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ABSTRACT In the realm of communication networks, root cause analysis plays a vital role in maintaining
efficient and reliable operation. However, existing root cause analysis methods face limitations and
drawbacks, including their inability to handle complex data and disturbances, as well as inaccuracies in
identifying root causes. To this end, the paper presents the Deep Fuzzy Neural Network approach as an
innovative solution. Integrating the strengths of deep learning and fuzzy logic inference, where the deep
learning technique utilizes the parallel computing fusion of convolutional neural network and long short-term
memory to extract the spatial-temporal features from sophisticated fault data of communication network.
By leveraging this parallel computing fusion module, the proposed framework effectively addresses the
flaws of traditional root cause analysis methods. Furthermore, the incorporation of fuzzy logic enables the
proposed model to manage disturbances such as uncertainty and noise inherent in the data, ensuring robust
performance. Experimental results also demonstrate our proposed deep fuzzy neural network approach is an
effective method for network root cause analysis in overcoming limitations inherent in existing methods and
providing superior accuracy and resilience.

INDEX TERMS Root cause analysis, communication networks, deep fuzzy neural network, fuzzy set theory.

I. INTRODUCTION
Modern communication networks are essential for facilitating
seamless connectivity and efficient data transfer across
various platforms and devices. However, network failures and
disruptions can have severe implications, causing degraded
performance, service interruptions, and financial losses. It is
crucial for network operators to accurately and efficiently
identify the root cause behind these failures to minimize
downtime and ensure optimal network performance. Root
cause analysis (RCA), a task to to identify the underlying
factors or events that trigger a network failure and determine
the appropriate remedial actions, has been considered as a
critical process in troubleshooting communication network
failures [1]
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Conventional RCA methods typically rely on manual
analysis or rule-based algorithms, which are expensive,
error-prone, and often struggle to capture the complexity
and dynamic nature of modern communication networks.
Therefore, researchers have proposed various automated
methods to assist in RCA, including statistical methods [2],
[3], machine learning [4], [5], [6], [7], and deep learning [8],
[9]. Among them, deep learning has been proven to be a
powerful tool in a variety of applications, including image
classification [10], natural language processing [11], and
speech recognition [12]. However, deep learning techniques
are not designed explicitly to handle the uncertainty and
ambiguity that frequently arises in network analysis. Fuzzy
set theory provides a framework for tackling such scenarios
by incorporating fuzzy logic and set theory to represent
vague and ambiguous concepts with linguistic variables [13].
By combining the strengths of deep learning and fuzzy
set theory, deep fuzzy neural networks (DFNN) have
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been demonstrated to be effective alternatives for modeling
complex systems and making accurate predictions [14], [15].

Motivated by the limitations of current approaches, this
paper proposed a DFNN approach for network RCA, which
leverages the recent advancements in deep learning and
fuzzy logic to overcome the shortcomings of conventional
RCAmethods. The deep learning architecture adopts parallel
convolutional neural network (CNN) and long short-term
memory (LSTM) modules, where the CNN is used for
extracting spatial features from network data, and the LSTM
is used for the extraction of temporal features. This design
enables the model to learn complex relationships within the
network data, thereby making the more accurate diagnosis
of failures. Further, the fuzzy logic provides the ability to
handle uncertainties and imprecisions in data by allowing
the representation of vague or approximate knowledge.
By incorporating fuzzy logic, the proposed DFNNmodel can
capture the inherent uncertainties in network data and provide
more robust and reliable fault diagnoses.

In this paper, we make the following main contributions:
1)We proposed a DFNN framework for RCA of communi-

cation networks, where the DFNN combine the deep learning
technique and fuzzy logic inference. The deep learning can
extract core features related to the root cause from complex
fault data, while fuzzy logic enables the model to handle
disturbances such as uncertainty and noise in fault data
more effectively. This combination method allows us to
achieve higher root cause identification accuracy and stronger
robustness in RCA issues.

2) The deep learning architecture utilizes the parallel
computing fusion of convolutional neural network (CNN) and
long short-term memory (LSTM) [16], where the CNN is
responsible for extracting spatial features from the fault data,
while the LSTM is employed to extract temporal features.
This design enhances the model’s ability to decipher complex
relationships within network data, consequently leading to
more accurate failure diagnosis.

3) Through extensive experiments and comparisons with
traditional methods, we demonstrate the superiority of our
proposed approach in terms of accuracy and efficiency.
Our model successfully identifies root causes of network
failures promptly and accurately, surpassing the performance
of manual analysis and rule-based algorithms. The results
showcase the potential of our DFNN in addressing the
challenges of RCA in communication networks.

To the best of our knowledge, this is the first work that
combines deep learning and fuzzy logic for RCA problems.
Our framework offers a more transparent and accurate
analysis of network failures, enabling network operators to
take targeted troubleshooting actions for improved network
reliability.

The remainder of this paper is structured as follows.
Section II provides a thorough literature review of related
works in root cause analysis for communication networks.
Section III presents the methodology and architecture of
our proposed DFNN model, explaining the integration of

deep learning and fuzzy logic. In Section IV, we describe
the dataset and experimental setup for model training and
evaluation. Section V presents the results and discussion,
highlighting the performance of our proposed approach
compared to existing methods. Finally, Section 6 concludes
the paper and discusses potential future directions in the field
of root cause analysis in communication networks.

II. RELATED WORKS
In general, RCA strategies are widely categorized intomodel-
based, rule-based, case-based, and machine learning method-
ologies. Model-based strategies hinge on expert knowledge
to codify the system’s conduct into a mathematical model.
It mandates a deep comprehension of the system’s inherent
structure and operational mechanism [17]. For instance,
[18] introduced a simple network management protocol
(SNMP) grounded on a management model. The model
is adept in pinpointing the root cause of an event and
providing problem-solving guidelines to operators. However,
the challenges lie in obtaining and maintaining up-to-date
models.

Cronk et al. [19] introduced a rule-based strategy for
managing and operating communication networks. Such an
approach typically encapsulates three components: a rule
base, a rule discovery engine, and an inference engine.
The initial two sections can be achieved via iterative and
incrementing algorithms, where new rules are continuously
incorporated into the rule base through iteration algorithms
under diverse conditions. The inference engine subsequently
determines the most applicable rule in a given scenario [20].
However, this approach poses significant complexity in
updating and expanding the knowledge base and executing
the inference process. This becomes particularly challenging
in a network with constantly evolving topology, hence
requiring frequent rule updates. Despite recent proposals
for techniques that can automatically discern rules founded
on observed symptoms [21], [22], this method has limited
suitability for such networks.

Case-based strategies, meanwhile, leverage previous
human experiences to solve fault cases [23], [24], [25].
Once a problem is solved, the experience is stored in
the case base and future similar issues rely on it for
solutions. Cai et al. [26] proposed a Bayesian networks-based
method for fault diagnosis, Alaeddini and Dogan [2]
used Bayesian networks for RCA in statistical process
control. Bauer et al. [27] applied KNN to diagnose faults
in optical-fiber communication networks. However, these
methods are susceptible to constrain case-based strategies,
like the time-consuming update of numerous cases, case
matching, and case base enhancement.

Srinivasan et al. [28] applied machine learning tech-
niques to pinpoint and localize faults in communication
networks, taking into consideration the packet loss, end-
to-end delay, and aggregate flow rate in normal and fault
situations. While powerful in fault localization for complex
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communication networks [29], [30], [31], these techniques
necessitate lengthy training periods and extensive data from
fault situations, which may not always be feasible in
high-reliability and high-security networks. Considering the
powerful computational ability of deep learning, Jiang [32]
utilized deep neural networks (DNNs) to predict future net-
work traffic, and their results demonstrated a high accuracy
and scalability compared to traditional methods of traffic
forecasting. Lai et al. [33] used DNN to predict network
traffic for digital twin networks. Another important area
where deep learning has been applied is in anomaly detection
for identifying network faults. Navya et al. [34] proposed a
deep learning-based method for detecting network anomalies
and achieved a high precision in their results. Furthermore,
Naseer et al. [35] utilized a deep residual learning network
for intrusion detection in wireless sensor networks, achieving
higher accuracy over baseline methods.

Despite the success of deep learning in fault diagnosis
and RCA for communication networks, DNN models are
typically complex and can suffer from over-fitting due to
the large number of parameters required for the network.
Additionally, DNN models are not easily interpretable,
making it challenging to understand the logic behind the root
cause analysis results.

To address these challenges, fuzzy logic-based approaches
have been integratedwith deep learning techniques to develop
deep fuzzy neural networks (DFNNs). These networks
leverage the advantages of fuzzy logic-based inference
and deep learning for more comprehensive and accurate
RCA. For example, Zhang et al. [36] applied DFNNs for
machinery fault diagnosis. Wang and Qiao [37] proposed a
self-organizing fuzzy neural network for nonlinear system
modeling.

Despite their potential, DFNNs remain relatively unex-
plored in the field of communication network fault diagnosis
and RCA. Existing research in this area mainly focuses on
case studies and laboratory experimentation. More research
is needed to investigate the effectiveness and scalability of
DFNNs in real-world communication network settings.

In summary, traditional methods of RCA, machine learn-
ing algorithms, and deep learning techniques have been
proposed for fault diagnosis and RCA in communication
networks. Recent research has shown that integrating fuzzy
logic with deep learning can lead to more accurate and
comprehensive RCA, as demonstrated by the effectiveness
of DFNNs. However, more research is needed in this area
to explore the applicability of these techniques in real-world
communication networks.

III. PROPOSED METHOD
In this section, we present our proposed Deep Fuzzy Neural
Network (DFNN) model for performing root cause analysis
of communication networks. The DFNNmodel combines the
capabilities of Convolutional Neural Networks (CNNs) and
Long-Short Term Memory (LSTM) models with fuzzy logic

inference to achieve accurate and transparent diagnosis of
network failures.

A. MODEL ARCHITECTURE
As shown in Figure 1, the DFNN model is composed of
three main components: CNN, LSTM and the fuzzy decision
module.
CNN: CNNs are widely known for their ability to learn

spatial dependencies in data. In the context of root cause
analysis, CNNs are employed to extract meaningful features
from the network data. These features capture the spatial
relationships between different network components and
provide valuable insights into the root causes of failures. Let
X be the reshaped input data with the size of 16×16, andC be
the set of convolutional layers in the CNN. Each layer c in C
applies a set of filtersWc to the input X and generates feature
maps Hc. The convolution operation can be represented as:

Hc = δ(Wc ∗ X ) (1)

where ∗ denotes the convolution operation and δ is the
activation function. In the CNN module of Figure 1, ‘‘Conv
32@3 × 3 Stride2’’ means the convolutional layer is set
by 32 convolutional kernels with size of 3 × 3 and stride
of 2, and the ‘‘Deconv’’ means the deconvolutional layers.
All the Conv, Deconv and FC layers use the ReLU activation
function.
LSTM: LSTM models are a type of recurrent neural net-

work (RNN) that excel at capturing temporal dependencies.
By incorporating LSTM into our DFNN model, we enable
the analysis of sequences of network events leading up to
failures. This temporal information helps in understanding
the dynamics and patterns that contribute to network failures.

Let Y be the input sequence of network events, and LSTM
be the set of LSTM layers in the model. Each layer l in LSTM
consists of a memory cellCl , input gate Il , and output gateOl .
The LSTMmodel updates the memory cell and generates the
hidden state Hl according to the following equations:

Il =σ (Wi ∗ Y + Ui ∗ Hl−1 + bi) (2)

Fl =σ (Wf ∗ Y + Uf ∗ Hl−1 + bf ) (3)

Ol =σ (Wo ∗ Y + Uo ∗ Hl−1 + bo) (4)

Cl =Fl ⊗ Cl−1+Il ⊗ tanh(Wc ∗ Y+Uc ∗ Hl−1+bc) (5)

Hl =Ol ⊗ tanh(Cl) (6)

where Wi,Wf ,Wo,Wc,Ui,Uf ,Uo,Uc, bi, bf , bo, bc are the
weight matrices and bias terms of the LSTM model, and ⊗

denotes element-wise multiplication.
Fuzzy Decision Module: As shown in Figure 2, this

module consists of five layers, i.e., an embedding input
layer, a membership function layer, a fuzzy rule layer, two
fully-connected layers and an output layer, which will be
introduced below.

B. FUZZY LOGIC INFERENCE
To enhance the interpretability of the model outputs and facil-
itate the understanding of network operators, we integrate
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TABLE 1. Related work in the field of RCA.

FIGURE 1. The framework of our proposed DFNN model.

FIGURE 2. The structure of fuzzy module of the overall framework.

fuzzy logic inference into the DFNN model. Fuzzy logic
allows for linguistic interpretations of the model’s diagnosis,
making it easier to comprehend and act upon by network
operators.

Let Z be the output from the LSTM model, and L be the
set of linguistic labels in the fuzzy logic inference system.
Each label l in L is associated with a membership function
µl(Z ), which represents the degree of membership of Z to
the linguistic label. The fuzzy output F is calculated by
aggregating the membership functions as:

F =

∑
(wl ∗ µl(Z )) (7)

where wl represents the weights assigned to each linguistic
label, ensuring the proper combination of the fuzzy outputs.

C. MODEL OPERATION
The DFNN model operates as follows:
Preprocessing: Before feeding the data into the model,

preprocessing steps are applied to ensure its suitability. This
may include data normalization, feature scaling, and handling
missing or categorical data.
Feature Extraction: The network data is fed into the

CNN component of the DFNN model, which learns and
extracts relevant features from the spatial relationships among
network components.
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Temporal Analysis: The features extracted by the CNN are
then passed as inputs to the LSTM model, which analyzes
the temporal dependencies and sequential patterns within the
network data.
Fuzzy Logic Decision: The outputs from the LSTM

model are passed through a fuzzy logic inference system,
which provides linguistic interpretations of the model’s
diagnosis. This fuzzy output enhances transparency and
comprehensibility for network operators.

Assume the embedding input vector u ∈ RI , for the
fuzzy function layer, each node calculates the membership
degree function fij, (i = 1, 2, . . . , I ; j = 1, 2,mi) of each
component of the input vector ui belonging to the respective
variable fuzzy set, where mi represents the number of ui
divisions for the fuzzy rules. Let there be a total of I sets
of membership degree functions, with each set containing
mi membership degree functions. Therefore, the membership
degree function can be represented as:

fij = e
−

(ui−cij)
2

φ2ij (8)

where cij and φij denote the center and width of the
membership function, respectively. The node number of the
membership function layer is N2 =

∑n
i=1mi.

The fuzzy rule layer is responsible for matching the
conditions of fuzzy rules and calculating the utility of each
rule. The membership function layer consists of I groups of
membership functions, which are combined by selecting one
membership function from each group without repetition to
form the nodes of this layer, i.e.,

aj = f i11 f
i2
2 · · · f iII (9)

or

aj = min
{
f i11 , f i22 , · · · , f iII

}
(10)

where i1 ∈ {1, 2, . . . ,m1} , i2 ∈ {1, 2, . . . ,m2} , . . .. The
total number of nodes in this layer is N3 =

∏I
i=1mi = m.

For a given input, only the variable values near the input
point have higher membership degree values, while the
membership degrees of variable values far from the input
point are small or close to 0. When the membership degree
function is very small, the approximate value is considered
as 0.

D. TRAINING METHOD
Some parameters of the fuzzy neural network model need to
be predefined, such as the number of fuzzy layer for each
input component ui, the selection of the membership function
form (this paper chooses the normal distribution), and so on.
The parameters that need to be trained include the weights of
the fully connected layer and the centers and widths of the
membership functions in the membership function layer.

Without loss of generality, Figure 3 represents the q-th
layer, j-th node of the fuzzy neural network, where the node's

FIGURE 3. The model of fuzzy neuron.

input is

σ q
(
u(q−1)
1 , u(q−1)

2 , . . . , u(q−1)
I ;w(q)

1 ,w(q)
2 , . . . ,w(q)

I

)
(11)

and the output of the node is

o(q)j = g(q)
(
a(q)

)
(12)

For general neuron nodes, there is typically

aq =

I∑
i=1

w(q)
ji u

(q−1)
i (13)

u(q)j = g(q)
(
a(q)

)
=

1

1 + e−f (a(q))
(14)

We use the error backpropagation algorithm to train the
weight parameters in the network and the centers and widths
of the membership functions in the membership function
layer. The error cost function is designed as:

E =
1
2

r∑
i=1

(yi − ŷi)2 (15)

where yi and ŷi are the network output and desired output with
respect to the i-th input.
We have

δoi = −
∂E
∂aoi

= −
∂E
∂yi

= yi − ŷi (16)

Thus,

∂E
∂wij

=
∂E
∂aoi

∂aoi
∂wij

= −δoi u
o−1
j = − (yi − ŷi) aj (17)

Continuing with the calculation backward, there is

δo−1
j = −

∂E

∂ao−1
j

= −

r∑
i=1

∂E
∂aoj

∂aoi
∂σ o−1

j

∂σ o−1
j

∂ao−1
j

=

r∑
i=1

δoi wij (18)

δo−2
j = −

∂E

∂ao−2
j

=
∂E

∂ao−1
j

∂ao−1
i

∂σ o−1
j

∂σ o−1
j

∂ao−2
j
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FIGURE 4. The training loss (top) and validation loss (bottom) of our
DFNN.

= δo−1
j

m∑
i=1,i̸=j

uo−2
i /

(
m∑
i=1

(
µo−2
i

))2

= δo−1
j

m∑
i=1,i̸=j

ai/

(
m∑
i=1

ai

)2

(19)

δo−1
j = −

∂E

∂ao−3
j

= −

r∑
i=1

∂E

∂ao−2
j

∂ao−2
i

∂σ o−3
j

∂σ o−3
j

∂ao−3
j

=

r∑
i=1

δo−2
i sije

σ o−3
j

=

r∑
i=1

δo−2
i sije

−
(µi−cij)

2

φ2ij (20)

In this paper, ao−2 is selected as the min-max function, thus,
if σ o−3

ij = µi is the minimal value of the k-th rule, we have

sij =
∂ao−2

k

∂σ o−3
ij

=
∂ao−2

k

∂µj
= 1 (21)

else

sij =
∂ao−2

k

∂σ o−3
ij

=
∂ao−2

k

∂µj
= 0 (22)

Thus, we have the first-order gradient,

∂E
∂cij

=
∂E

∂ao−3
ij

∂ao−3
ij

∂cij
= −δo−3

ij
2
(
µi − cij

)
φ2
ij

(23)

∂E
∂φij

=
∂E

∂ao−3
ij

∂ao−3
ij

∂φij
= −δo−3

ij

(
µi − cij

)2
φ2
ij

(24)

The learning method for all the trainable parameters can be
concluded as

wij(k + 1)=wij(k) + η
∂E
∂wij

,

cij(k + 1)=cij(k) + γ
∂E
∂cij

,

wij(k+1)=φij(k)+ξ
∂E
∂φij

, (i=1, 2, . . . , r; j=1, 2, . . . ,m)

where η > 0, γ > 0, ξ > 0 are the learning rate of weights,
function center and width, respectively. k is the iterative step.
When the actual output of the network matches the

desired output, it indicates the end of training. Otherwise,
through error backpropagation, the parameters of each layer
are adjusted until the error is reduced within the desired
range.

IV. EXPERIMENTAL RESULTS
In this section, we present the detailed experimental results
obtained from applying the proposed deep fuzzy neural
network (DFNN) method for root cause analysis of com-
munication networks. We evaluate the performance of our
approach and compare it with other existing methods to
demonstrate its effectiveness in identifying root causes
accurately and efficiently.

A. DATASET
We use a real-world dataset collected from a large-scale
communication network comprising routers, switches, and
other network devices. The dataset includes performance
metrics, logs, and events recorded over a period of several
months. The dataset contains 6,000 communication network
events that were collected from a real-world enterprise
network. Each event is described by 10 attributes

1) Timestamp: the time when the event occurred, recorded
with a granularity of one second. 2) Source IP: the IP address
of the source host that generated the event. 3) Destination
IP: the IP address of the destination host that received the
event. 4) Source port: the port number of the source host.
5) Destination port: the port number of the destination host.
6) Protocol type: the protocol used for the event, represented
as a numerical code (e.g., TCP=1, UDP=2). 7) Bytes
transmitted: the number of bytes transmitted between the
source and destination hosts during the event. 8) Packet
rate: the rate at which packets were transmitted during the
event, measured in packets per second. 9) Error rate: the
rate of transmission errors during the event, measured as
a percentage of total packets transmitted. 10) Event label:
ground truth root causes for network failures or performance
degradation, which are determined through manual analysis
by network experts.

The dataset was preprocessed by normalizing the
numerical attributes to have zero mean and unit vari-
ance, and converting the categorical attribute (protocol
type) into a one-hot encoding representation. The 6,000
events were randomly split into a training set of 4,800
events and a testing set of 1,200 events, using a 80:20
ratio. The dataset was also balanced, meaning that the
same number of benign and malicious events were
included.
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FIGURE 5. Performance comparison of root cause analysis methods.

TABLE 2. Detailed performance metrics of DFNN.

TABLE 3. Case study of root cause analysis using DFNN.

B. IMPLEMENTATION PLATFORM
The software framework employed for developing the DFNN
model consisted of Python 3.7, taking advantage of its
extensive libraries for data analysis. Pytorch were used
for the architecture build-up and the orchestration of the
deep learning components of the DFNN model, providing a
flexible and user-friendly interface. Scikit-learn, on the other
hand, was utilized for data preprocessing and performance
evaluation of the model.

The fuzzy set manipulation necessary for handling uncer-
tain network data was realized using the Scikit-Fuzzy
library, a Python based toolkit for fuzzy logic and fuzzy
systems development. Scikit-Fuzzy facilitated the handling
of ambiguity innate in network data and helped ensure the
robustness of the model under varying data uncertainties.

The implementation was performed on a PC with a CPU
Intel Core i7, RAM 24GB and a graphics processing unit
(GPU) Nvidia RTX 3090, which allowed for the efficient
training of the deep learning component of the DFNN model
and facilitated quick experimentation and prototyping. The
GPU-accelerated implementation allowed the handling of
large-scale network data and enabled a fast evaluation of the
model’s capabilities.

C. EVALUATION
To evaluate the performance of our proposed RCA method,
we use real-world datasets collected from a communication
network, and the loss curves of DFNN training and validation
are given in Figure 4. We compare our method with several

state-of-the-art RCA methods based on neural networks,
fuzzy logic, and clustering techniques. We use measures such
as Precision, Recall, F1-score, and Accuracy to assess the
performance of our method. Let TP, FP, TN, and FN denote
the number of true positives, false positives, true negatives,
and false negatives, respectively, where.

True Positive (TP): The DFNN correctly identifies an
event as the root cause for network failures or performance
degradation. This would correspond to correctly classifying
a ‘malicious’ event in the dataset, for example.

True Negative (TN): The DFNN correctly identifies the
event as not a root cause for any issues. This would
correspond to correctly classifying a ‘benign’ event in the
dataset, for example.

False Positive (FP): The DFNN incorrectly identifies a
benign event as the root cause for network failures or
performance degradation.

False Negative (FN): The DFNN fails to identify a
malicious event as the root cause despite it being one.

Then we have:

Precision =
TP

TP + FP
(25)

Recall =
TP

TP + FN
(26)

F1-score = 2 ∗
Precision * Recall
Precision + Recall

(27)

Accuracy =
TP + TN

TP + FP + TN + FN
(28)
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Our experimental results show that our proposed method
outperforms existing methods in terms of accuracy and
efficiency.

D. PERFORMANCE COMPARISON
We trained several models, including a traditional decision
tree (DT) model, multi-layer perceptron (ANN) model,
support vector machine (SVM), gradient boosting (GB),
convolutional neural network (CNN), and our proposed
DFNN model. We used the Gini impurity index as the
splitting criterion for the DT model, two hidden layers with
64 neurons each for the ANN and DFNN models. We also
used the Adam optimizer with a learning rate of 0.001 and a
batch size of 32 for both ANN and DFNN models.

Figure 5 shows the performance comparison between
the DFNN with other five commonly used methods. The
DFNN achieves the highest accuracy, precision, recall, and
F1 score, indicating its superior ability to identify root causes
accurately.

Table 2 provides detailed performance metrics of the
DFNN method for each specific root cause class. The
metrics include accuracy, precision, recall, and F1 score.
The DFNN achieves high accuracy and balanced precision
and recall across different root cause classes, indicating its
ability to handle various types of network issues effectively.
The network link failure class shows the highest accuracy,
precision, recall, and F1 score, indicating the DFNN’s strong
performance in identifying this type of root cause.

E. CASE STUDY AND INTERPRETATION
To further illustrate the effectiveness of the DFNN method,
we provide a case study where a network failure was analyzed
using the DFNN. The predicted root causes are compared
with the ground truth, and the fuzzy membership degrees
provide insights into the confidence of the predictions.

Table 3 shows the root cause analysis results for a network
failure case study. The DFNN successfully predicts the
primary root cause as a hardware malfunction on router X
with a high membership degree of 0.92, indicating a high
level of confidence in the prediction. TheDFNNalso suggests
secondary causes such as congestion and software bugs with
lower membership degrees, providing additional insights into
potential contributing factors.

Overall, the experimental results demonstrate that the
proposed DFNN method outperforms traditional methods
such as SVMandDT in root cause analysis of communication
networks. The detailed performance metrics across different
root cause classes highlight the DFNN’s effectiveness and its
ability to handle various types of network issues with high
accuracy, precision, recall, and F1 score.

V. CONCLUSION
In this paper, we proposed a deep fuzzy neural network
(DFNN) framework for root cause analysis (RCA) of commu-
nication networks. The DFNN synergistically merges deep
learning techniques and fuzzy logic inferences, to extract core

features related to the root cause from intricate fault data
while effectively handling disturbances like uncertainty and
noise. This novel fusion of methodologies has showcased
higher accuracy and robustness in RCA. The integration
of convolutional neural networks, which extracts spatial
features, and long short-term memory (LSTM), which deals
with temporal features, has amplified the model’s capacity
to decipher complex relationships within network data,
consequently increasing the accuracy of our failure diagnosis.

Extensive experiments, alongside comparisons with tra-
ditional methods, validated the superiority of our proposed
approach both in terms of precise failure causality identifica-
tion and efficiency. Our model outshined manual analysis and
rule-based algorithms, demonstrating not only its ability to
accurately identify the root causes of network failures but also
highlighting its significant potential in addressing intricate
RCA challenges in communication networks.

It should be noted that our DFNN method applied a
manual design for feature selection, it may be not a reliable
and accurate approach, future work can focus on end-to-
end framework with automatic feature extraction. On the
other hand, more effective deep learning mechanisms, such
as attention, transformer, can be applied for a computational
stronger model.
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