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ABSTRACT Public health and safety are increasingly concerned as public awareness of health-related issues
grows. To find a rapid, convenient, and non-destructive testing method for detecting human nutritional tox-
icology detection, this study selects sildenafil, phenolphthalein, and metformin hydrochloride—commonly
found additives in health products—as the focal point. The research endeavors to tackle the paramount issue
of public health and safety. The study begins by elucidating the public health and safety concept and then
outlines the computational process for determining the terahertz (THz) optical properties. Subsequently,
it provides a brief overview of deep learning (DL) methods, including the Back Propagation Neural Network
(BPNN), Convolutional Neural Network (CNN), Residual Network (ResNet), and MobileNet model. Finally,
the study compares and tests the THz absorption spectrum data of 22 pure samples containing sildenafil,
phenolphthalein, and metformin hydrochloride by DL technique to evaluate the model’s classification perfor-
mance. The findings demonstrate that, with increased training iterations, the model’s accuracy consistently
improves and stabilizes. For instance, after 12 training iterations, CNN’s accuracy under the verification
set stabilizes, frequently reaching nearly 100%. After 83 iterations, the accuracy remains steady at 98.96%.
Similarly, the MobileNet model reaches stability after 17 iterations, achieving 100% accuracy. The BPNN
demonstrates the fastest prediction time among the four DL algorithm models, at 310-5 seconds. Meanwhile,
the MobileNet model exhibits the highest accuracy and stability. This study using THz waves to identify
contaminants in medical items can significantly enhance public health and safety.

INDEX TERMS Public health and safety, additives in health products, deep learning, BP neural network,
terahertz wave.

I. INTRODUCTION

As public awareness regarding health continues to expand,
public health and safety concerns have gained increasing
prominence. Information is omnipresent in the modern age of
information proliferation, from the Internet to social media.
This trend undeniably has positive aspects as it facilitates
easier access to health information and awareness, ultimately
promoting healthier lifestyles. However, it also brings novel
challenges, notably the proliferation of misinformation and
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the marketing of health products. Various health products
claim to enhance one’s quality of life, boost physical well-
being, and bolster immunity. Regrettably, some of these may
contain potentially harmful ingredients, threatening public
health and safety [11].

The motivation for this study is based on the current expan-
sion of the health products market and the intensification
of regulatory challenges. The current traditional detection
methods often find it difficult to effectively identify potential
harmful components in health products, leading to increasing
attention to public health and safety. Regulatory and testing
tasks have become more complex and urgent with the diver-
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sification of health products and increased market demand.
This motivation comes from filling the technological gap
in this field, intending to provide an innovative, fast, and
accurate detection method for safeguarding public health.
By combining terahertz (THz) technology and deep learning
(DL) method, it is hoped to break the limitations of traditional
detection methods, provide efficient and non-destructive test-
ing (NDT) means of health products, and ensure the public’s
safe consumption of health products. As a scientific disci-
pline, Toxicology studies the effects of toxicants on living
organisms and the development of strategies for preventing
and mitigating exposure to such harmful substances. Within
this domain, prioritizing public health and safety has always
been a central concern [40]. Nevertheless, with the expand-
ing market for health products, regulation and detection
has evolved into a multifaceted challenge. Frequently, the
potentially hazardous components within healthy products
elude identification through traditional detection methods,
thus necessitating an innovative solution to tackle this
issue.

As an advanced NDT method, THz technology boasts the
unique capacity to conduct high-spectrum measurements of
samples. While this technique has heralded pivotal break-
throughs in medicine, food safety, and materials science
[21], its application in nutritional toxicology detection has
remained relatively limited. Thus, this study introduces THz
technology into this field with the aspiration of fashioning
a novel, swift, and efficient detection method to ensure the
quality and safety of health products. Furthermore, as a
cutting-edge technology in artificial intelligence (AI), DL has
achieved remarkable feats across diverse fields, including
image recognition, natural language processing, and med-
ical image analysis [22]. Kumari and her colleagues have
proposed a novel process model for IoT-based Multimedia
Big Data (MMBD). This process model addresses numerous
research challenges associated with MMBD, including scal-
ability, accessibility, reliability, heterogeneity, and quality of
service requirements [5]. The study leverages advanced tech-
nological approaches to handle and analyze large-scale data
and explores how to utilize data in complex environments
efficiently. This study examines the feasibility of employing
DL to assess the information derived from the THz spectrum
of ingredients in health products.

This study aims to develop a DL-based method for nutri-
tional toxicology detection. The purpose is to utilize DL
models to analyze and predict the toxicological properties of
different chemicals, thereby facilitating a more robust assess-
ment of potential risks in food and cosmetics and enhancing
product safety. At the same time, the study also explores tech-
niques based on high-frequency THz to obtain information
about the sample’s internal structure. It combines this with
DL models to enhance the accuracy and efficiency of the
detection. Moreover, the study thoroughly examines the THz
absorption spectrum data from 22 pure samples containing
sildenafil, metformin hydrochloride, and phenolphthalein.
The analysis uses the DL method to assess the model’s
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classification performance. This process facilitates a com-
prehensive assessment of the benefits and drawbacks of the
four algorithms under investigation. In conclusion, this study
promotes the incorporation of DL into the field of toxicology
to enhance public health and safety.

The outstanding contribution of this study is its fusion of
high-frequency THz technology and DL technology to create
a new NDT method that can quickly and accurately detect
harmful substances in health products. The method can effec-
tively identify and classify potentially harmful substances
that may exist, introducing an unprecedented, innovative
approach to nutritional toxicology detection. Due to the
precise spectral information provided by THz technology
and the effective processing of complex spectral data by
the DL model, this fusion technology can fully use THz
technology’s advantages and realize highly accurate toxicol-
ogy detection through DL technology. In addition, through
detailed analysis of THz absorption spectrum data of 22 pure
samples containing sildenafil, metformin hydrochloride, and
phenolphthalein, this study provides a new research idea and
method for the field. It offers more reliable technical support
for public health and safety. The innovation of this study
is that it leads the development of nutritional toxicology
detection and provides a powerful guide and reference for
future related research.

II. LITERATURE REVIEW

Numerous researchers have explored the interconnectedness
between the lives and health of the general population.
Lake et al. searched five research databases to compile
a list of cannabis-related public health and safety issues.
They established a set of indicators to evaluate the effects
of cannabis legislation in Canada on public health and
safety, gauge potential hazards, and weigh the significance
of potential benefits amidst emerging topics and themes [34].
Fan et al. scrutinized establishing an authorized environment-
operational capability-public value framework by municipal
governments to create a safety net for public health and
safety, particularly in response to public health emergencies
such as the COVID-19 pandemic. They introduced a unique
classification of four efficient urban action structures: social
guarantee, active defense, decisive flexibility, and enforce-
ment, designed to curb the outbreak’s spread [12]. Moyce
and Schenker chose migrant workers as their research sub-
jects and probed into the associations between their health,
environmental factors, and line of work. Their investigation
unveiled that several common factors contributed to the poor
health, work-related injuries, and occupational fatalities of
migrant workers. These factors included linguistic or cultural
barriers, limited access to healthcare, the uncertain status
of their immigration documents, and the prevailing political
climate of the host nation [32]. Nawaz et al. thoroughly
examined the factors influencing the health and safety of
nearby inhabitants and primary project stakeholders, concen-
trating on large-scale infrastructure projects (Orange Line
Metro Train). Their research pinpointed several paramount
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factors affecting the health and safety of residents. These
factors encompassed unsafe working practices, limitations
in the project scope, inadequacies in technical and mate-
rial support, hazardous and challenging working conditions,
environmental deterioration affecting public health, depletion
of resources and time, an inadequate emergency response
system, and negligence in adhering to safety regulations and
laws [5]. Boadu et al. examined how the distinctive charac-
teristics of the construction industry in developing countries
affect health and safety management within the sector. Their
study provided insights into the practical and theoretical
impact of the industry’s foundation and attributes on health
and safety. A questionnaire survey involving professionals in
Ghana brought to light the significant challenges in health
and safety management in developing nation’s construction
industry, including a shortage of skilled and educated labor-
ers, a reliance on labor-intensive techniques, and the absence
of a single regulatory body [16]. Safonov conducted nutri-
tional and toxicological assessments of the milk quality of
black and white Holstein cows. The author revealed that Hol-
stein hybridization positively influenced the concentration of
cobalt, zinc, and manganese. Conversely, purebred black and
white cows showed the potential for milk contamination by
lead and cadmium [44]. Lietzow conducted nutritional and
toxicological tests on mustard plant seeds to assess potential
health risks. Their findings indicated that consuming mustard
seeds or their derived products did not pose immediate health
risks for individuals without mustard protein allergies. How-
ever, high intake levels of mustard seeds or related products,
such as mustard seed oil, raise the possibility of health prob-
lems [19].

In the realm of healthcare-oriented fog computing
research, Kumari et al. analyzed the role of fog computing,
cloud computing, and the Internet of Things (IoT). Their
investigation culminated in proposing a three-tier patient-
driven healthcare architecture designed for real-time data
collection, processing, and transmission. This architecture
offers valuable insights to end-users, elucidating the appro-
priateness of fog devices and gateways in current and future
healthcare 4.0 environments [4]. Kumari et al. [5] utilized the
characteristics of multimedia big data on the IoT regarding
scalability, accessibility, reliability, heterogeneity, and quality
of service requirements to process complex multimedia data.
Kumari and Tanwar [1] proposed a novel big data analysis
scheme that used encryption technologies such as digital
signatures to protect data security to deal with security issues
such as data modification and integrity attacks. In terms
of data analysis and secure transmission, Kumari et al. [3]
analyzed the major threats and risks in the processing of
large data in the IoT environment, and the security approach
required against these risks. Kumari et al. [2] used DL
technology to predict energy load and manage energy use
according to time priorities, building a Redills system to
help users use appliances economically. Tanwar et al. [38]
proposed an energy theft detection scheme based on DL
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technology that utilized a data-driven analytical approach to
identify various forms of energy theft.

In the domain of DL’s technical applications in human
toxicology detection, Vekaria et al. [15] proposed a bidirec-
tional Long Short-Term Memory (LSTM)-based DL model.
This innovative model demonstrated the capability to predict
the total number of positive cases in India and evaluate their
economic impact. Notably, the model exhibited a remarkably
low mean absolute percentage error value of 1.27% and
outperformed the most advanced methods in terms of predic-
tion accuracy. Furthermore, Tanwar et al. [39] introduced an
Al-based scheme with a cloud-centric disease detection and
prevention approach. The results of their research attested to
the scheme’s impressive prediction accuracy, which reached
96.2%. Zhao et al. [23] emphasized the potential of DL
approaches in predicting in vitro, in vivo, and clinical out-
comes, thereby advancing drug discovery and development in
the era of big data. Rodriguez et al. [37] employed the drug
repurposing in Alzheimer’s disease (AD) machine learning
(ML) framework to explore potential associations between
quantifying AD severity and the molecular mechanisms
encoded in a list of gene names. Zhao et al. [28] innovatively
proposed an end-to-end bioinspired model based on Convo-
lIutional Neural Network (CNN) and attention mechanisms
to predict drug-target interactions. Their research revealed
that this model significantly improved performance in this
context. Abbas et al. [20] presented and implemented a new
drug supply chain management and recommendation system
based on blockchain and ML technologies. The ML module
used N-gram and the light Gradient Boosting Machine model
to recommend the most highly rated or optimal drugs to
customers in the pharmaceutical industry. This enhancement
significantly improved drug supply efficiency in this industry.
Nag et al. [36] reviewed current challenges and prospects for
using DL tools in drug development. They summarized the
various DL-based tools available in the public domain and
their application in the drug discovery paradigm. Addition-
ally, they highlighted the use of various DL-based models for
protein structure prediction, collectively validating the utility
of DL tools for pharmaceutical and computational chemists.

The mentioned research investigates public health and
safety across various fields and industries, encompassing
non-medical marijuana, public health during the COVID-
19 epidemic, critical infrastructure, migrant labor, and the
construction industry. It underscores the significance of data
analysis and the integration of emerging technologies in
diverse fields, laying a valuable foundation for the current
study. However, there may be some limitations to these stud-
ies. For example, in some studies, there may be a lack of
comprehensive surveys of specific populations or insuffi-
cient consideration of certain potential influencing factors.
Moreover, some studies may have data collection or method
selection limitations. Most importantly, the application of
specific toxicological detection methods in the context of
big data and DL has not been fully explored in the existing
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literature. This study examines nutrition and toxins in health-
care products, which are widely consumed substances closely
linked to public health and safety. This study introduces
an unprecedented approach to nutritional toxicology detec-
tion by melding THz technology with DL. Its novelty and
research contribution lies in addressing public health and
safety concerns and introducing novel technologies into the
field, opening new pathways for swift, precise, and NDT.
The amalgamation of THz and DL technology presents sub-
stantial potential for practical applications to enhance public
health and safety, offering a more efficient tool for health
product regulation. Therefore, this study is distinctive and
innovative in applying emerging technology and exploring
public health issues.

lIl. RESEARCH METHODOLOGY

A. PUBLIC HEALTH AND SAFETY

Individuals experience an enhancement in their material well-
being, which fuels an increasing aspiration for more than
just sustenance; it fosters a demand for food that satisfies
hunger and contributes to overall health and well-being.
Consequently, public health has emerged as a prominent
topic of concern. The World Health Organization empha-
sizes that health encompasses a holistic, stable, harmonious
condition encompassing physical, psychological, and social
dimensions. Health encompasses physical and mental well-
being [9]. Public health is a multifaceted issue that demands
local, national, and global attention. The memory of the
2013 infant milk powder crisis remains vivid, illustrating the
critical importance of ensuring the quality of infant nutrition
products. Quality issues related to infant milk powder can
inflict irreversible and severe harm on infants and young
children, potentially leading to lasting physiological impair-
ments and, in severe cases, significantly affecting their lives.
Public health and safety, in this context, diverge from the
more commonplace concept of health and safety. The distinct
characteristics of public health and safety are displayed in

Figure 1.
Group of
esearch objec

Unknown potentia
health and safety

Issues related to
public health and
safety will be

It is a social
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FIGURE 1. Unique features of public health and safety.

Figure 1 illustrates four key characteristics of public health
safety: collectivity, pre-emptive prevention, comprehensive-
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ness, and societal involvement [35]. First, it emphasizes
collectivity, focusing on the health issues affecting popula-
tions rather than individual health statuses. This underscores
the communal nature of the research object. Second, pub-
lic health safety is associated with pre-emptive prevention,
actively addressing potential health and safety concerns
before they manifest. Third, it encompasses a wide scope,
encompassing a broad spectrum of public health and safety
topics, rather than being confined to a single aspect of
research. Fourth, public health and safety are inherently social
constructs, shaped by societal development and involving
the entire community. It is a collective social endeavor.
In recent years, public health and safety have covered mater-
nal and child products, health products, epidemic diseases,
vaccines, nutrients, and other aspects. This study focuses on
the nutritional toxicology of additives in healthcare products,
with specific attention to three common additives: sildenafil,
phenolphthalein, and metformin hydrochloride. Metformin
hydrochloride is used in healthcare products to lower blood
sugar and promote weight loss. However, prolonged use can
lead to issues like nausea and malnutrition. Phenolphthalein
can treat chronic constipation and is included in slimming
health products to relieve constipation, but its prolonged con-
sumption can cause permanent damage to intestinal nerves.
Sildenafil is added to health products for its stimulating
effects and fatigue relief, but prolonged usage can cause
cardiovascular damage [6], [29].

B. CALCULATION OF OPTICAL PARAMETERS OF THz WAVE
THz wave exhibits wave propagation and light penetration
characteristics, with a frequency of approximately 1 THz.
They offer distinct advantages, such as low energy con-
sumption and exceptional penetration capabilities, making
them invaluable for applications in imaging and NDT. Typ-
ically, the THz time-domain spectrum captures essential
THz information from samples [8]. The analysis of THz
spectrum data allows for extracting internal structural char-
acteristics from the samples, facilitating their classification.
Analyzing the THz refractive index and absorption spectrum
in experimental settings is necessary to discern the sam-
ple’s characteristics, a process achievable through calculation
methods [18], [49]. Assuming that the measured THz signal
is denoted as A7y, () and using the THz signal obtained from
spectrum analysis in pure nitrogen as the reference signal
Ack (@), the relationship between these signals can be written
as equation (1).

Acc (@) = Arpr(or)e @M /L "

Z (o) refers to the complex refractive index, calculated in
equation (2).

Z(a) = z (o) — ke(a) 2)

z (o) represents the refractive index, and c(«) signifies the
extinction coefficient. These parameters reflect the response
of the sample to THz. This study uses a computational model
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known as the optical parameter calculation model to calculate
the absorption coefficient W («) of the sample. Equation (2),
also called the optical parameter calculation model, facili-
tates the expression of the absorption coefficient as w(a) =
2ac(a)/L [46]. After the sample is placed, the signal obtained
by the THz signal passing through the sample is represented
as Ay, (). The THz wave is utilized for the sample spectrum.
During this process, it undergoes a sequence of refraction and
reflection events within the sample. This progression can be
articulated as equation (3).

OW (@) = > {1 le @/ gy 3)

Here, z, (o) denotes the complex refractive index of the
sample, m signifies the sample’s thickness, and n stands for
the number of reflections experienced by THz waves in the
sample. In practical experiments, the impact of reflection
on the experimental results can be mitigated by controlling
the sampling frequency. In such cases, it is reasonable to
assume that n = 0 and QW (o) = I. Consequently, this
study can establish the relationship between the sample signal
Ay, (@) and the reference signal A¢; (o), thus allowing for the
expression of the sample signal Ay, as equation (4).

Ayp ((X) — ATHZ(Ol)nye_kzy(a)am/ll’yx (4)

In a vacuum, it can be considered that z = z, = 1. This
relationship is following equation (5).

Avp (@)
P(a) = —= (5
Ack (a)
Equation (6) can be deduced:
Pa=22@_ % ey g

Ag (@) (142z)?

Equations (5) and (6) are used to calculate the absorption
rate p (o) and phase ¢ («) of the sample. To derive equations
(7) and (8), equation (2) is integrated into equation (6).

a2+
— Cy o)mo 7
P @ ¢ "
0 (O{) _ [Zy (Ol)L— l]am
+ arctg| & @) ] (8)

& @[z, (@) + 1]+ (@)

Therefore, the extinction coefficient cy (cr), refractive
index zy (o), and absorptivity wy () of the sample can be
obtained as illustrated in equations (9), (10), and (11):

o @) = In ’ 4zy (o) . ] L )
p (@) [zy (@) + 1] | am
L
Zy (@) =@ (a) — +1 (10)
oam
wy (o) = M = zlni % (@) 2} (11)
L m | p @)z (@) +1]
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The above mathematical equations contribute to a more
profound comprehension of THz propagation and interaction
within the sample. Furthermore, they elucidate the methodol-
ogy for calculating critical parameters related to toxicological
detection.

C. SIMPLE DL ALGORITHMS

The Back Propagation Neural Network (BPNN) is one of the
earliest DL networks. During the training process, it encom-
passes signals’ forward propagation and errors’ backward
propagation [45]. The hidden BPNN model is depicted in
Figure 2 [25].

lAl A2 A3 iAm
Input
S~ layer

‘ /
% g”‘{‘v\\ Hidd

idden
layer
Output
layer

o e oL

FIGURE 2. Three-layer structure of the BPNN with a single hidden layer.

In Figure 2, A = (ai,a2, - ,ay, - cam)’ s
the input vector, the hidden layer vector is B =
(b1,by, -+ by, --- ,bm)T, and the output vector is C =
(c1,ca,+++ ,Cpy v e ,c,,)T. The output is D = (di,da, -,
dy, -, dn)T, the weight matrix from the input layer to the
hidden layer is w = (w1, w2, - ,wy, -+, wy), and the
weight matrix from the hidden layer to the output layer is

©=(Q1, 02, Py, ", Pn)-
C,=f (nety,), v=1,2,---,n (12)
m
nety=  @ibu, v=12--.n  (13)
bu :f(netu)7 u= 1127"' , m (14)

net, =Z::0wiuai, u=12,---.m (15)

where f (*) is the transfer function.

f@) =10 (16)

Within the BPNN framework, the activation function of
the input layer is the ReLu, and for the output layer, it is the
Softmax. The backpropagation algorithm is responsible for
executing the training process of BPNN. Data on chemicals
with established toxicological properties are used to train
the network. This training data is divided into training and
validation sets to facilitate parameter optimization and eval-
uate network performance. The primary training goal is to
minimize the loss function, using the mean square error as the
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chosen loss function. Additional techniques, such as random
initialization of weights and batch normalization, enhance
training stability and network performance.

In CNN, one neuron can correspond with other neurons
within its spatial coverage, thus facilitating weight shar-
ing and exceptional processing of a substantial volume of
information [14]. CNN significantly reduces the number of
learning parameters, thus enhancing the algorithm’s perfor-
mance in training [48]. A typical CNN architecture comprises
input, convolutional, pooling, output, and fully connected
(FC) processing layers. In the experiment, input data takes the
form of chemical structure images. Following the convolution
of these input images with specific convolution kernels, the
convolutional layer 1 is generated. Then, pixel sampling is
performed on each feature map in the convolutional layer 1
to create the pooling layer 1. Further iterations of convolu-
tion and sampling yield convolutional layer 3 and pooling
layer 4. Moreover, the feature map from pooling layer 4
is transformed into a feature vector through the FC layer
and subsequently linked to the output layer. The underlying
operational mechanism of the convolutional layer involves
convolving the convolution kernel with the feature informa-
tion from the preceding layer, followed by the addition of an
offset term. Finally, the feature information of the new layer
is generated by applying a nonlinear activation function [33].
The operation of the convolutional layer reads.

1 -1 1 1
q./=f<Z,.€Ajn- Wi+ )

[ means the number of convolutional layers; f refers to
the nonlinear activation function; qj’. indicates the jth feature
information in the convolutional layer /; ufj represents the
convolution kernel; A; is the input feature information set;
<p; signifies the bias term. After the convolutional layer, the
pooling layer is gained. The operational procedure of the
pooling layer closely mirrors that of the convolutional layer.
In this phase, down-sampling occurs within local regions of
the feature information from the upper layer, and this process

is as follows [24].
wj’? :f[tjldown (q]l._l) + (p}]

w! refers to the jth feature information in the pooling layer
n; 1; means the sampled value; down (*) represents the sub-
sampling function. The FC layer integrates different feature
maps extracted by the convolutional layer into a feature vec-
tor, which is then input into the classifier for classification.
The training code for both BPNN and CNN is exhibited in
Table 1. For BPNN, a classical feedforward neural network
used in supervised learning tasks, the code first defines the
network’s structure, including the input, hidden, and output
layers. Then, a loss function and an optimizer are specified
to facilitate model optimization during training. The training
data is iterated to train the model, with weights and biases
updated through a backpropagation algorithm to minimize
the loss function. Ultimately, the model’s performance is
evaluated, and performance indicators such as accuracy on

7)

(18)
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TABLE 1. The code of the training part of the BPNN and CNN.

BPNN
import torch
import torch.nn as nn
import torch.optim as optim

CNN
class CNNModel(nn.Module):
def init (self, num classes):
super(CNNModel,
self). init ()

class self.convl = nn.Conv2d(3, 16,

BPNeuralNetwork(nn.Modu kemel size=3, padding=1)
le):
def init  (self, self.conv2 = nn.Conv2d(16, 32,

input_size, hidden_size,
output_size):

kemel size=3, padding=1)

self.pool =
super(BPNeuralNetwork, nn.MaxPool2d(kernel _size=2,
self). init () stride=2)
self.fcl = self.fcl =nn.Linear(32 * 32 *
nn.Linear(input_size, 32,128)

hidden_size)
self.fc2 =
nn.Linear(hidden_size,
output_size)
self.relu = nn.ReLU()

self.fc2 = nn.Linear(128,
num_classes)

def forward(self, x):

def forward(self, x): X=
self.pool(nn.functional.relu(self.conv
1(x)))
x = self.fc1(x) X =

self.pool(nn.functional.relu(self.conv
2(x))
x = self.relu(x) x =x.view(-1, 32 * 32 * 32)
x = self.fc2(x) X =
nn.functional.relu(self.fc1(x))

return x x = self.fc2(x)
criterion = nn.MSELoss() return x
optimizer = criterion = nn.CrossEntropyLoss()

optim.Adam(model.paramet
ers(), 1r=0.001)

for epoch in optimizer =
range(num_epochs): optim.Adam(model.parameters(),
1r=0.001)

for epoch in range(num_epochs):

the validation set are calculated. CNN is a DL model spe-
cially designed for processing images and 2D data. The
code includes convolutional, pooling, FC, and other lay-
ers to extract and learn image features. Network weights
are updated by backpropagation to minimize classification
errors. Tools such as ImageDataGenerator are also utilized
to load and enhance image data.

D. COMPLEX DL ALGORITHMS

Complex DL algorithms, particularly the Residual Network
(ResNet) and MobileNet, are the primary focus of this dis-
cussion. In DL, as network model layers increase, the issue
of gradient vanishing or explosion arises, impeding network
convergence during training and extending training durations.
To solve this challenge, scholars have proposed the deep
ResNet, which establishes direct connections between certain
input information and the output layer to reduce computa-
tional load [13]. ResNet incorporates residual connections
that facilitate the smoother flow of information throughout
the network, thus alleviating the vanishing gradients issue
and enhancing overall training feasibility. Incorporating a
ResNet significantly augments the model’s expressiveness,
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a characteristic particularly valuable in complex feature
extraction tasks. ResNet has achieved excellent performance
in image classification, object detection, and semantic seg-
mentation, making it highly relevant for toxicology detection
tasks. The pivotal component within ResNet is the residual
unit, as revealed in Figure 3 [42].

; :l;:“\ . 3*3 Re 3*3
B convoluti convolut

Output «<— Re

FIGURE 3. ResNet structure.

Figure 3 illustrates the journey of the training image
through ResNet, encompassing the convolutional layer and
the nonlinear activation function layer. A deep ResNet
comprises several residual neural units, with the normaliza-
tion layer ensuring image model normalization. They then
undergo computation through multiple residual units, fol-
lowed by batch normalization and FC layer processing, which
converts the results into the expected format to yield the
output outputs. Building upon the ResNet architecture, this
study introduces a self-attention mechanism and combines
feature information from diverse scales. This augmentation
allows the network to emphasize crucial regions pertinent
to toxicants with images. Besides, feature information of
different scales is combined to enhance the network’s ability
to recognize toxicants and improve detection performance.
Additionally, the network incorporates 20 residual blocks to
deepen its capacity for capturing intricate image details and
features.

MobileNet is designed to operate in resource-constrained
environments, making it well-suited for embedded devices
and mobile applications. This attribute is pivotal for the
swift and easy detection of toxicology. The core idea of
MobileNet involves the replacement of traditional convo-
lutions with deep separable convolutions. This substitution
mitigates redundant operations in standard convolutional ker-
nels, thereby streamlining model computations [20]. The
lightweight and efficient design of MobileNet facilitates
fast real-time inference on devices with limited resources,
a critical aspect of emergency toxicology detection. Figure 4
highlights the distinctions and transformations between depth
separable and standard convolution [26].

Figure 4 illustrates how depth separable convolution
divides the standard volume into two components: the depth
convolution and the size 1*1 convolution. This method
significantly reduces the model’s computational workload,
allowing for the execution of complex DL algorithms even on
resource-constrained systems. In the MobileNet architecture,
input data is sequentially processed through the 3*3 depth
convolutional layer and the 1*1 pointwise convolutional
layer, effectively replacing the standard convolution model
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FIGURE 4. Conversion of standard convolution to depth separable
convolution.

and substantially reducing computational overhead. Further-
more, the MobileNet design incorporates a normalization
operation layer and applies the nonlinear activation func-
tion ReLu after the deep and pointwise convolutional layers,
enhancing the network’s computational efficiency. Based on
MobileNet, this study introduces a channel attention mecha-
nism and leverages transfer learning. Using pre-trained model
weights, the network can adaptively select the most crucial
feature channels to expedite model training and enhance
overall performance. The training code for both ResNet and
MobileNet is outlined in Table 2. ResNet is described as a
deep neural network structure in the code, which defines the
ResNet model and specifies the appropriate loss functions
and optimizers. Training data is applied to train the model,
and backpropagation updates the model’s weights. Perfor-
mance evaluations are conducted at the end of each training
cycle. TensorFlow, a widely used library, is applied for
these purposes. MobileNet is characterized by its lightweight
architecture, which is particularly suitable for computation-
ally constrained scenarios. The code includes defining the
MobileNet model, compiling, and selecting appropriate loss
functions and optimizers. Training data is employed to train
the model, and weight updates during each training cycle.

The human nutritional toxicology detection process is sug-
gested in Figure 5.

Figure 5 shows the nutritional toxicology detection pro-
cess, which commences with preparing and cleaning experi-
mental data. This phase involves sourcing the data, perform-
ing data cleaning, and labeling. Subsequently, various DL
models (BPNN, CNN, ResNet, MobileNet) are configured,
specifying the number and type of layers. The following step
exhibits the training process for these models, involving data
input, loss function calculation, backpropagation, and weight
updates. Finally, the model’s performance is evaluated, and its
performance results are described, analyzed, and interpreted.
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TABLE 2. Code for the training part of ResNet and MobileNet.

ResNet
import torch

import torch.nn as nn
import torch.optim as optim

from torchvision import models,
transforms, datasets
num_epochs = 10
batch_size =32
learning rate = 0.001
transform =
transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),

transforms.Normalize(mean=[0.
485, 0.456, 0.406], std=[0.229,
0.224, 0.225])
D
train_dataset =
datasets.ImageFolder('train_data'
, transform=transform)
train_loader =
torch.utils.data.Dataloader(train
_dataset, batch_size=batch_size,
shuffle=True)
model =
models.resnet18(pretrained=Tru
e)
num_classes =
len(train_dataset.classes)
model.fc =
nn.Linear(model.fc.in_features,
num_classes)
criterion =
nn.CrossEntropyLoss()
optimizer =
optim.Adam(model.parameters()
, Ir=learning_rate)
for epoch in
range(num_epochs):
for inputs, labels in
train_loader:

optimizer.zero_grad()

outputs = model(inputs)
loss = criterion(outputs,
labels)
loss.backward()

optimizer.step()

print(fEpoch [{epoch +
1}/{num_epochs}], Loss:
{loss.item()}")
torch.save(model.state_dict(),
'resnet_model.pth')

MobileNet
train_datagen =
ImageDataGenerator(
rescale=1.0/ 255,
rotation_range=20,

width_shift range=0.2,

height shift range=0.2,
shear range=0.2,
zoom range=0.2,
horizontal_flip=True,

fill_mode="nearest’
)
train_generator =
train_datagen.flow_from_directo

ry(

‘train_data’,
target_size=(224, 224),

batch_size=batch_size,

class_ mode='categorical’

)

base_model =
MobileNet(weights='imagenet',
include top=False)
x = base_model.output

X =

GlobalAveragePooling2D()(x)

x = Dense(1024,
activation="relu')(x)
predictions =
Dense(len(train_generator.class_
indices), activation='softmax")(x)
model =
Model(inputs=base_model.input,
outputs=predictions)
for layer in base_model.layers:

layer.trainable = False

criterion =
tf.keras.losses.CategoricalCrosse
ntropy()
optimizer =
Adam(Ir=learning_rate)
model.compile(optimizer=optim
izer, loss=criterion,
metrics=['accuracy'])
model fit(train_generator,
epochs=num_epochs)

IV. EXPERIMENTAL DESIGN AND PERFORMANCE

EVALUATION
A. DATASETS COLLECTION

Traditional toxicology studies typically rely on relatively
small datasets and experimental methods. However, larger
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FIGURE 5. Human nutritional toxicology detection procedures.

and more diverse datasets are introduced to take advantage
of DL technology. Specifically, it utilizes THz absorption
spectrum data from 22 pure samples containing silde-
nafil, phenolphthalein, and metformin hydrochloride. The
dataset contains many samples and associated parameters,
encompassing nutritional composition and potential toxicity
indicators. These data serve as the foundation for training
and validating the proposed DL model, enabling more precise
detection of potential toxicity in nutraceuticals. The pro-
cess of obtaining spectral signals from different substances
involves several key steps. Initially, the experimental pure
samples are ground into powder to ensure sample unifor-
mity and consistency. Subsequently, these powdered samples
are mixed with polyethylene in a ratio of 1:1 and for-
mulated into tablets following established standards. This
meticulous process guarantees the consistency of the experi-
mental sample. Following the tablet preparation, the samples
are subjected to a THz time-domain spectrum device with
a 0.2-2 THz frequency. This step is crucial for capturing
the THz time-domain spectrum of the samples. Lastly, the
obtained THz time-domain data undergo Fourier transforma-
tion to yield the frequency domain spectrum of the samples.
This transformation enables the calculation of the THz
absorption spectrum and refractive index spectrum for each
sample, according to the THz optical parameter calculation
model. The experiments are conducted in a tightly controlled
environment to ensure repeatability and accuracy of the data.
The THz time-domain spectrum device is operated under
stable laboratory conditions where environmental parame-
ters such as temperature and humidity are monitored and
controlled. In addition, to exclude the influence of external
factors, the atmosphere in the laboratory is usually filled with
pure nitrogen to maintain the consistency of the experimental
environment. Multiple data sources in the experiment are
used to build this “big data” collection, involving chemical
composition data from different food and nutritional products
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and known toxicity information. The integration and analysis
of these data sources enable a more comprehensive data set to
assess the potential toxicity of food and nutritional products.
This process covers data cleaning, consolidation, and labeling
to ensure quality and availability.

Finally, 234 groups of absorption spectrum data were
obtained, averaging approximately 10 sample data points
with each group. After meticulous sample preparation, the
specimens were introduced into the THz time-domain spec-
trum device to acquire the THz time-domain spectrum.
Subsequently, all data were normalized to obtain a waveform
with a size of 224224 as input for DL classification. These
absorption spectra were taken as a training set and testing set
in the ratio of 3:2.

B. EXPERIMENTAL ENVIRONMENT AND PARAMETERS
SETTING

During the experiment, a pulsed THz time-domain spec-
trometer was used as the experimental equipment, and the

parameter settings and computer configuration are described
in Table 3.

TABLE 3. Experimental configuration and parameter setting of THz
time-domain spectrometer.

Processor Intel(R)Core (TM)
CPU i7-7700HQ 2.8GHz
Memory 16GB
Operating Windows S10 Home Chinese Version
system
Output 920mw
power
Wavelength 810nm
Femtosecond 24nj
laser power

The experimental temperature was maintained at a constant
temperature of 25°C with a relative humidity of 2%. The
BPNN was assigned a learning rate 0.01 in the model training
phase. It featured a hidden layer with 128 neurons, a batch
size 64, and 20 training rounds. The learning rate of CNN was
set to 0.01, the input size of the input layer was 76*1*1, the
number of convolution kernels in the convolutional layer was
16, and the convolution kernel size was 1. The batch size was
32, and the number of training rounds was 15; The learning
rate of ResNet training with PyTorch is 0.001, the number
of training rounds and the batch size were 10 and 32; The
learning rate for MobileNet training with TensorFlow was
0.001, the batch size and the number of training rounds were
32 and 10.

C. PERFORMANCE EVALUATION
The performance evaluation of the DL method necessitates
the utilization of a confusion matrix to show the classification
results of the model clearly. Table 4 elaborates on the specifics
of the confusion matrix.

In Table 4, the first row refers to the Actual cate-
gories (Actual Positive indicates a true example, and Actual
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TABLE 4. Confusion matrix.

Actual Positive Actual Negative
Predicted TP FP
Positive
Predicted FN N
Negative

Negative indicates a true negative example). The first col-
umn shows the model’s prediction (Predicted Positive and
Predicted Negative mean that the prediction is positive and
negative). TP represents the number of positives that the
model correctly predicts the positives to be positive. FP rep-
resents the number of negatives that the model incorrectly
predicts as positives. TN indicates the number of negatives
that the model correctly predicts as negatives. FN refers to
the number of positives that the model incorrectly predicts as
negatives.

Considering the practical feasibility of the techniques
and methods used to integrate a new toxicological detec-
tion method with THz technology and DL method, and
ensuring that the study can be sustainable and feasible in
practical application. The consideration of communication
cost can help evaluate the resource consumption in the
data transmission process, including the volume of data
transmission, the use of communication equipment, and the
associated expenses. This helps determine the efficiency
and cost-effectiveness of data transfer, ensuring that the
data transfer process is efficient, reliable, and cost-effective.
Computational cost considerations can help assess the com-
putational complexity of the adopted DL algorithms and
techniques as well as the computational resources required.
This is conducive to determining the scalability and effi-
ciency of the algorithm, as well as the feasibility and
cost-effectiveness of the computing equipment required,
guaranteeing that the study enables efficient data processing
and analysis in practical applications. The calculation of com-
munication cost and calculation cost is shown in equations
(19) and (20):

Communication cost = Vjuq % Cyy (19)
Calculated cost = T,y * Cye (20)

Vdata represents the data volume; C,; means the unit
data transmission cost; T, refers to the running time; C,¢
is calculated as the unit. The calculation of communica-
tion cost first determines the amount of data that needs to
be transmitted by analyzing the data size or data volume.
The transmission speed, bandwidth, and other parameters
of communication equipment used for data transmission are
evaluated considering the transmission rate of communi-
cation equipment. Second, the time required to complete
the data transfer is calculated according to the data vol-
ume and the transmission rate. Lastly, the time required
for data transmission and the associated use costs of the
communication equipment are considered, including the
equipment’s operating and maintenance costs, to determine

VOLUME 11, 2023



J. Shi et al.: Analysis of Nutrition Toxicology Detection Based on Big Data and DL

IEEE Access

the total communication cost. The calculation costs first
require assessing the amount of data processing required,
including factors such as the amount of computation to be
performed and computational complexity. The performance
parameters of the computing equipment used for data pro-
cessing, such as processing speed and memory capacity,
are analyzed. Then, the time required to complete the data
processing is calculated according to the amount of data
processing and the performance parameters of the computing
equipment. Finally, the time required for data processing
and the associated cost of using the computing equipment
are taken into account, encompassing the operating and
maintenance costs of the equipment, to determine the total
computing cost.

First, a simple DL model was trained. Due to the limited
data samples, training employs the BPNN with a single hid-
den layer, and the training process is presented in Figure 6.
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FIGURE 6. BPNN model’s training process.

Figure 6 denotes that its accuracy constantly improves
as the model undergoes more training cycles. Specifically,
the model’s accuracy under the training set stabilizes at
30 training iterations, ultimately reaching 98.58%. Similarly,
the model’s accuracy under the validation set stabilizes after
30 iterations and peaks at 98.96% after 87 iterations. The
learning and training process of CNN is plotted in Figure 7.

Figure 7 illustrates that as the number of training iterations
increases, the accuracy of the CNN model steadily improves.
The model’s accuracy under the training set stabilizes after
about 10 training iterations. Meanwhile, the model’s accuracy
under the verification set starts to stabilize at 12 after 12 itera-
tions, reaching 100% after numerous iterations and ultimately
stabilizing at 98.96% after 83 iterations. The training process
of ResNet and MobileNet models is demonstrated in Figure 8.

Figure 8 implies that the MobileNet model begins to sta-
bilize after 12 iterations and reaches complete stability after
17 iterations, with accuracy of 100%. The ResNet model
begins to stabilize at 32 iterations, achieves a 100% accuracy
after 40 iterations, and maintains 100% accuracy for most
of the remaining time, ultimately stabilizing at 100%. The
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FIGURE 7. Training process of convolutional neural network.
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FIGURE 8. The training process of Resnet and MobileNet models.
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FIGURE 9. Performance test results of complex DL algorithm in human
nutritional toxicology detection.

performance test results of the complex DL algorithm in
human nutritional toxicology are given in Figure 9.

Figure 9 suggests that MobileNet outperforms other mod-
els in toxicology detection tasks, achieving higher accuracy
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(96.8%), precision (97.2%), recall (96.5%), and F1 score
(96.8%). These highlight the MobileNet model’s suitability
for toxicology detection in this particular task, delivering
superior classification performance compared to ResNet.
To provide a broader perspective, the performance of these
four DL algorithms is compared with the two machine clas-
sification algorithms: Support Vector Machine (SVM) and
Extreme Learning Machine (ELM)), as portrayed in Figure 10.
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FIGURE 10. Comparison of six classification algorithms.

In Figure 10, concerning model training time, BPNN
(0.03* 107 5) and CNN (0.078 * 1072 s) exhibit the short-
est training duration, indicating their faster training speed.
ResNet (5.68 * 1073 s) requires the most extended training
time, followed by MobileNet (1.14 * 1073 s). The training
time of SVE and ELM falls between the DL and the tradi-
tional ML models, though it is relatively short. The ResNet
and MobileNet models achieve 100% accuracy regarding
the validation set’s accuracy, demonstrating their outstand-
ing performance in toxicology detection tasks. BPNN and
CNN are closely behind, with an accuracy of 98.96%. While
slightly less accurate, SVE and ELM maintain accuracy levels
above 98%. Considering the training time and accuracy, the
MobileNet model balances computational speed and per-
formance, showing swift training speed and high accuracy.
In contrast, the ResNet model attains the highest accuracy but
comes at the expense of a longer training duration.

Considering the practical feasibility of the new toxico-
logical detection methods used in this study in BP, CNN,
MobileNet, and ResNet models, the results of communication
cost and calculation cost of different models in toxicological
detection are detailed in Table 5. It can be observed that
the BP and ResNet models are similar in communication
cost, while the MobileNet model is relatively low. Regarding
calculation cost, the BP and MobileNet models both show
lower costs, while the CNN and ResNet models are higher.
Considering the combination of communication cost and
calculation cost, it can be found that the MobileNet model
has a higher feasibility in toxicology detection. Because it
shows relatively low communication and calculation costs.
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TABLE 5. Communication cost and calculation cost results of different
models in toxicology detection.

Model Communication Calculation
cost (MB) cost (s)
BP model 120 0.8
CNN model 130 1.5
MobileNet model 100 0.5
ResNet model 120 1.2

TABLE 6. Results of cross-comparison between DL technology and
traditional toxicological detection methods.

Model Detection time Substitutabi  Predicti
(min) lity on
accurac
y (%)
Model A B C D E - -
BP 2 8 1 1 3 Lower 90
model 0 2 5 0
CNN 1 6 1 1 2 Higher 89
model 5 0 2 5
Mobile 1 4 8 1 2 High 97
Net 2 0 0
model
ResNet 1 5 9 1 2 High 93
model 4 1 2

This indicates that the MobileNet model may have higher
practical application potential and feasibility in toxicology
detection.

To evaluate the time efficiency, substitutability, and predic-
tive power of the toxicological detection method combined
with THz technology and DL method used here, the tradi-
tional toxicological detection (animal experiment (A)/ in vitro
test (B)/ chemical analysis (C)/ acute toxicity test (D)/ chronic
toxicity test (E) is cross-compared with the used DL method.
The analysis results are revealed in Table 6. It can be seen
that compared with traditional toxicology detection methods,
the BP model has the longest detection time. However, it still
significantly reduces the detection time of traditional meth-
ods, and the prediction accuracy is maintained at a high level.
The CNN and ResNet models are better than the BP model
in terms of detection time, substitutability, and prediction
accuracy, and their performance is stable. The MobileNet
model presents excellent advantages in all aspects, with the
shortest detection time, the highest prediction accuracy, and
high fungibility, providing strong support for future toxicol-
ogy research.

D. DISCUSSION

In summary, the DL algorithm exhibits faster prediction
times, improved stability, and greater accuracy when com-
pared to ML. These study findings are further compared to
those of prior research. For instance, Sujatha et al. evalu-
ated the efficacy of six DL methods (Incident-V3, Visual
Geometry Group (VGG)-16, and VGG-19) and three ML
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algorithms (SVM, Random Forest (RF), and Random Gradi-
ent Descent) for the diagnosis of citrus plant diseases. They
discovered that DL outperformed ML, with RF achieving
the lowest disease classification accuracy, while VGG-16
demonstrated the highest accuracy (89.5). Their research also
underscores the superiority of DL over ML, aligning with
this study’s results despite differences in application domains.
To develop a system for detecting suicidal ideation, Ald-
hyani et al. employed a publicly accessible Reddit dataset,
utilized the word embedding approach for text representa-
tion, and implemented a hybrid DL and ML algorithm for
classification. CNN, a bidirectional LSTM model, and the
ML XGBoost model were used to categorize suicidal or
non-suicidal social posts. Their findings demonstrated that
the bidirectional LSTM model outperformed the XGBoost
model in the context of text-based characteristics, achieving
a95% accuracy in suicidal thought detection [41]. This result
aligns with this study, reinforcing the superiority of DL algo-
rithms. In the realm of medical imaging, Castiglioni et al.
examined the distinctions between ML and DL. They pro-
vided an overview of the feature selection process via ML and
the stages of training, verification, and testing. Furthermore,
they highlighted DL’s capability to process images directly,
emphasizing the practical advantages of DL over ML meth-
ods [17].

Moreover, this study focuses on toxicological detection,
presenting a new approach to improve public health and
safety by combining DL and THz techniques. What sets this
study apart from others is its unique amalgamation of DL
technology and THz for identifying toxicants in health prod-
ucts. This innovative approach opens up new avenues in the
field of toxicological detection. Furthermore, the experimen-
tal results clearly underscore the exceptional performance of
the DL model in toxicological detection, surpassing the effi-
cacy of conventional methods. Therefore, the study findings
carry significant potential for practical applications promot-
ing public health and safety.

Wang et al. used sparse principal component analysis to
condense the features of drugs and proteins into a uniform
carrier space. They also constructed a deep LSTM model
for prediction, achieving an impressive area under the curve
value of over 90% on drug target datasets. The research
highlighted the potential of DL in drug discovery and devel-
opment, particularly in predicting drug-protein interactions.
While both studies leverage DL technology, they differ in
terms of research subjects and objectives [47]. Similarly,
Baptista et al. [10] employed DL methods to forecast drug
response in cancer cell lines. Their findings demonstrated that
the DL-based model performed on par with or even outper-
formed traditional ML models in predicting drug responses.
While this study shares a commonality in applying DL to
life sciences, it distinctly focuses on toxicological detection,
diverging from Baptista et al.’s emphasis on cancer cell line
drug responses. Sharma et al. adopted a DL framework to
model in vitro and in vivo simultaneously and clinical toxicity
data. They observed that viral were more closely correlated
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with in vitro (53%) and in vivo (56%) endpoints than with
clinical data (8%) [22]. Their work delved into various facets
of toxicity data, shedding light on differences between data
endpoints and the preference of vector data for in vitro and
in vivo experimental data. This comprehensive exploration
proved valuable for understanding toxicity mechanisms and
the effects of toxicants, echoing the potential of DL in toxi-
cology research, as exemplified in this study.

V. CONCLUSION
This study discusses the prospective application of DL tech-
nology in nutritional toxicology detection tasks. It uses four
DL algorithms (BPNN, CNN, ResNet, and MobileNet) to
scrutinize and predict potential toxicity in human nutrition.
This leads to the following conclusions: (1) As training
duration extends, model accuracy steadily improves. The
final accuracy of BPNN and CNN culminates at 98.96%.
Conversely, ResNet and MobileNet models attain a flawless
100% accuracy. (2) Among the four DL techniques, BPNN
exhibits the swiftest prediction time, whereas the MobileNet
model consistently secures the highest and most consistent
accuracy. (3) The DL algorithm surpasses the ML algorithm
regarding prediction speed, accuracy, and performance. Over-
all, the MobileNet model excels with excellent accuracy,
precision, recall rate, and F1 score, establishing a superior
classification performance compared to other models. (4)
This study underscores the vast potential of DL technology
for toxicology detection, offering a promising avenue for
enhancing the safety of food and cosmetic products while
mitigating potential risks. It underscores the pivotal role of
DL in augmenting public health and safety in this context.
However, this study bears certain limitations that warrant
acknowledgment. Firstly, despite utilizing a more extensive
and diverse dataset, potential sample bias remains, potentially
impacting the model’s generalization abilities. Secondly,
this study mainly focuses on the comparative performance
comparison of four DL algorithms. While these algorithms
have seen enhancements, the quest for improved accuracy
in toxicology detection remains an ongoing challenge. Fur-
thermore, this study could be broadened to a broader array
of chemicals and food products to yield a more comprehen-
sive spectrum of research outcomes. Future research should
encompass the refinement of the DL model to enhance its
efficacy in toxicological detection, while simultaneously con-
sidering integrating additional data sources and innovative
feature engineering methods. Moreover, exploring advanced
DL architectures is a promising avenue to elevate the model’s
classification performance. Finally, this study’s methodology
could be readily applied to real-world product safety assess-
ment to ensure the quality and safety of items such as food
and cosmetics.
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