.

Different from the shadow stack implemented by
HAFIX [46] inside the processor, FIXER [39] implements
a secure shadow stack outside the processor, as shown in
Fig. 14. The size of the shadow stack implemented inside
the processor will be limited by the processor area resources.
If the program is large, the entire program will not be
protected. FIXER [39] employs code instrumentation tools

FIGURE 13. Comparative contents of the traditional shadow stack
structure and the parallel shadow stack [73].

to analyze program code pre-execution, strategically insert-
ing CFI_CALL and CFI_RET labels before call and ret
instructions, respectively. Subsequently, during the program
compilation, the compiler translates these labels into exe-
cutable disassembly instructions aligned with the RoCC
[92] instructions. The execution of the compiled program
code by the processor involves storing the return address of
the function in the shadow stack when a call instruction is
executed. Upon encountering a ret instruction, a verification
process occurs, which includes comparing the current return
address with its stored counterpart in the shadow stack.
This enables the detection of any potential tampering with
return addresses. Empirical findings highlight FIXER’s effec-
tiveness, demonstrating only a 1.5% increase in execution
overhead.

However, it should be noted that despite its advantages,
while expanding processor area, and the shadow stack
approach inherently focuses on mitigating ROP attacks and
cannot defend against JOP attacks.

VOLUME 11, 2023 133271



S. Li et al.: Hardware-Based Software CFI: Review on the State-of-the-Art Implementation Technology

FIGURE 14. The comprehensive CFI protection architecture implemented
in FIXER is governed by custom instructions for the shadow stack and
Policy matrix memory [39].

TrustFlow-X [40], an innovative hardware/software co-
design framework implemented on the RISC-V instruction
set architecture in conjunction with the Clang/LLVM [95]
compiler infrastructure, introduces a robust and fine-grained
mechanism for static control flow integrity protection. The
TrustFlow-X [40] approach follows a top-down design
methodology, consisting of two essential components: soft-
ware design and a secure execution environment. In terms of
software design, the TrustFlow-X framework enables secure
differentiation of sensitive data during program execution by
utilizing a safe function library that allows security practition-
ers to appropriately tag sensitive data. To ensure the integrity
of these labels, the toolchain ensures effective discrimination
between sensitive and normal data during program execution.

The latter component, the secure execution environment,
is dedicated to preserving the integrity of sensitive data.
Notably deviating from conventional approaches, TrustFlow-
X places paramount emphasis on source code security by
generating secure executable code right from its inception.
By utilizing a secure database, TrustFlow-X systematically
differentiates sensitive data through the utilization of a secure
toolchain and function library, subsequently facilitating the
execution of the secure code on an extended RISC-V proces-
sor. Diverging from existing hardware CFI implementations
[39], [41], [42], [43], [44], [45], [46], [49], which halt
the processor and generate an error signal upon detecting
code reuse attacks, TrustFlow-X employs a novel strategy
that records error information and leverages isolated secure
data for repairing compromised data without disrupting nor-
mal device operation. Specifically, TrustFlow-X introduces a
trusted buffer known as Translation Lookaside Buffer (TLB),
which utilizes custom extension instructions sws and lws to
store the addresses of sensitive data along with their corre-
sponding values in the TLB during program execution for
subsequent verification. This mechanism ensures detection
of any tampering attempts on sensitive data. During sws
instruction execution, sensitive data is stored both in regular
memory and TLB, while lws instructions extract and compare
the current data stored in regular memory with the sensitive
data stored in TLB, thereby guaranteeing the integrity of
sensitive data residing in regular stack.

In contrast to the shadow stack implemented by
De et al. [39], which solely protects the return address of
backward CFI, TrustFlow-X [40] utilizes an isolated and
trusted external memory outside the processor to ensure
the integrity of all sensitive data. Consequently, TrustFlow-
X [40] protects against ROP and JOP attacks, as well as
safeguarding program data integrity. The proposed approach
was validated on Xilinx Arty-35 Field Programmable Gate
Array (FPGA). Empirical evaluations demonstrate minimal
execution overhead, below 1%, and marginal area overhead
increases of 1.03% in LUTs and 1.16% in Flip-Flops (FFs).
TrustFlow-X [40] has good security performance under the
condition of negligible performance overhead, but it needs
the support of the compiler and needs to modify the processor
pipeline, which is poor in portability.

Beyond the conventional approach of isolating return
addresses through a shadow stack, as elucidated by
TrustFlow-X [40], a broader application can be envisioned,
wherein multiple categories of sensitive data isolation would
be pursued to enhance the security of critical informa-
tion. An embodiment of this concept is exemplified in
RCFI [38], which minimizes the execution overhead of
the processor by isolating parameters that impact the key
CFI detection frequency, reducing frequent CFI verifica-
tions. Ultimately, RCFI [38] achieves static coarse-grained
forward CFI with high security and low execution over-
head through randomized verification of branch instructions.
The verification probability denoted as ‘p’ regulates the fre-
quency at which verifications occur and depends on both
a random number ‘S’ and a counter ‘C.’ Consequently,
if either ‘S’ or ‘C’ are tampered with by an attacker,
RCFI [31] becomes vulnerable to attacks. To mitigate this
vulnerability, values for ‘S’ and ‘C’ are stored within an
isolated storage arena to ensure data security. Furthermore,
RCFI [38] effectively handles recursions at varying depths
while incurring less than 1% execution cost, rendering it
negligible. However, it is crucial to acknowledge that this
scheme relies on compiler support and remains susceptible
to exploitation when substantial verification frequencies are
involved.

In Table 6, we present a summary of the data isolation
schemes for achieving CFI. It is evident that this approach
not only effectively ensures the integrity of return addresses
and related parameters but also safeguards other critical data.
Thus, data isolation holds universal applicability and can be
employed in CFI implementations utilizing label verification
or instruction encryption to protect keys and mitigate key
leakage risks. In essence, data isolation serves as a prevalent
means to realize hardware-based CFI. Security personnel
can ensure data security by storing sensitive information
within trusted isolated regions. To further enhance data safety,
security personnel may expand dedicated access instructions
for isolating spaces to prevent attackers from tampering
with individualized data, thereby enhancing overall security
measures. However, it should be noted that allocating addi-
tional spacewill consume processor resources and necessitate

133272 VOLUME 11, 2023



S. Li et al.: Hardware-Based Software CFI: Review on the State-of-the-Art Implementation Technology

TABLE 6. Comparison of sensitive data isolation related work.

supplementary operations for transferring data into isolated
regions, resulting in certain execution overhead.

F. THE BASIC BLOCK VERIFICATION CALCULATION
The CCFI-Cache [43] leverages both hardware storage and
detection modules located external to the RISCV processor.
Its primary goal is to ensure the integrity of both the code
and the CFG. Distinct from the single-instruction encryp-
tion and decryption validation, CCFI-Cache accomplishes
fine-grained static CFI by employing basic block hash value
verification. Notably, to optimize CFI verification’s execu-
tion efficiency, synchronization is established between the
number of instructions in each metadata basic block and their
corresponding instruction basic blocks. This entails congru-
ence in the number of instructions and offsets, facilitating
parallel access to metadata information during instruction
retrieval and thus obviating intricate address calculations.

During program execution, CCFI-Checker concurrently
extracts instruction blocks from the instruction cache while
calculating the Hash value of the said instruction block. This
calculated Hash value is then compared against the results
stored in CCFI-Cache, serving as a verification step. The
outcome determines if any erroneous jumps occur in the
program’s control flow, effectively defending JOP attacks.
To mitigate ROP attacks, a shadow stack is deployed to
protect the processor. This measure entails inserting null
instructions within mutual basic blocks to achieve congru-
ence between instruction counts in metadata and correspond-
ing basic blocks. The goal is to mitigate processor cessation
during the computation of the instruction basic block’s hash
value. However, introducing null instructions comes with
repercussions. The processor’s execution overhead experi-
ences a 32% increment due to null instruction insertion,
signifying that instruction synchronization contributes to ele-
vated execution costs. Furthermore, cache capacity expansion
leads to an approximate 10% increase in hardware overhead
pertaining to LUTs and FFs.

Analysis of the Way to identify basic Blocks in Work [41],
[86], [96] We divide the way to get basic blocks into two

ways. One is to divide basic blocks from static CFG by static
analysis of binary code before program execution. The other
is a dynamic way to extract basic blocks by analyzing the
transition instructions and transition rules of the program
execution information.

Among these endeavors, BBB-CFI [41] proposed a
lightweight dynamic and static combination method for basic
block identification. This technique effectively minimizes
the overhead associated with basic block identification and
analysis. In particular, BBB-CFI stands out as a lightweight
CFI defense mechanism aimed at defense code reuse attacks
by verifying basic block information. Basic Block Bound-
ary (BBB) refers to a linear instruction fragment featuring
a single entry and exit point. The approach mandates that
program control flow transitions exclusively from one BBB’s
exit to another’s entry, ensuring control flow integrity. Dur-
ing program execution, BBB-CFI employs two lightweight
identification techniques, namely Code-inspired Check and
Data-inspired Check, to identify the BBB of the program. The
Code-inspired Check efficiently identifies BBB by exploiting
the continuity between a BBB’s exit and entry points, using
branch instructions as exit markers. Specifically, when the
target instruction of a branch instruction is executed, a dis-
assembly operation is performed starting from the current
target instruction to obtain the assembly instruction of the
program. If a branch instruction is found, it means that the
current target instruction is a valid target instruction.
The data-inspired Check, on the other hand, analyzes the
program binary file before program execution.

Data-inspired Check involves scanning read-only data to
identify jump tables and creating a bitmap based on them.
Bitmap managed by the OS and stored in the secure kernel,
the bitmap enables swift checks of whether the target address
is a BBB entry point during execution. To execute this verifi-
cation, security personnel employ the processor’s instruction
trackingmodule LBR, which retains the latest 16 or 32 branch
instructions, monitoring the program’s branching behavior.
By combining these two lightweight detection techniques, the
branch program pointer is confined to BBB entry addresses,

VOLUME 11, 2023 133273



S. Li et al.: Hardware-Based Software CFI: Review on the State-of-the-Art Implementation Technology

FIGURE 15. The CFI process is implemented in BBB-CFI according to the
basic block verification: Offline and Online [41].

substantially reducing the availability of gadgets by 90%.
However, it is important to note that the forward CFI imple-
mented here is coarse-grained, as it does not discern which
basic block to jump to during basic block identification.

Notably, the safeguarding of backward return addresses
is entrusted to a shadow stack, with the added support for
returning to the Exception Handler (EH). The EH, calcu-
lated offline, is stored in the processor’s on-chip storage.
During program execution, the exception handler’s address is
promptly retrieved for use. When compared to BB-CFI [96],
FlowGuard [86], and, TypeArmer [97] the BBB-CFI imple-
mentation exhibits significantly lower execution overheads:
less than 1%, 2.5%, and 3.8% respectively. BBB-CFI [41]
own execution overhead stands at a mere 0.0003%, rendering
it negligible.

Similar to the work of BBB-CFI [41], BB-CFI [96] is
also implemented by using a mixture of static and dynamic
recognition basic blocks. The BB-CFI workflow consists of
a basic block information collection phase and an execution
phase. In the basic block information collection phase, the
difference from the way BBB-CFI uses statically generated
CFG to extract basic blocks is that BB-CFI performs dynamic
analysis of the program to obtain the CFG containing the
target address of the indirect jump instructions that execute
the program. The extracted CFG is then used to segment basic
blocks, capturing the initial address of each basic block, the
first basic block of each function, and the exception handling
target address EH. The collected basic block information is
stored in the Control-Flow Checker (CFC) and serves to val-
idate target addresses of call, jmp, and ret instructions during
program execution. During program execution, CFC enforces
call and jmp instructions to jump to the initial instruction
position within the basic block. For ret instructions, it verifies
the target address of the return instruction based on the call-ret
relationship. After executing a ret instruction, a compari-
son between the return address and the address stored in
the Return Address Stack (RAS) determines its legitimacy.
The enforcement of target addresses of branch instructions
achieves fine-grained static CFI. The security effectiveness
of BB-CFI is rigorously evaluated using the RIPE [89]
framework, demonstrating its efficacy against ROP, JOP, and
return-into-libc [12] attacks. Gadget reduction averages an

impressive 99.38% across test programs. Furthermore, exper-
imental execution overhead remains below 1%. In summary,
BB-CFI [96] embodies robust security, minimal overhead,
and fine-grained static CFI with support for multithreading.
However, it’s worth noting that BB-CFI necessitates alter-
ations to the processor architecture and introduces an increase
in program execution time during the off-line information
gathering phase due to the dynamic CFG extraction approach.

Through the analysis of the above work based on the
basic block verification Calculation implementation of CFI
comparison depends on the CFG. Fig. 15 overall approach of
BBB-CFI [41] is the basic block Verification Calculation to
verify implementation of CFI in a representative way.

The process of basic block calculation and verification can
be divided into two stages. In the first stage of offline, basic
block information is processed, and this can involve calcu-
lating the hash value of the basic block or obtaining the first
instruction’s address for each basic block. This information
about basic blocks is then stored.

During program execution, this information is used to
verify whether the hash value of the basic block matches
and whether the target of a branch instruction aligns with
the first address of the basic block. However, this method of
storing basic block information consumes processor memory.
To mitigate this, certain approaches, like BBB-CFI [41],
circumvent the need for storing basic block information.
They achieve this by segmenting and verifying basic blocks
within the binary code during program execution. The CFI
approach, based on the calculation and verification of basic
blocks as summarized in Table 7, effectively mitigates the
availability of gadgets for potential attackers. This proactive
measure hinders attackers from launching successful attacks
by restricting branch jump instructions to only lead to the
entry address of a basic block.

A comparison between CCFI-Cache [43] and BBB-CFI
[41] reveals that BBB-CFI significantly outperforms CCFI-
Cache in terms of both area and execution overheads, without
necessitating the storage of basic block information. These
findings suggest that future advancements in CFI implemen-
tations should prioritize methods that circumvent the need for
storing basic block information.

V. ANALYZE AND DISCUSS
In this part, we define the security levels for some literatures
mentioned in this paper. We define CFI as five levels accord-
ing to the functions implemented byCFI. The higher the level,
the better the security.

• Level I, coarse-grained forward or backward CFI.
• Level II, fine-grained forward or backward CFI.
• Level III, coarse-grained forward and backward CFI.
• Level IV, fine-grained forward and backward CFI.
• Level V, stateful CFI with fine-grained forward and
backward.

According to our own defined security rules, we classified
the schemes discussed in the preceding materials.

133274 VOLUME 11, 2023



S. Li et al.: Hardware-Based Software CFI: Review on the State-of-the-Art Implementation Technology

TABLE 7. Comparison of related work on basic block verification calculation.

It also indicates whether the scheme’s protective capacity is
enhanced by utilizing a shadow stack. Currently, paramount
considerations in CFI implementation encompass height-
ened security, minimal execution overhead, and as far as
possible reducing the use of processor resource utilization.
Wewill comprehensively assess security, execution overhead,
resource consumption, and other pertinent factors. By com-
paring their interrelations, we shall deliberate upon the merits
and demerits of the six hardware-based CFI implementation
methods, alongside their inherent hardware characteristics.

CFI serves to thwart code reuse attacks through real-time
detection of program jump behavior. It accomplishes this by
discerning aberrant program behavior during execution and
comparing it against the expected normal behavior, thus safe-
guarding the processor against potential intrusion attempts.

The CFI scheme implemented by label verification is based
on the concept of enforcing control over program jumps.
Before program execution, a label is inserted before the
valid target address within the program. During execution,
it verifies whether the jump target label matches. To enhance
CFI’s security, this approach inserts multiple labels to differ-
entiate legitimate target addresses for meticulous protection
against code injection and code reuse attacks. This strategy
exhibits robust security and effectively thwarts such attacks
in domains requiring precise control flow integrity, including
network devices and cloud computing servers. However, this
technique requires access to the program’s source code and
involves code instrumentation for inserting numerous labels
into the codebase [74].

The hardware specifications underlying label verification
implementation of CFI (as outlined in Table 8 ) necessitate
label registers and memory resources. For large programs,
inserting labels increases both code size and hardware con-
sumption, while frequent validation incurs certain execution
overheads. Consequently, implementing this approach faces
challenges in large-scale programs. Furthermore, label verifi-
cation often analyzes static programs to determine locations

that require instrumentation; thus, it does not verify legal
targets of indirect jump instructions. In future research,
efforts should be made to develop label verification methods
that can verify target addresses of indirect jump instruc-
tions and expand the defense range achieved by label
verification.

The initial phase of a code reuse attack, as outlined in
Table 3, involves the identification of available gadgets.
In this stage of the attack, guided by the concept of pro-
gram agnosticism, experts propose instruction encryption
technology. This technology utilizes PUF to generate secu-
rity keys and incorporates lightweight algorithms such as
Hash and AES to implement an encryption engine within
the processor. It encrypts the legitimate target address to
prevent attackers from tampering with instructions during
program execution. Through this mechanism, the legitimate
target address is encrypted to thwart potential manipu-
lation by assailants. In contrast to label-based methods,
this implementation approach minimizes the reliance on
source code and instruction instrumentation tools, thereby
facilitating the dynamic assignment of protective attributes.
In comparison to the label method, this implementation
approach does not rely on instruction instrumentation tools,
enabling dynamic protection features. Additionally, the
encryption of target instruction function calls in indirect jump
instructions is achieved [36]. Consequently, integrating a
processor-embedded encryption engine represents a promis-
ing avenue for future development. However, the inherent
drawback of current encryption algorithms may result in
misjudgment of specific code sequences during decryption.
Moreover, the high complexity of codes and incomplete cov-
erage can lead to false positives or false negatives [75], [76].
These factors pose threats to the security of CFI implemented
through encryption algorithms.

Additionally, the intricate encryption and decryption
algorithm in this verification scheme [76] introduces signif-
icant execution overhead, making it impractical. Moreover,

VOLUME 11, 2023 133275



S. Li et al.: Hardware-Based Software CFI: Review on the State-of-the-Art Implementation Technology

TABLE 8. Security level classification and evaluation of CFI scheme flow integrity protection.

implementing instruction encryption technology for CFI
implementation often requires modifications to the processor

architecture, thereby reducing its portability. Importantly,
this solution is well suited for non-open-source applications

133276 VOLUME 11, 2023



S. Li et al.: Hardware-Based Software CFI: Review on the State-of-the-Art Implementation Technology

or firmware as it cannot require source code modifications
or additional instruction insertions. Future improvements
can focus on optimizing and scrutinizing the encryption
algorithm to mitigate encryption and decryption overheads,
thus enhancing system performance.

The label and instruction encryption methodology
enhances hardware functionalities to enable the identification
of abnormal code execution during program runtime, with
a heightened emphasis on software execution. Meanwhile,
stack edge detection monitors the state of the stack dur-
ing program execution, effectively thwarting stack overflow
attacks and ROP attacks, thereby enhancing the protection of
return addresses and local variables. Similar to the instruc-
tion encryption algorithm, stack edge detection frequently
requires the utilization of PUFs for generating randomized
keys. These keys are then combined with hardware-based
encryption algorithms to secure ‘‘canary words’’ at the
boundary of sensitive data within the stack. This strengthens
the validation process against potential data modifications
by attackers during program execution [39], necessitating
adjustments to the structural configuration of the stack. These
adjustments may involve source code analysis or incorporat-
ing additional hardware resources for stack restructuring [70].
Furthermore, due to frequent scrutiny of sensitive stack data,
implementing stack edge detection incurs greater execution
overhead compared to alternative strategies. Looking ahead,
exploring and optimizing hardware support could potentially
reduce this overhead.

Instruction trace detection allows for the analysis of
instruction execution details during processor execution,
independent of source code. By utilizing built-in instruc-
tion trace modules such as PTM [37] in ARM processors,
PT [47] in Intel processors, and TE [48] in RISCV pro-
cessors known for their open-source nature, this approach
eliminates additional execution overhead and resource con-
sumption associated with code instrumentation. It enables
the recording of contextual program execution details and
facilitates stateful program verification, thereby enhancing
CFI security. Furthermore, by combining instruction trace
detection with high-speed FPGA technology, it becomes pos-
sible to collect and analyze instruction execution information
without modifying the processor pipeline, ensuring secure
program operation and enabling rapid deployment of CFI
security defense methods. As a result, this method offers
exceptional flexibility and portability advantages. In light
of evolving attack methods, instruction trace detection can
effectively enhance FPGA-based CFI schemes making it
suitable for systems requiring high security and real-time
performance. Going forward, leveraging functional mod-
ules within a processor’s instruction tracking capabilities is
expected to emerge as a prominent area of research in the field
of CFI.

Sensitive data isolation serves as a supplementary measure
for enhancing security. This approach utilizes registers and
memory repositories to securely store sensitive data, thereby
enhancing the security of sensitive data within programs.

Insights derived from Table 8 emphasize that, in contrast
to alternative CFI implementations, sensitive data isolation
primarily relies on a shadow stack to enforce return address
protection. However, it is important to acknowledge that
substantial storage resources may be consumed if extensive
data isolation is required [40]. Nevertheless, sensitive data
isolation can serve as an ancillary avenue for synergizing
with other approaches to fortify CFI security. For instance,
by integrating CFI with techniques like instruction encryption
and stack edge detection, isolation space can be established
to safeguard pivotal cryptographic keys and critical data
related to CFI implementation [38]. The application domain
of this CFI implementation extends to financial systems and
encrypted communication platforms, ensuring the protection
of vital data and system security. To further optimize the
scheme of sensitive data isolation in the future, hardware
costs can be reduced while combining various methods of
providing comprehensive control flow integrity protection.
The approach of basic block verification involves monitoring
transitions between basic blocks during program execution.

Analogous to the concept of label verification, basic block
verification enforces a constraint where the program exclu-
sively progresses to the entry point of a basic block [97].
In contrast to the stack edge detection method, basic block
verification effectively curtails the frequency of CFI verifica-
tion, consequently mitigating processor execution overhead
to a certain extent. This implementation method of basic
block verification uses a static method to extract the basic
blocks from the CFG of the source code [45], and can
also identify the basic blocks according to the rules of the
basic blocks during program execution [97]. Basic blocks
obtained before program execution or the data associated
with processed basic blocks are preloaded into the proces-
sor’s memory, facilitating rapid verification of target program
validity. The implementation scheme of basic block veri-
fication can ensure the security of the stored basic block
data combined with Sensitive data isolation. In comparison
to alternative CFI implementation approaches, this scheme
significantly relies on source code and CFG, which raises
security concerns stemming from CFG extraction challenges
and coverage gaps. Future CFI implementations predicated
on basic blocks should center on refining basic block moni-
toringmechanisms and addressing hardware storage concerns
to reduce dependence on CFG.

VI. CONCLUSION AND OUTLOOK
Hardware-based CFI techniques have made significant
strides in enhancing system security and mitigating
control-flow hijacking attacks. In this study, we categorize
the current hardware implementations of CFI into six distinct
categories, each offering a unique perspective on different
aspects of control-flow integrity.

Label verification ensures the accuracy of labels associated
with program instructions by validating them during runtime,
thereby mitigating potential vulnerabilities to code injection
or unauthorized modifications.

VOLUME 11, 2023 133277



S. Li et al.: Hardware-Based Software CFI: Review on the State-of-the-Art Implementation Technology

The encryption of instructions serves as a protective mea-
sure against unauthorized modifications, thereby enhancing
the program’s security with an additional layer of defense.

The stack edge detection mechanismmonitors the integrity
of the stack to identify any abnormal behavior associated with
function call and return operations within the stack memory
region. This effectively enables the detection of potential
buffer overflow or underflow attacks that could potentially
lead to control-flow hijacking.

The tracking of instruction execution information enables
the analysis and validation of control transfers during run-
time, facilitating early detection of any anomalies in the
program’s flow for enhanced academic and professional
purposes.

Sensitive data isolation prevents attackers from manipulat-
ing control flows through direct manipulation of important
variables or data structures by isolating critical data structures
within secure enclaves or protected memory regions.

Basic block verification verifies the integrity and cor-
rectness of basic blocks within a program’s code structure
sequences of consecutive instructions without any branching.

Drawing insights from the comparative analysis of these
six implementation strategies, we derive the following dis-
cerning conclusions:

• The implementation of the CFI scheme through label
verification depends on the source code but the scheme
can minimize the use of hardware resources.

• The instruction execution trace module combined with
additional FPGA resources can enhance the portability
and flexibility of hardware implementation of CFI.

• Although the way of instruction encryption and instruc-
tion tracking require a lot of extra area resources, the
execution overhead is very low.

• Augmenting CFI Security through Shadow Stack in
Sensitive Data Isolation: Incorporating a shadow stack
within the sensitive data isolation method not only facil-
itates the realization of stateful CFI but also elevates the
overall security of the CFI mechanism.

Ultimately, we propose that the incorporation of
lightweight encryption algorithms into the processor through
instruction encryption facilitates CFI in mitigating additional
security vulnerabilities arising from code instrumentation and
enhances the reliability of CFI itself.Moreover, by employing
instruction execution information tracking and independent
FPGA resources, not only can verification speed be enhanced
but also the upgradability of the CFI solution can be enabled,
thereby augmenting its security and practicality. In future
advancements of CFI, we assert that instruction encryption
and instruction execution information tracking represent two
prominent avenues for implementing robust CFI solutions.

REFERENCES
[1] A. Barua, S. W. Thomas, and A. E. Hassan, ‘‘What are developers talking

about? An analysis of topics and trends in stack overflow,’’ Empirical
Softw. Eng., vol. 19, no. 3, pp. 619–654, Jun. 2014.

[2] E. Bosman and H. Bos, ‘‘Framing signals—A return to portable shell-
code,’’ in Proc. IEEE Symp. Secur. Privacy, May 2014, pp. 243–258.

[3] K. Lhee and S. J. Chapin, ‘‘Buffer overflow and format string overflow
vulnerabilities,’’ Software: Pract. Exper., vol. 33, no. 5, pp. 423–460,
Mar. 2003.

[4] W. Wu, Y. Chen, X. Xing, and W. Zou, ‘‘Kepler: Facilitating control-flow
hijacking primitive evaluation for Linux kernel vulnerabilities,’’ in Proc.
28th USENIX Secur. Symp. (USENIX Secur.), 2019, pp. 1187–1204.

[5] R. Riley, X. Jiang, and D. Xu, ‘‘An architectural approach to preventing
code injection attacks,’’ IEEE Trans. Depend. Secure Comput., vol. 7, no. 4,
pp. 351–365, Oct. 2010.

[6] M. Kayaalp, M. Ozsoy, N. A. Ghazaleh, and D. Ponomarev, ‘‘Efficiently
securing systems from code reuse attacks,’’ IEEE Trans. Comput., vol. 63,
no. 5, pp. 1144–1156, May 2014.

[7] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham, and
M. Winandy, ‘‘Return-oriented programming without returns,’’ in Proc.
17th ACM Conf. Comput. Commun. Secur., Oct. 2010, pp. 559–572.

[8] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and
A.-R. Sadeghi, ‘‘Just-in-time code reuse: On the effectiveness of fine-
grained address space layout randomization,’’ in Proc. IEEE Symp. Secur.
Privacy, May 2013, pp. 574–588.

[9] T. Zhang, M. Cai, D. Zhang, and H. Huang, ‘‘SeBROP: Blind ROP
attacks without returns,’’ Frontiers Comput. Sci., vol. 16, no. 4, Jan. 2022,
Art. no. 164818.

[10] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, ‘‘Jump-oriented program-
ming: A new class of code-reuse attack,’’ in Proc. 6th ACM Symp. Inf.,
Comput. Commun. Secur., Hong Kong, Mar. 2011, pp. 30–40.

[11] P. Chen, X. Xing, B. Mao, L. Xie, X. Shen, and X. Yin, ‘‘Automatic
construction of jump-oriented programming shellcode (on the x86),’’
in Proc. 6th ACM Symp. Inf., Comput. Commun. Secur., Mar. 2011,
pp. 20–29.

[12] H. Shacham, ‘‘The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86),’’ in Proc. 14th ACMConf. Comput.
Commun. Secur., Oct. 2007, pp. 552–561.

[13] N. Stojanovski, M. Gusev, D. Gligoroski, and S. J. Knapskog, ‘‘Bypassing
data execution prevention on MicrosoftWindows XP SP2,’’ in Proc. 2nd
Int. Conf. Availability, Rel. Secur. (ARES), 2007, pp. 1222–1226.

[14] V. Pappas, M. Polychronakis, and A. D. Keromytis, ‘‘Smashing the
gadgets: Hindering return-oriented programming using in-place code
randomization,’’ in Proc. IEEE Symp. Secur. Privacy, May 2012,
pp. 601–615.

[15] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin, ‘‘Binary stirring: Self-
randomizing instruction addresses of legacy x86 binary code,’’ in Proc.
ACM Conf. Comput. Commun. Secur., Oct. 2012, pp. 157–168.

[16] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti, ‘‘Control-flow integrity
principles, implementations, and applications,’’ ACM Trans. Inf. Syst.
Secur., vol. 13, no. 1, pp. 1–40, Oct. 2009.

[17] M. Almgren, V. Gulisano, and F. Maggi, ‘‘Fine-grained control-flow
integrity through binary hardening,’’ in Proc. Int. Conf. Detection Intru-
sionsMalware, Vulnerability Assessment, Milan., Italy, 2015, pp. 144–164.

[18] X. Ge, N. Talele, M. Payer, and T. Jaeger, ‘‘Fine-grained control-flow
integrity for kernel software,’’ in Proc. IEEE Eur. Symp. Secur. Privacy
(EuroS&P), Mar. 2016, pp. 179–194.

[19] C. Tice, ‘‘Enforcing forward-edge control-flow integrity in GCC &
LLVM,’’ in Proc. USENIX Secur. Symp., 2014, pp. 941–955.

[20] L. Davi, A.-R. Sadeghi, and M. Winandy, ‘‘ROPdefender: A detection tool
to defend against return-oriented programming attacks,’’ in Proc. 6th ACM
Symp. Inf., Comput. Commun. Secur., Mar. 2011, pp. 40–51.

[21] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant, D. Song,
and W. Zou, ‘‘Practical control flow integrity and randomization for
binary executables,’’ in Proc. IEEE Symp. Secur. Privacy, May 2013,
pp. 559–573.

[22] R. M. Farkhani, S. Jafari, S. Arshad, W. Robertson, E. Kirda, and
H. Okhravi, ‘‘On the effectiveness of type-based control flow integrity,’’
2018, arXiv:1810.10649.

[23] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and T. Holz,
‘‘Counterfeit object-oriented programming: On the difficulty of preventing
code reuse attacks in C++ applications,’’ in Proc. IEEE Symp. Secur.
Privacy, May 2015, pp. 745–762.

[24] A. Biondo, M. Conti, and D. Lain, ‘‘Back to the epilogue: Evading control
flow guard via unaligned targets,’’ in Proc. NDSS, San Diego., CA, USA,
2018, pp. 1–15.

[25] E. Göktas, E. Athanasopoulos, H. Bos, and G. Portokalidis, ‘‘Out of
control: Overcoming control-flow integrity,’’ in Proc. IEEE Symp. Secur.
Privacy, May 2014, pp. 575–589.

133278 VOLUME 11, 2023



S. Li et al.: Hardware-Based Software CFI: Review on the State-of-the-Art Implementation Technology

[26] M. Conti, S. Crane, L. Davi, M. Franz, P. Larsen, M. Negro, C. Liebchen,
M. Qunaibit, and A.-R. Sadeghi, ‘‘Losing control: On the effectiveness of
control-flow integrity under stack attacks,’’ in Proc. 22nd ACM SIGSAC
Conf. Comput. Commun. Secur., Oct. 2015, pp. 952–963.

[27] N. Carlini and D. Wagner, ‘‘ROP is still dangerous: Breaking modern
defenses,’’ in Proc. USENIX Secur. Symp., 2014, pp. 385–399.

[28] L. Davi, A. Sadeghi, D. Lehmann, and F. Monrose, ‘‘Stitching the gadgets:
On the ineffectiveness of coarse-grained control-flow integrity protection,’’
in Proc. USENIX Secur. Symp., 2014, pp. 401–416.

[29] Q. Hao, Z. Zhang, D. Xu, J. Wang, J. Liu, J. Zhang, J. Ma, and X. Wang,
‘‘A hardware security-monitoring architecture based on data integrity and
control flow integrity for embedded systems,’’ Appl. Sci., vol. 12, no. 15,
p. 7750, Aug. 2022.

[30] S. Park, D. Kang, J. Kang, and D. Kwon, ‘‘Bratter: An instruction set
extension for forward control-flow integrity in RISC-V,’’ Sensors, vol. 22,
no. 4, p. 1392, Feb. 2022.

[31] M. C. Park and D. H. Lee, ‘‘BGCFI: Efficient verification in fine-grained
control-flow integrity based on bipartite graph,’’ IEEE Access, vol. 11,
pp. 4291–4305, 2023.

[32] D. Jung, M. Kim, J. Jang, and B. B. Kang, ‘‘Value-based constraint control
flow integrity,’’ IEEE Access, vol. 8, pp. 50531–50542, 2020.

[33] R. de Clercq, J. Götzfried, D. Übler, P. Maene, and I. Verbauwhede,
‘‘SOFIA: Software and control flow integrity architecture,’’ Comput.
Secur., vol. 68, pp. 16–35, Jul. 2017.

[34] Y. Wang, Q. Li, Z. Chen, P. Zhang, G. Zhang, and Z. Shi, ‘‘BCI-CFI: A
context-sensitive control-flow integrity method based on branch correla-
tion integrity,’’ Inf. Softw. Technol., vol. 136, Aug. 2021, Art. no. 106572.

[35] S. Lee and J. Cho, ‘‘ACE-M:Automated control flow integrity enforcement
based on MPUs at the function level,’’ Electronics, vol. 11, no. 6, p. 912,
Mar. 2022.

[36] A. Fu, W. Ding, B. Kuang, Q. Li, W. Susilo, and Y. Zhang, ‘‘FH-CFI:
Fine-grained hardware-assisted control flow integrity for ARM-based IoT
devices,’’ Comput. Secur., vol. 116, May 2022, Art. no. 102666.

[37] L. Feng, J. Huang, J. Hu, and A. Reddy, ‘‘FastCFI: Real-time control-flow
integrity using FPGA without code instrumentation,’’ ACM Trans. Design
Autom. Electron. Syst., vol. 26, no. 5, pp. 1–39, Sep. 2021.

[38] M. C. Park and D. H. Lee, ‘‘Random CFI (RCFI): Efficient fine-grained
control-flow integrity through random verification,’’ IEEE Trans. Comput.,
vol. 70, no. 5, pp. 733–745, May 2021.

[39] A. De, A. Basu, S. Ghosh, and T. Jaeger, ‘‘Hardware assisted buffer pro-
tection mechanisms for embedded RISC-V,’’ IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 39, no. 12, pp. 4453–4465, Dec. 2020.

[40] C. Bresch, D. Hély, R. Lysecky, S. Chollet, and I. Parissis, ‘‘TrustFlow-
X: A practical framework for fine-grained control-flow integrity in critical
systems,’’ ACM Trans. Embedded Comput. Syst., vol. 19, no. 5, pp. 1–26,
Sep. 2020.

[41] W. He, S. Das, W. Zhang, and Y. Liu, ‘‘BBB-CFI: Lightweight CFI
approach against code-reuse attacks using basic block information,’’ ACM
Trans. Embedded Comput. Syst., vol. 19, no. 1, pp. 1–22, Jan. 2020.

[42] J. Zhang, B. Qi, Z. Qin, and G. Qu, ‘‘HCIC: Hardware-assisted control-
flow integrity checking,’’ IEEE Internet Things J., vol. 6, no. 1,
pp. 458–471, Feb. 2019.

[43] J.-L. Danger, A. Facon, S. Guilley, K. Heydemann, U. Kühne,
A. Si Merabet, and M. Timbert, ‘‘CCFI-cache: A transparent and flexible
hardware protection for code and control-flow integrity,’’ in Proc. 21st
Euromicro Conf. Digit. Syst. Design (DSD), Aug. 2018, pp. 529–536.

[44] C. Song, H. Moon, M. Alam, I. Yun, B. Lee, T. Kim, W. Lee, and Y. Paek,
‘‘HDFI: Hardware-assisted data-flow isolation,’’ in Proc. IEEE Symp.
Secur. Privacy (SP), May 2016, pp. 1–17.

[45] L. Davi, P. Koeberl, and A.-R. Sadeghi, ‘‘Hardware-assisted fine-grained
control-flow integrity: Towards efficient protection of embedded systems
against software exploitation,’’ in Proc. 51st ACM/EDAC/IEEE Design
Autom. Conf. (DAC), Jun. 2014, pp. 1–6.

[46] L. Davi, M. Hanreich, D. Paul, A.-R. Sadeghi, P. Koeberl, D. Sullivan,
O. Arias, and Y. Jin, ‘‘HAFIX: Hardware-assisted flow integrity eXten-
sion,’’ in Proc. 52nd ACM/EDAC/IEEE Design Autom. Conf. (DAC),
Jun. 2015, pp. 1–6.

[47] Y. Gu, Q. Zhao, Y. Zhang, and Z. Lin, ‘‘PT-CFI: Transparent backward-
edge control flow violation detection using Intel processor trace,’’ in Proc.
7th ACM Conf. Data Appl. Secur. Privacy, Mar. 2017, pp. 173–184.

[48] A. Zgheib, O. Potin, J.-B. Rigaud, and J.-M. Dutertre, ‘‘A CFI verification
system based on the RISC-V instruction trace encoder,’’ in Proc. 25th
Euromicro Conf. Digit. Syst. Design (DSD), Aug. 2022, pp. 456–463.

[49] N. Christoulakis, G. Christou, E. Athanasopoulos, and S. Ioannidis,
‘‘HCFI: hardware-enforced control-flow integrity,’’ in Proc. 6th ACM
Conf. Data Appl. Secur. Privacy, Mar. 2016, pp. 38–49.

[50] L. Delshadtehrani, S. Eldridge, S. Canakci, M. Egele, and A. Joshi, ‘‘Nile:
A programmable monitoring coprocessor,’’ IEEE Comput. Archit. Lett.,
vol. 17, no. 1, pp. 92–95, Jan. 2018.

[51] S. Sayeed, H. Marco-Gisbert, I. Ripoll, and M. Birch, ‘‘Control-flow
integrity: Attacks and protections,’’ Appl. Sci., vol. 9, no. 20, p. 4229,
Oct. 2019.

[52] S. Kumar, D. Moolchandani, and S. R. Sarangi, ‘‘Hardware-assisted mech-
anisms to enforce control flow integrity: A comprehensive survey,’’ J. Syst.
Archit., vol. 130, Sep. 2022, Art. no. 102644.

[53] L. V. Davi, ‘‘Code-reuse attacks and defenses,’’ Ph.D. dissertation, Tech-
nische Universität Darmstadt, Germany, 2015.

[54] G. F. Roglia, L. Martignoni, R. Paleari, and D. Bruschi, ‘‘Surgically return-
ing to randomized lib(C),’’ in Proc. Annu. Comput. Secur. Appl. Conf.,
Dec. 2009, pp. 60–69.

[55] S. Jeong, J. Hwang, H. Kwon, and D. Shin, ‘‘A CFI countermeasure against
GOT overwrite attacks,’’ IEEE Access, vol. 8, pp. 36267–36280, 2020.

[56] C. Canella, ‘‘A systematic evaluation of transient execution attacks and
defenses,’’ in Proc. USENIX Secur. Symp., 2019, pp. 249–266.

[57] P. Kocher, ‘‘Spectre attacks: Exploiting speculative execution,’’ Commun
ACM, vol. 63, no. 7, pp. 93–101, Jun. 2020.

[58] M. Lipp, M. Schwarz, D. Gruss, T. Prescher,W. Haas, J. Horn, S. Mangard,
P. Kocher, D. Genkin, Y. Yarom,M. Hamburg, and R. Strackx, ‘‘Meltdown:
Reading kernel memory from user space,’’ Commun. ACM, vol. 63, no. 6,
pp. 46–56, May 2020.

[59] S. El Sherei. Return to Libc. Accessed: Aug. 29, 2023. [Online].
Available: https://www.exploit-db.com/docs/english/28553-linux-classic-
return-to-libc-&-return-to-libc-chaining-tutorial.pdf

[60] B. Gras, K. Razavi, E. Bosman, H. Bos, and C. Giuffrida, ‘‘ASLR on the
line: Practical cache attacks on the MMU,’’ in Proc. Netw. Distrib. Syst.
Secur. Symp., 2017, p. 26.

[61] R. Rudd, R. Skowyra, D. Bigelow, V. Dedhia, T. Hobson, S. Crane,
C. Liebchen, P. Larsen, L. Davi, M. Franz, A.-R. Sadeghi, and H. Okhravi,
‘‘Address oblivious code reuse: On the effectiveness of leakage-resilient
diversity,’’ in Proc. Netw. Distrib. Syst. Secur. Symp., 2017, pp. 1–15.

[62] H. Oh, Y. Cho, and Y. Paek, ‘‘A metadata-driven approach to efficiently
detect code-reuse attacks on ARM multiprocessors,’’ J. Supercomput.,
vol. 77, no. 7, pp. 7287–7314, Jul. 2021.

[63] M. Zhang and R. Sekar, ‘‘Control flow and code integrity for COTS
binaries: An effective defense against real-world ROP attacks,’’ in Proc.
31st Annu. Comput. Secur. Appl. Conf., Dec. 2015, pp. 91–100.

[64] V.Mohan, P. Larsen, S. Brunthaler, K.W. Hamlen, andM. Franz, ‘‘Opaque
control-flow integrity,’’ in Proc. Netw. Distrib. Syst. Secur. Symp., 2015,
pp. 27–30.

[65] A. J. Mashtizadeh, A. Bittau, D. Boneh, and D. Mazières, ‘‘CCFI: Crypto-
graphically enforced control flow integrity,’’ in Proc. 22nd ACM SIGSAC
Conf. Comput. Commun. Secur., Oct. 2015, pp. 941–951.

[66] H. Hu, C. Qian, C. Yagemann, S. P. H. Chung, W. R. Harris, T. Kim,
and W. Lee, ‘‘Enforcing unique code target property for control-flow
integrity,’’ in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
Oct. 2018, pp. 1470–1486.

[67] R. Ding, C. Qian, C. Song, B. Harris, T. Kim, and W. Lee, ‘‘Efficient
protection of path-sensitive control security,’’ in Proc. USENIX Secur.
Symp., 2017, pp. 131–148.

[68] B. Niu and G. Tan, ‘‘Per-input control-flow integrity,’’ in Proc. 22nd ACM
SIGSAC Conf. Comput. Commun. Secur., Oct. 2015, pp. 914–926.

[69] N. Burow, D. McKee, S. A. Carr, and M. Payer, ‘‘CFIXX: Object type
integrity for C++,’’ in Proc. Netw. Distrib. Syst. Secur. Symp., 2018,
pp. 1–14.

[70] J. Li, Q. Xu, Y. Li, L. Chen, G. Shi, and D. Meng, ‘‘Efficient return
address verification based on dislocated stack,’’ IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 39, no. 11, pp. 3398–3407,
Nov. 2020.

[71] A. Y. C. Zhu, W. Q. Yan, and R. Sinha, ‘‘ROP defense using trie graph for
system security,’’ Int. J. Digit. Crime Forensics, vol. 13, no. 6, pp. 1–12,
2021.

[72] J. Li, L. Chen, G. Shi, K. Chen, and D. Meng, ‘‘ABCFI: Fast and
lightweight fine-grained hardware-assisted control-flow integrity,’’ IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 39, no. 11,
pp. 3165–3176, Nov. 2020.

VOLUME 11, 2023 133279



S. Li et al.: Hardware-Based Software CFI: Review on the State-of-the-Art Implementation Technology

[73] T. H. Y. Dang, P. Maniatis, and D. Wagner, ‘‘The performance cost of
shadow stacks and stack canaries,’’ in Proc. 10th ACM Symp. Inf., Comput.
Commun. Secur., Apr. 2015, pp. 555–566.

[74] D. Sullivan, O. Arias, L. Davi, P. Larsen, A.-R. Sadeghi, and Y. Jin,
‘‘Strategy without tactics: Policy-agnostic hardware-enhanced control-
flow integrity,’’ in Proc. 53rd ACM/EDAC/IEEE Design Autom. Conf.
(DAC), Jun. 2016, pp. 1–6.

[75] P. Qiu, Y. Lyu, D. Zhai, D.Wang, J. Zhang, X.Wang, and G. Qu, ‘‘Physical
unclonable functions-based linear encryption against code reuse attacks,’’
in Proc. 533rd ACM/EDAC/IEEE Design Autom. Conf. (DAC), Jun. 2016,
pp. 1–6.

[76] P. Qiu, Y. Lyu, J. Zhang, D.Wang, andG. Qu, ‘‘Control flow integrity based
on lightweight encryption architecture,’’ IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 37, no. 7, pp. 1358–1369, Jul. 2018.

[77] J. Zhu, W. Zhou, Z. Wang, D. Mu, and B. Mao, ‘‘DiffGuard: Obscuring
sensitive information in Canary based protections,’’ in Proc. Int. Conf.
Secur. Privacy Commun. Syst., 2018, pp. 738–751.

[78] C. Cowan, ‘‘StackGuard: Automatic adaptive detection and prevention of
buffer-overflow attacks,’’ in Proc. USENIX Secur. Symp., 1998, pp. 63–78.

[79] R. K. Shrivastava, K. J. Concessao, and C. Hota, ‘‘Code tamper-proofing
using dynamic canaries,’’ in Proc. 25th Asia–Pacific Conf. Commun.
(APCC), Nov. 2019, pp. 238–243.

[80] J. Li, ‘‘Zipper stack: Shadow stacks without shadow,’’ in Proc. Eur. Symp.
Res. Comput. Secur., 2020, pp. 338–358.

[81] P. B. Ghewari, J. Patil, and A. B. Chougule, ‘‘Efficient hardware design and
implementation of AES cryptosystem,’’ Int. J. Eng. Sci. Technol., vol. 2,
no. 3, pp. 213–219, 2010.

[82] Y. Xia, Y. Liu, H. Chen, and B. Zang, ‘‘CFIMon: Detecting violation of
control flow integrity using performance counters,’’ in Proc. IEEE/IFIP
Int. Conf. Dependable Syst. Netw. (DSN), Jun. 2012, pp. 1–12.

[83] Y. Lee, J. Lee, I. Heo, D. Hwang, and Y. Paek, ‘‘Using CoreSight PTM to
integrate CRAmonitoring IPs in anARM-based SoC,’’ACMTrans. Design
Autom. Electron. Syst., vol. 22, no. 3, pp. 1–25, Jul. 2017.

[84] Y. Lee, J. Lee, I. Heo, D. Hwang, and Y. Paek, ‘‘Integration of ROP/JOP
monitoring IPs in an ARM-based SoC,’’ in Proc. Design, Autom. Test Eur.
Conf. Exhib. (DATE), Mar. 2016, pp. 331–336.

[85] X. Ge, W. Cui, and T. Jaeger, ‘‘GRIFFIN: Guarding control flows using
Intel processor trace,’’ACMSIGPLANNotices, vol. 52, no. 4, pp. 585–598,
May 2017.

[86] Y. Liu, P. Shi, X. Wang, H. Chen, B. Zang, and H. Guan, ‘‘Transpar-
ent and efficient CFI enforcement with Intel processor trace,’’ in Proc.
IEEE Int. Symp. High Perform. Comput. Archit. (HPCA), Feb. 2017,
pp. 529–540.

[87] J. Lee, I. Heo, Y. Lee, and Y. Paek, ‘‘Efficient security monitoring with
the core debug interface in an embedded processor,’’ ACM Trans. Design
Autom. Electron. Syst., vol. 22, no. 1, pp. 1–29, Jan. 2017.

[88] Z. Guo, R. Bhakta, and I. G. Harris, ‘‘Control-flow checking for intrusion
detection via a real-time debug interface,’’ in Proc. Int. Conf. Smart Com-
put. Workshops, Hong Kong, Nov. 2014, pp. 87–92.

[89] J.Wilander, N. Nikiforakis, Y. Younan,M.Kamkar, andW. Joosen, ‘‘RIPE:
Runtime intrusion prevention evaluator,’’ in Proc. 27th Annu. Comput.
Secur. Appl. Conf., Dec. 2011, pp. 41–50.

[90] J. L. Henning, ‘‘SPEC CPU2006 benchmark descriptions,’’
ACM SIGARCH Comput. Archit. News, vol. 34, no. 4, pp. 1–17,
Sep. 2006.

[91] U. Dhawan, C. Hritcu, R. Rubin, N. Vasilakis, S. Chiricescu, J. M. Smith,
T. F. Knight, B. C. Pierce, and A. DeHon, ‘‘Architectural support for
software-defined metadata processing,’’ in Proc. 20th Int. Conf. Architec-
tural Support Program. Lang. Operating Syst., Mar. 2015, pp. 487–502.

[92] K. Asanovic, ‘‘The rocket chip generator,’’ EECS Dept., Univ. California,
Berkeley, Berkeley, CA, USA, Tech. Rep. Ucb/Eecs-2016, 2016, pp. 2–6,
vol. 17.

[93] X. Meng, B. Chamith, and R. Newton, ‘‘Profile-guided, multi-version
binary rewriting,’’ 2020, arXiv:2002.07748.

[94] Y. Bai, ‘‘ARM memory protection unit (MPU),’’ in Practical Microcon-
troller Engineering with ARM Technology. Hoboken, NJ, USA: Wiley,
2016, pp. 951–974.

[95] C. Lattner, ‘‘LLVM and Clang: Next generation compiler technology,’’ in
Proc. BSD Conf., vol. 5, 2008, pp. 1–20.

[96] S. Das, W. Zhang, and Y. Liu, ‘‘A fine-grained control flow integrity
approach against runtime memory attacks for embedded systems,’’ IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 24, no. 11, pp. 3193–3207,
Nov. 2016.

[97] V. van der Veen, E. Göktas, M. Contag, A. Pawoloski, X. Chen, S. Rawat,
H. Bos, T. Holz, E. Athanasopoulos, and C. Giuffrida, ‘‘A tough call:
Mitigating advanced code-reuse attacks at the binary level,’’ in Proc. IEEE
Symp. Secur. Privacy (SP), May 2016, pp. 934–953.

SENYANG LI was born in Bozhou, Anhui, China,
in 1997. He received the B.S. degree in com-
munication engineering from Huainan Normal
University, China, in 2021. He is currently pursu-
ing the master’s degree in the field of embedded
system security with the School of Electronic
Information Engineering, Shandong University of
Science and Technology, Qingdao, Shandong. His
research interests include the areas of embed-
ded system security and computing-level system
security.

WEIKE WANG (Member, IEEE) received
the B.S. degree in electronic information and the
M.S. degree in circuits and systems from the
Shandong University of Science and Technology,
Qingdao, China, in 2010 and 2013, respectively,
and the Ph.D. degree in microelectronics and
solid-state electronics from Beihang University,
Beijing, China, in 2019. He is currently a Lecturer
with the College of Electronic and Information
Engineering, Shandong University of Science and

Technology. His research interests include the areas of SoC design, hardware
security, integrated circuit and FPGA design, and embedded systems.

WENXIN LI (Graduate Student Member, IEEE)
was born in Jinan, Shandong, China, in 2000.
He received the B.S. degree in electronic informa-
tion science and technology from the Shandong
University of Science and Technology, Qingdao,
China, in 2022, where he is currently pursuing the
master’s degree in the field of embedded system
security. His research interests include RISC-V
embedded systems and control flow integrity.

DEXUE ZHANG received the B.S. and Ph.D.
degrees from the University of Science and Tech-
nology of China, Hefei, China, in 2000 and 2006,
respectively. He is currently an Associate Profes-
sor with the College of Electronic and Information
Engineering, Shandong University of Science and
Technology, Qingdao, China. His research inter-
ests include SoC design, network on chip design,
and many-core processors design.

133280 VOLUME 11, 2023


