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ABSTRACT The recent developments in the Global Navigation Satellite Systems (GNSS) and the advent
of Intelligent Transportation Systems (ITS) have accelerated the need for accurate, reliable, and robust
land vehicle positioning. Current low-cost, single-frequency GNSS receivers are universally available and
have already been employed in a variety of urban mobility applications. However, low-cost GNSS receivers
provide low (5-15 m) accuracy that deteriorates rapidly in deep urban and harsh environments imposing a
significant impact on the effectiveness and the reliability of critical ITS services. In this paper, a novel vehicle
ranking and selection methodology for cooperative positioning (CP) is developed aiming at capitalizing on
low-cost GNSS receivers’ potential and maximizing their benefits in safety-critical vehicular applications.
The proposed method is based on the Multi-attribute Decision-Making (MADM) theory and provides
a prioritization of the neighboring vehicles in the vicinity of a target vehicle using criteria related to position
accuracy and reliability. By selecting the optimal neighbor vehicle for CP, the low-cost receiver of the
target vehicle enhances its location-awareness, and hence, its absolute/relative positioning accuracy. The
proposed optimal vehicle selection process was inspired by the Cooperative-Differential GNSS (C-DGNSS)
technique. An additional contribution of the proposed methodology is the expansion of the ‘‘moving base
station’’ concept for use in ITS. Various MADM algorithms are considered and simulated employing real
experimental data from multiple, low-cost GNSS receivers. The optimal MADM algorithm proposed is
TOPSIS because the derived rankings offer maximum stability and similarity with Average Correlation Index
(ACI) = 0.78, thus satisfying the requirements for critical applications.

INDEX TERMS Accuracy improvement, cooperative positioning, global navigation satellite sys-
tem (GNSS), intelligent transportation systems (ITS), low-cost GNSS, multi-attribute decision-making
(MADM), NMEA, ranking methods, RTCM, TOPSIS, VANETS, vehicular networks.

I. INTRODUCTION
Low-cost GNSS receivers are increasingly used in a variety of
mobility applications today stemming from the higher num-
ber of available navigation satellites and signals (>100) [1].
Such units are usually patch-antenna-equipped receivers with
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multi-constellation tracking capabilities that enable either
a single or dual-frequency functionality. Moreover, they
are lightweight, require a small power supply, and work
in a variety of temperature conditions while featuring net-
working capabilities [1]. The low-cost and ultra-low-cost
GNSS receivers are currently mass-produced for commercial
location-based services (LBS) and for equipping track-
ing devices of various types – for instance, smartphones,
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wearables, and drones [2]. In [1] they are paired with
Real-Time Kinematic (RTK) positioning or inertial sensory
units and have been proven accurate enough for certain non-
safety-critical applications under good channel conditions.

However, the excessive error budget accumulated in
low-cost receivers and their low availability in the city envi-
ronment has restricted their use, especially for vehicular,
safety-critical applications. This is mainly due to signal
occlusion, multipath, and radio interference [1], [2]. As a
result, low-cost GNSS receivers alone cannot reach the full
potential of satellite positioning and, therefore, they are used
complementary to other sensor types to increase redundancy
and reliability in position fixing [3], [4], [5].

Various positioning schemes with low-cost receivers have
been proposed to study the value of GNSS in connected
and autonomous vehicular applications. In [6] and [7]
the authors consider handheld smartphones equipped with
GNSS receivers and Inertial Measurement Units (IMUs)
for low-cost ITS usage. They thoroughly investigate smart-
phone precision and trueness by comparing their accuracy
performance against a high-end GNSS/IMU system. The
cruising and maneuvering assessment tests were conducted
in both open and shadowed areas. The results showed vari-
ability in the error budget between the different smartphone
manufacturers but also a high potential for safety-critical
applications.

The use of IMUs is a good technique to support GNSS
and provide a solution in areas where satellite signal out-
ages occur for short time gaps [8], [9], [10]. Inertial sensors
improve and smooth the PVT solution derived from theGNSS
receiver. But in the case of a prolonged degraded GNSS
solution, the errors of the IMU sensors are so large that they
ultimately do not help and do not improve the final solution
[10]. Thus, the only technique that may improve the GNSS
solution is the cooperative positioning technique.

In this work, a dynamic algorithm for assisting the
positioning of a target vehicle based on a number
of available candidate neighbors is proposed based on
Cooperative-Differential GNSS (C-DGNSS). The key idea
resides on the basic principle of GNSS differential posi-
tioning, not through pseudorange corrections, but phase
corrections [11], [12], [13], [14]. All vehicles in the neighbor-
hood share their current PVT information, their positioning
quality metrics, and GNSS systematic corrections (atmo-
spheric delays, clock errors, orbital data errors) for all
satellites (SVs) in view.

The target vehicle reviews in a sequential manner the
incoming PVT information and decides in an optimal and
dynamic manner which neighbors to use for retrieving GNSS
corrections for improving/updating its own PVT state.

The computation of baseline vectors/IVRs is not required
in this proposed C-DGNSS algorithm. The transmitted PVT
data are in the form of National Marine Electronics Associ-
ation (NMEA) sentences and are elaborated in subsequent
sections [16], [17]. The differential corrections are in the
form of Radio Technical Commission for Maritime (RTCM)

FIGURE 1. Schematic view of the Cooperative-Differential GNSS
(C-DGNSS) positioning layout.

Services streams [18], [19]. Figure 1 depicts the C-DGNSS
procedure.

For this purpose, several multi-objective criteria and multi-
attribute decision-making (MADM) methods are introduced
to fully process all incoming information from the vehicles in
the neighborhood, including their position accuracy, dilution
of precision (DOP), integer ambiguity status, etc. The major
contributions of this article are:

• A comparative analysis of various MADM method-
ologies is presented and a dynamic MADM selec-
tion algorithm based on Spearman’s rank correla-
tion is proposed. The proposed algorithm ranks and
selects the optimal MADM method that exhibits the
highest-ranking consistency and stability from a set of
several other MADM methods.

• The chosen optimal MADM method is then used to
rank and select the optimal neighbor of the available
vehicles surrounding the target vehicle using a multi-
tude of objective criteria that characterize their position
information.

• Actual experimental data from low-cost GNSS
receivers are employed to perform the MADM simula-
tions that cover various operating scenarios (i.e., deep
urban, suburban, and rural areas).

• The employed data are extracted from NMEA sen-
tences which are universally produced irrespectively
of GNSS receiver manufacturers. The values of the
decision criteria adopted are obtained from the NMEA
data.

• Time series of criteria values related to position infor-
mation, MADM methods ranking representations as
well as alternative vehicle rankings results with rank
scores are exhibited. Especially, the neighbor vehicles’
rankings are derived solely from the NMEA PVT data.

II. COOPERATIVE POSITIONING RELATED WORK
The precision, accuracy, and reliability of the low-cost GNSS
receivers can be significantly improved through cooperative
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or collaborative positioning (CP) [11]. Vehicle-to-vehicle
(V2V) communication aiming to connect vehicles is a crit-
ical application of the 5G technology that will enable the
provision of safety-critical services in deep urban areas and
will allow the exchange of real-time Position, Velocity, and
Time (PVT) information leading to computing inter-vehicular
ranges (IVRs), carrier phases, relative speed, and more [12].
At the single-user level, using DGNSS techniques along
with local GNSS raw data, and differential corrections are
estimated the baseline vectors (Euclidean distances) between
moving GNSS receivers [2]. The integration of this IVR will
improve both the accuracy and precision of the target vehicle
[10].

In [2] the authors provide a Proof of Concept regard-
ing the feasibility of a GNSS-based CP between 4G/LTE
smartphones equipped with ultra-low-cost GNSS receivers.
A near-real-time sharing of raw GNSS observations among
the smartphones is achieved which enables computation of
IVRs and consequently offers a hybrid PVT solution. The
experimental results exhibit an average accuracy improve-
ment of over 40% compared to standalone GNSS. In [12]
the authors propose and evaluate four distinct CP methods
to estimate inter-vehicular ranges with double differencing
of the raw code observables being the most accurate one.
A dual-vehicle scenario with field testing in various environ-
ments is considered. In [14] the authors adopt the ‘‘moving
base station’’ CP technique by placing two low-cost GNSS
receivers on board the same moving vehicle at a pre-set
distance and then provide preliminary results from the testing
of this technique compared to an RTK GNSS solution using
a virtual reference station. The experiment was carried out
along a 9 km-long urban trajectory. The trueness (i.e., how far
the measurement is from the true value) of the baseline length
has shown an improvement of the order of 40% when using
the moving base station technique instead of RTK GNSS.
In [15], [16], and [17] additional information on the pro-
posed C-DGNSS approach is providedwhile also preliminary
results appear. In [18] and [19] more recent related work to
cooperative vehicle positioning, navigation, and localization
is reported.

TABLE 1. Typical values of communication parameters for safety-critical
ITS applications.

Safety-critical applications pose very strict requirements
regarding the beacon rate, latency, and reliability while
the data rate can be a few tens of Mbps. Table 1 sum-
marizes the radio-network communication requirements for
safety-critical vehicular CP based on [20]. The latency
parameter includes both the transmission-related delay and
the processing-related delay. The reliability parameter (i.e.,
the percentage of time in which packets are delivered in the

correct order and without losses), is also crucial because
of the high environmental dynamicity which could lead to
outdated or degraded position estimation.

III. MULTI-ATTRIBUTE DECISION-MAKING METHODS
In order to apply the proposed CP scheme and benefit from
the exchange of GNSS code corrections, the target vehicle
(low-cost GNSS receiver) needs to rank the moving vehicles
in the vicinity and select the optimal neighbor. A MADM
algorithm is proposed as a basis for neighbor selection using
a variety of criteria, weights, and alternatives [25], [26].
MADM methods are designed to determine the most satis-
fying of a number of antagonistic alternatives or to provide
ranking capabilities. The prioritization of the alternatives is
achieved by evaluating and comparing their performances
across certain weighted criteria [23], [24], [25], [26]. The
MADM algorithms converge to the optimal solution, and are
useful, as long as there is no evident best alternative. This
may happen when an alternative performs notably better than
all the others and, in all criteria, so in this case, the optimal
alternative is prominent.

In practice, the criteria values are stored in a decision
matrix (M × N), where M is the number of alternatives and
N is the number of criteria. The importance of each criterion
on the outcome is expressed by assigning a weight to it.
The adoption of the criteria weights vector could be a chal-
lenging task and one can either employ particular weighting
techniques or set them empirically [25], [26]. Most MADM
methods are based on the principles of linearity and causality.
That is the decision-making process is regarded as one-way,
as the final decision must be determined by the criteria and
follow the synthesis process. This traditional approach is also
called the linear aggregation approach [25].

Currently, there exists a variety of MADM methods that
can be grouped and categorized in terms of their ranking char-
acteristics. Table 2 provides a taxonomy of some well-known
MADM methods [25], [26].

The scoring-based class algorithms include techniques
such as the SAW, COPRAS, MOORA, and GRA. They
are considered the least complex, fast, cheap, and easy-to-
implement techniques. Scoring methods are also plain and
easy to interpret by the decision-maker, they combine all
the criteria values and weights into a single output and are
suited for evaluating a specific alternative. Their drawbacks
stem from the unrealistic assumption that the attributes can be
linearly aggregated. The need for normalization and positive
attribute values as well as the ranking inconsistency when the
input values are largely fluctuating are also drawbacks of this
class of MADM algorithms [25], [26].

The distance-based class includes methods such as
the TOPSIS, VIKOR, CODAS, MABAC, D’IDEAL, and
ORESTE. This group of algorithms computes the distances
from the ideally best and worst points and ranks the alter-
natives via a compromise between the two distances. These
MADM algorithms feature a medium complexity, and they
are sufficiently stable even if the input data fluctuates, assum-
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TABLE 2. Taxonomy of main MADM methods.

ing unchanged best and worst ideal points; however, they
require normalization of the decision matrix. Also, the use
of Euclidean distancemishandles strong correlations between
the attributes [25], [26].

The pairwise comparisonsMADMclass includes AHP and
ANP techniques and is considered the most demanding in
terms of computational time, complexity, and mathematical
calculations. These techniques employ a hierarchy structure
that can handle both qualitative and quantitative data types
without normalization needs but are restricted to indepen-
dent attributes. This makes them unsuitable for real-world
applications. Particularly, the AHP technique is judgmental
and depends on the subjective preferences of the stakeholders
leading to instabilities. In contrast, ANP circumvents the need
for independence and is better suited for criteria with inter-
relationships [25], [26].

PROMETHEE and ELECTRE techniques and their exten-
sions are associated with the outranking class. They employ a
binary concordancemodel between the alternatives leading to
partial or complete ranking based onwins and losses. Usually,
a preference function is adopted that makes use of predefined
threshold values. They can handle both qualitative and quanti-
tative data types with no need for normalization; however, due
to the binary outranking relations between alternatives they
exhibit higher time complexity almost quadratic, especially
as the number of alternatives and attributes increases [25],
[26].

Finally, the utility/valuate class includes MAUT and
MAVT techniques which also take into account the personal
preferences of the decision-maker and can handle uncertain-

ties in the data. Contrarily, they require a huge volume of
input data and the results are subjective [25], [26].

The stability and/or ranking consistency of the perfor-
mance of the different MADM techniques regarding the
number of alternatives, appropriate balancing of the weights,
and the measurement scales form part of a sensitivity anal-
ysis. Those techniques that retain statistically the priorities
and ranking of alternatives when altering the input data
are deemed to be the more robust ones, and consequently,
they suit real-time applications. Another problem is the rank
reversal phenomenon that occurs in all classes and methods.
It occurs when a duplicate alternative or a worse-scoring
alternative is added, removed, or replaced then the top ranks
might reverse which is inconsistent [25], [26].

In [27] the challenge of network selection in multi-access
radio network environments is formulated as a decision-
making problem. The authors propose ranking techniques
based on utility functions, and MADM methods. Notably,
the method’s stability is considered a crucial parameter in
radio networks in order to avoid unnecessary selections (han-
dovers). For real-time cooperative positioning applications
with low latency, high reliability, and a fast-changing oper-
ating environment the pairwise comparison methods (AHP,
ANP) and utility methods (MAUT, MAVT) are excluded due
to their high complexity, the huge amount of data required,
and their subjective nature.

IV. GNSS CRITERIA SELECTION DESCRIPTION
MADM analysis presupposes several criteria or attributes
that altogether characterize the quality in the GNSS position
of the engaged vehicles. Considering real-time applications,
these criteria must be highly uncorrelated and preferably of
a limited number (up to 5 or 6) in order to evaluate ade-
quately the accuracy of the vehicle position without adding
latency and overhead to the decision-making methodology.
The NMEA constitutes a data specification between GNSS
receivers (and other types of instruments) readily available
regardless of GNSS receiver manufacturer or grade [21],
[22]. The universally produced NMEA 0183 sentences have
a serial format filled with specific data fields that con-
tain detailed positioning information. For instance, message
$GNGNS yields geographic information such as the geo-
graphic longitude and latitude, altitude, the number of GNSS
satellites in receipt, and the horizontal/vertical dilution of
precision (DOP) metric. Similarly, the $GNGST message
provides position statistics such as the Root-Mean-Square
(RMS) values of the horizontal/vertical standard deviations
in position, [21], [22]. These messages are fed as input to the
MADM algorithm.

In this work, the following five attributes are taken into
account for the vehicular system under investigation: (i) the
number of satellites in view (NS), (ii) the root mean square
of the range observations in the L1 frequency band (Range
RMS), (iii) the standard deviation of the horizontal coor-
dinates point fix (Hz std), (iv) the ambiguity status of the
position solution (Amb Stat), and (v) the horizontal dilution
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of precision (HDOP). The NS equals the number of GNSS
satellites in receipt from the GPS, GLONASS, Galileo, and
BeiDou systems, the Range RMS is measured in meters and
expresses the radius of the error circle within which about
68% of L1 position fixes lie, the Hz std is measured in meters
and expresses the horizontal accuracy error in position, and
the Amb Stat denotes the GNSS receiver’s integer ambiguity
status. Thus, Amb Stat may yield an autonomous solution
with a position accuracy of ∼ 10 m, differential GPS (DGPS)
with an accuracy of∼ 3m, a float solutionwith an accuracy of
∼ 0.30 m, and a fixed solution with an accuracy of ∼ 0.02 m.
The fixed solution of a neighbor car may have been derived
from RTK or Precise Point Positioning (PPP). Finally, the
HDOP reveals the effect of theDOP on the horizontal position
value. The more visible satellites low in the sky, the better
the HDOP and the horizontal position (latitude and longitude)
are.

From the selected NMEA messages discussed above, only
specific fields are used in the MADM algorithms (input).
Table 3 shows the list of criteria used per NMEA sentence.
Every single vehicle broadcasts these criteria, which reflect
the quality of its PVT solution. The MADM algorithm run-
ning on the target vehicle uses the received criteria to rank the
in-range neighbor vehicles.

TABLE 3. Criteria used for implementing MADM technique in C-DGNSS
positioning.

V. SIMULATIONS SCENARIO/CRITERIA VALUES
The first step in testing and validating the alternative MADM
methods applied in dynamic C-DGNSS calls for using exper-
imental data of criteria values. C-DGNSS application belongs
to the CP family, in which neighboring vehicles transact data
that refer to standardized NMEA sentences containing PVT,
position accuracy, and integrity information. These sentences
constitute the criteria (input) that the MADM algorithm uses
to rank the neighboring moving vehicles (output) and select
the optimal alternative.

The recorded data used for implementing the testing
and validation process were acquired using six-passenger
vehicles that moved simultaneously at different trajectories
spanning about 2000 epochs (∼33.3 min), whilst each trajec-
tory consisted of variable observation conditions. Recorded
trajectories include sections with: (i) open sky conditions
(cut-off elevation angle < 10◦. The multipath effect is neg-
ligible) [28], (ii) urban environment with narrow streets and
high-rise buildings (cut-off elevation angle 10◦ to 30◦. Multi-
path has medium impact) [28], and (iii) semi-urban segments

with tall trees of dense foliage, resulting in severe attenuation
and partial blockage of the satellite signal (Cut-off elevation
20◦ to 60◦. Strong multipath impact) [28]. Each vehicle is
equipped with a low-cost or middle-range GNSS receiver
connected with a patch antenna placed at the top of the
vehicle. The middle-range receivers have the capability of an
RTK solution, while the low-cost are not equipped with this
option. A simulation framework was implemented using the
MATLAB® toolbox for realizing the MADM simulations.

The GNSS receivers from all six vehicles were configured
to compute the PVT solution and report it at 1 Hz (2000
s in total). The position solution is standardized in NMEA
GNS and GST messages. The data are derived from the PVT
solution only, ignoring how GNSS signals interact with the
environment.

Of the six passenger vehicles that were used, the first
vehicle (veh. #1) is the target vehicle and the remaining five
ones (veh. #2, veh. #3, veh. #4, veh. #5, veh. #6) are the
neighbor vehicles. Figure 2 shows a plot of the number of
satellites in view of the GNSS receiver of each vehicle. From
Figure 2 it is evident the variability in observation conditions
for the contributing vehicles.

FIGURE 2. Number of satellites in view per neighbor vehicle (veh.
#02/03/04/05/06) for the entire trajectory.

For instance, veh. #6 has a stable RTKfixed solution, as it is
moving in a suburban environment. The number of satellites
is constant during its trajectory whilst showing up only a
few fluctuations. The number of satellites illustrated is the
number of common satellites between the vehicle and the
base receiver.

The high variability observed in the satellites’ observation
(NS) in Figure 2, is due to the different urbanization levels
and the non-line-of-sight reception due to the urban canyons.
Figure 3 illustrates the Horizontal standard deviation (Hz
std) of each vehicle along its trajectory. As expected, as the
number of satellites decreases the Hz std increases. Also, the
greater the fluctuation of the satellites in view the worse the
Hz std becomes.

Figures 2 and 3 illustrate the conditions that existed dur-
ing data collection and how satellite observations and their
variability affect the quality of the receiver PVT solution. For
example, in Figure 2 there are two red boxes that emphasize
a period with a few satellites in view and high fluctuation
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(left). The right box surrounds a period with several satel-
lites in view and low fluctuation. Similarly in Figure 3, the
corresponding boxes are shown, where the left shows a high
horizontal position rms, while the right a period of low hori-
zontal position rms, respectively, which are expected to.

FIGURE 3. Horizontal position rms per neighbor vehicle (veh.
#02/03/04/05/06) for the complete trajectory.

VI. MADM METHODS COMPARISON AND JUSTIFICATION
In the proposed C-DGNSS localization approach, the vehi-
cles in the vicinity of the target vehicle share their PVT
data with it. Subsequently, a decision algorithm selects the
optimal neighbor for cooperation (Table 2). In this study,
a set of six MADM methods are tested and cross-compared,
two from each MADM family. These are the SAW, CODAS,
COPRAS, TOPL1, PROMETHEE, and ELECTRE. TOPL1
is the TOPSIS method employing Euclidean distances of
each alternative from the positive and negative ideal solu-
tions while the Gaussian preference function was employed
for PROMETHEE [25], [26]. The AHP class was omitted
because it’s strongly subjective and computationally complex
while the utility class requires a lot of input data to converge
fast to a decision.

The decision matrices are filled with dynamic criteria data
obtained from simultaneous trajectories of the alternative
vehicles. The results of each MADMmethod suggest a rank-
ing of the contributing vehicles for a specific decision matrix
corresponding to a given timestamp (epoch). In other words,
for every epoch of criteria values, there are as many rankings
as the number of MADM methods.

It is proposed that the best MADM method to be selected
should give rankings strongly consistent with those obtained
using the other methods and with good agreement. Also,
it should rely on as simple as possible computations providing
real-time, fast, and reliable results. The Spearman’s rank
correlation coefficient (rho) is widely used as a measurement
of similarity between different rankings.

In this study, we make use of the correlation coefficient rho
to compare theMADM algorithms and select the most appro-
priate one. The coefficient rho for computing the correlation
between the rankings of columns Ca, Cb is given by:

rho (Ca,Cb) = 1 −
6

∑
d2

n
(
n2 − 1

) (1)

where, d is the difference between the ranks of two columns
(i.e., twoMADMmethods) and n is the length of each column
(number of ranks). For an input ranking matrix X of mul-
tiple columns, rho(X) returns a matrix with the correlations
between each pair of its columns.

The callout diagram shown in Figure 4(a) depicts the algo-
rithmic steps used to propose the most preferred MADM
method. In this diagram (n)MADMmethods and (m) alterna-
tive vehicles are examined for a trajectory of (k) timestamps,
while in every timestamp (i) equal-weighted criteria are avail-
able. The assignment of identical criteria weights, although
an ideal situation in practice, is done to avoid a predominant
attribute while evaluating the methodologies. Every times-
tamp corresponds to a column that includes the ranking of
alternative vehicles of each MADM method (rankm/n), and
thus the dimensions of the rankingmatrix for every timestamp
are (m × n).
The subsequent step for computing the (m × n) ranking

matrix resides in the correlation coefficient matrix calcula-
tion using Spearman’s correlation method (Figure 4(b)). The
result is a (n × n) symmetric positive semidefinite matrix
with unitary diagonal at every timestamp. In order to calculate
the total correlation coefficient matrix from the complete
trajectory, a sum along the third dimension is performed, and
then it’s divided by the total number of timestamps. In the
final step, a metric equivalent to the Rank Similarity Index in
[29], the average correlation index (ACI) corri is computed
by averaging the previous correlation values. The ACI is a
statistical benchmark to measure the ranking stability and
consistency of the investigated MADM methods. This leads
to better performance by avoiding unnecessary handovers,
e.g., when input criteria data greatly fluctuate, when select-
ing the optimal neighbor vehicle. Conclusively, the MADM
method with the largest ACI is the most preferred one, as it
yields consistent rankings and is in good agreement with all
the other methods for the whole trajectory [29]. In our case,
a trajectory of k = 2000 timestamps subject to i = 5 criteria
is examined using m = 5 alternative vehicles (veh. #02 –
veh. #06) while the ranking results of n = 6 different MADM
algorithms are compared.

Table 4 summarizes the results associated with Figure 4.
Clearly, the largest ACI value is observed in methods SAW
and TOPL1 while the outranking class of ELECTRE and
PROMETHEE is the worst-performing MADM classes.

According to Table 2, the SAW method belongs to
the scoring-based class, while TOPL1 belongs to the
distance-based MADM class. From the qualified methods
above those that belong to the Distance-Based MADM class
(TOPL1 and COPRAS) are preferable due to their stability
even for variable data, and due to medium complexity.

TOPSIS exhibits a time complexity of O(n) when cal-
culating the ideal best and worst points, and O(n2) for
normalization and weighting, where n is the input size [30].
In our MATLAB® simulations, the estimated latency was a
few milliseconds implying its applicability for smartphones,
PDAs, or other handheld devices. Figure 5 depicts the results
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FIGURE 4. The step-by-step flowchart of the proposed MADM selection algorithm (a), and the Spearman’s
correlation method and the calculation of the Average Correlation Index (ACI) values to extract the most consistent
MADM method (b).

TABLE 4. Average correlation index for six MADM methods.

of the TOPL1 MADM method that corresponds to the rank
I selection vehicle ID along the trajectory. These results are
derived using the MAX normalization method (i.e., divide

criteria values by the maximum value) and an assumption of
equal weights of criteria for the decisionmatrix. It is observed
that vehicle #02 remains in rank I for the most timestamps,
compared to other vehicles, while vehicle #05 is the least
selected in rank I along the whole trajectory.

Further results using additional normalizationmethods and
weight combinations may be implemented. For example, nor-
malization of the decision matrix with the column-wise sum
of the criteria values or applying linear (max-min) scaling,
log-scaling, and vector normalization. Moreover, the weights
should reflect the safety-critical CP requirements, and differ-
ent weightings might yield different ranking results.

Figure 6 illustrates the mean ranking of alternative vehicles
only for the cumulative top two ranks (I+II) in the overall
trajectory for all six MADM methods. The upper plot of
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FIGURE 5. Rank I vehicle during trajectory, using MAX normalization
method, TOPL1 MADM method and equal weight among criteria.

Figure 6 assumes equal weights whilst the bottom plot adopts
a weight matrix w = [0.1 0.8/3 0.8/3 0.8/3 0.1]. Obviously,
the rankings of vehicles #02 and #04 remain almost the same,
while the rankings of vehicles #03, #05, and #06 change
slightly. Also, vehicle #02 remains at the top of ranks I+II
for approximately 80% of all timestamps compared to other
vehicles along the trajectory. On the other hand, vehicle #04
is the least selected alternative for only about 10% of the time
in I+II ranks.

FIGURE 6. Mean ranking of I+II rank positions of alternative vehicles for
the entire trajectory using MAX normalization and six MADM methods.
(a) Equal weights. (b) Unequal weights.

VII. CONCLUSION
In this article, a cooperative positioning solution based
on Multi-attribute Decision-Making is developed aiming at
exploiting the potential of low-cost GNSS receivers and max-
imizing the benefits of GNSS positioning for safety-critical
vehicular applications. The proposed decision methodology
for optimal neighbor selection exhibits low latency suggest-
ing applicability for near real-time usage. It can also be
implemented universally with the employment of NMEA
sentences. It provides a ranking of the neighboring vehi-
cles using criteria related to quality metrics in position.
In order to derive the optimal neighbor and methodology, six
MADM algorithms are considered and simulated employing
actual experimental data over various environmental set-

tings that employ multiple, low-cost GNSS receivers. The
numerical results are presented and discussed and the best
MADM algorithm is investigated. From the preceding analy-
sis, the distance-based TOPSIS method is proposed because
the derived rankings offer maximum stability and similarity
(ACI = 0.78) with the rankings of all the considered method-
ologies. The proposed methodology may be implemented
using portable devices (e.g., smartphones and tablets) in the
sphere of the smart cities concept or for recreational activities
(e.g., team hiking). For example, employing more affordable
localization tools for connected vehicles can lead to enhanced
ITS services with overall economic benefits.

Finally, the MADM simulations in this work with the
employed dataset derived from a variable conditions’ trajec-
tory successfully demonstrated the feasibility of our proposed
methodology and indicated TOPSIS and SAW to be superior.
Under conditions, a real-time application of the C-DGNSS
algorithm can be realized using real-time PVT data in a
CP setup where the participating vehicles have the MADM
algorithm implemented and installed.
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