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ABSTRACT Digitalisation in railway networks harnesses digital technologies to optimise operations,
leading to enhanced efficiency, and reduced energy consumption. By analysing real-time data, railways can
predict maintenance needs, improve passenger experiences, and seamlessly integrate with other transport
modes. As societies strive for sustainable transportation solutions, it is imperative to understand and collect
digitalisation techniques to enhance efficiency and reduce the ecological footprint of railway networks. This
paper serves as a snapshot of the current state of the art addressing the pivotal role of point cloud techniques
in advancing railway digitalisation and providing valuable pointers for future research directions. Employing
a systematic review approach, our study concentrates exclusively on research centred around railway assets
and their digitalisation via point cloud data. We have themed the literature into pre-processing, modelling,
and digital twinning. Within this review, we analyse diverse modelling and pre-processing techniques and
categorise them for clarity. The digital twin techniques are also collected, though these techniques are scarce
in the context of railway infrastructure and point clouds. The paper also presents a compilation of dataset
statistics highlighting the scarcity of openly available railway-specific datasets. This scarcity considerably
hampers the feasibility of research reproducibility and the comparative analysis of different approaches. Our
conclusion reflects on the challenges encountered and proposes a course for future research. Particularly,
we conclude that hybrid methodologies that combine machine learning with structure-based techniques
hold substantial promise toward creating digital twins, considering the intrinsic characteristics of railway
infrastructure.

INDEX TERMS Railways, point clouds, digitalization, infrastructure, deep learning, digital twin.

I. INTRODUCTION
Compared to other means of transport, such as air or road
transportation, rails are viewed as being more environment-
friendly [1]. To maximise the benefits of this greener and
sustainable alternative, initiatives such as SHIFT2RAIL and
European Rail Traffic Management System (ERTMS) have
been initiated by the EU [1], [2]. The latter aims to digitalise
the management of railway infrastructure to increase its
capacity and lessen its greenhouse gas emissions. The
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ERTMS digitalisation efforts aim for safer, more competitive,
and more integrated railway infrastructure [1, Page 23] also
[3]. One of the objectives of ERTMS is to further improve
the predictive maintenance in railway infrastructure through
improved early fault detection [1].

Any railway digitalisation effort is met with context-
sensitive challenges mainly related to the criticality of the
railway system, its legacy systems, interoperability, data
integration and standardisation, cyber-security, reliability and
safety, regularity and organisational challenges [4]. We focus
in the rest of this review on the digitalisation of the
railway infrastructure, in which imaging technologies, such

VOLUME 11, 2023

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 134355

https://orcid.org/0000-0002-9525-5633
https://orcid.org/0000-0001-7465-9543
https://orcid.org/0000-0002-2626-1837
https://orcid.org/0000-0002-2760-6892
https://orcid.org/0000-0003-4501-1339


B. Dekker et al.: Point Cloud Analysis of Railway Infrastructure

as Light Detection And Ranging (LiDAR), play a crucial
role. Other sensors, simpler in this context, such as cameras
provide visual information, however, their use in the railway
infrastructure is both limited and limiting due to the required
lighting conditions, depth perception, and privacy.

Point clouds are captured using LiDAR. This is done
through laser scanning, which operates by emitting a usually
non-visible laser light pulse and calculating its time-of-flight.
This time is directly proportional to the distance of the object.
Three main configurations of laser scanning exist:

• Terrestrial Laser Scanner (TLS): The laser scanner is
usually fixed on a tripod.

• Mobile Laser Scanner (MLS): The laser scanner is
mounted on a mobile carrier platform such as a car, boat
or train.

• Airborne or Aerial Laser Scanner (ALS): The laser
scanner is attached to an airborne carrier platform such
as an unmanned aerial vehicle (UAV), helicopter or
airplane.

LiDAR is reputed for precise mapping, extensive range
capabilities, its ability to see through vegetation, and compat-
ibility with other tech systems. Its applications span sectors
like agriculture, environmental monitoring, archaeology, and
forestry [5]. The output of the LiDAR is recorded in the form
of point clouds. A point cloud P is a finite set of points with
cardinality n in R3. Associated with each individual point
there is an optional feature vector FD. This D dimensional
feature vector can contain information such as reflection
intensity or colour information. Point clouds could be used
to create a digital model of the railway infrastructure that can
act as a digital twin. This twin, when regularly updated, can
serve for continuous monitoring.

The conversion of point clouds into a digital twin is a
complex, multi-step process. An initial step often involves
segmenting the cloud into different railway-related objects,
such as tracks or poles. The interest in point cloud segmenta-
tion is not exclusive to railway infrastructure monitoring, it is
rather crucial for other domains, especially in autonomous
driving [6] or infrastructuremonitoring [7] amongmany other
applications [8].

LiDAR technology, while not new, has gained renewed
interest due to the surge of machine learning-based tech-
niques [9]. The research on the crosscut between LiDAR
and machine learning is multi-faceted, emphasising the need
to collate and analyse literature on point clouds within the
railway monitoring and predictive maintenance domain.

Previous systematic reviews have addressed 3D data
collection and analysis, railway datasets, and point cloud
analysis methods. For instance, [10] discusses data inte-
gration of different domains to obtain a 3D dataset of the
railway environment. Dong et al. reviews methods for the
registration of terrestrial laser scanner point clouds [11].
Different datasets of the railway environment are discussed
in [12]. Techniques for point cloud analysis are reviewed
in [9] and [13]. However, there seems to be a gap in systematic

reviews specifically targeting point cloud segmentation or
object detection methods.

This review aims to provide an overview of the current
state-of-the-art methods, models, and technologies that can
be used to digitalise railway infrastructure for monitoring and
maintenance.

Railway scene, railway environment, and railway infras-
tructure are all closely related terms with similar meanings.
To avoid ambiguity, we list the definitions below as used in
this research:

• Railway scene: All objects in the surroundings of the
railway tracks including vegetation, urban buildings and
foreign objects.

• Railway environment: Synonym for railway scene.
• Railway infrastructure: All objects specifically belong-
ing to the railway like tracks, poles, catenary arches,
wires etc. These are the objects of interest for this study.

The remainder of this review is structured as follows:
Section II describes the review strategy. Section III pro-
vides metadata about the publications and includes a table
summarising the characteristics of the datasets used in
the included studies. The paper focuses on the gathering
of literature for pre-processing (Section IV), modelling
(Section V), and the creation of a digital twin (Section VI).
The discussion section (Section VII) reflects on the gathered
literature, identifies the literature gap, and provides future
directions. Section VIII concludes the review.

II. REVIEW METHOD
In this section, the research method used to conduct this
literature review is presented. We have used Covidence to
manage the review process. Covidence is a web-based col-
laboration software platform that streamlines the production
of systematic and other literature reviews [14].

A. REVIEW QUESTION
The main research question for this systematic literature
review is:

What is the state of the art in point cloud anal-
ysis (both classification and segmentation) of railway
infrastructure?

B. DATA SOURCES AND SEARCH STRATEGY
To select proper data sources to find articles for our literature
review, the following criteria are used:
include only databases that are pertinent to our research

(only general databases, engineering databases or computer
science specific databases)
include only databases that have peer-reviewed articles
include only databases that allow to search on phrases
To extract paper relevant to the research question we have

primarily used two databases:

• Scopus [15]
• Web of Science [16]
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We have also used three other databases to verify the
completeness of information namely ACM [17], DBLP [18],
and IEEExplore [19].
The search query used for finding relevant literature was:

(point cloud OR point clouds) AND railway

We restricted the search to the papers’ titles, abstracts, and
keywords with a case-insensitive search. In Scopus, a total of
271 papers were found, and in Web of Science, 158 papers
were found. Importing all these papers in Covidence resulted
in 121 duplicates, thus leaving 308 papers for further
review. We have manually checked the results from the
other databases and compared them with the list generated
in Covidence. This comparison did not reveal any new
papers.

C. STUDY SELECTION
The papers were further screened by reading the title and
abstract. Only papers satisfying all criteria proceeded to a
full-text review, the others were excluded. The inclusion
criteria used in this study are:

1) include papers written in English or Dutch
2) include papers published in 2005 or later
3) include papers using outdoor data
4) include papers describing methods of analysing/pre-

processing point clouds
5) include papers describing scenery reconstruction if the

dataset contains tunnels/bridges
6) include only papers describing transformation from

point cloud to mesh
7) include only papers describing Building Information

Modelling of railway infrastructure
Criterion 5 was included after the observation during the
abstract screening phase that some point cloud papers are
only handling tunnels and bridges. The railway infrastructure
was not specifically included. However, some examples
contained parts of railways. This is observed mainly for
papers focused on the deformation of railway tunnels,
where the focus was on the tunnel structure instead of
railway infrastructure such as railway lines or catenary
arches.
Also some exclusion criteria were used:

exclude papers only describing geometry in point clouds
exclude papers only describing foreign object detection on

the rail tracks
exclude short papers (less than four pages long)
Shorter papers, often less than four pages, may lack the

comprehensive details and thoroughness found in longer
articles, potentially offering only preliminary findings or
lacking in-depth methodologies. Such papers might not have
undergone the same rigorous peer review process as full-
length articles, which is a vital step in ensuring the validity
and quality of research. Therefore, to maintain the integrity
and depth of our review, we have chosen to exclude papers
less than four pages.

FIGURE 1. An overview of the paper selection process with exclusion
criteria.

1) SCREENING PROCESS
At the abstract and title screening stage, at least two assessors
screened each paper. If the assessors disagreed on including
or excluding the paper, a third assessor screened the title and
abstract and decided the outcome. The procedure is applied
to all 308 papers and resulted in the exclusion of 192 papers.
Thus, 116 papers are left for the full-text review stage.

A single assessor conducted the full-text review for each
paper. Should there be any doubt regarding discarding a
paper, it was referred to a second assessor. The rationale for
a paper’s rejection is duly recorded. Following this method,
another 63 papers were excluded from the data extraction
phase. This leaves 53 papers relevant to our research question
which proceeded to the data extraction phase. Figure 1
summarises the screening process and also detailing the
number of papers excluded at each stage.

D. DATA EXTRACTION
In order to maintain the consistency of the data extraction
process, we have used a form. The form is given in Table 1.
For the digitalisation of infrastructure, data collection plays
a crucial role. Therefore, we have collected data reported
in the selected studies related to data collection or meta-
information. Most importantly, we collected the scan speed
(speed of the vehicle if it is vehicle mounted), presence
of colour information, or simultaneous collection of other
sensory data such as GPS. Note that not all papers have
described the data collection process.

We divided infrastructure digitalisation into three stages.
The first stage is pre-processing, where raw or filtered data is
pre-processed formodelling purposes. The second stage is the
modelling itself, while the last stage is the creation of digital
twins. The ‘Steps’ field is used to register which stages are
described in the paper. The results section is also divided with
respect to these stages. The notes field is used to note down
any other relevant information not covered by any other field.

III. META ANALYSIS, CHALLENGES, AND DATASETS
To get a better insight into the gathered data, clusters of
articles are formed based on common characteristics like
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TABLE 1. The data extraction form used for gathering useful information
from every article.

publication year, nature of the dataset or analysis method
used.

It is apparent from Figure 2 that the point cloud analysis
for railway scenes has been gaining interest in recent years.
Another interesting observation is the dip in the number
of publications for 2017-2019, with a further increase in
2020/2021. We cannot associate a reason to the dip in
the number of publications. However, the increase can
be attributed to the popularity of deep learning-based
techniques. The rise in the utilization of deep learning
techniques for point cloud data analysis can be significantly
attributed to the seminal paper ‘‘PointNet’’ byQi et al. in 2017
[20]. This work was groundbreaking because it introduced a
novel neural network that could process point clouds directly.
Note that the data for the year 2022 is incomplete since the
query was run in November 2022.

It was evident from the full-text search that most papers
can be categorised into three classes based on the objective
of the analysis. These steps were pre-processing, modelling,
and digital twin. All papers have at least one of these aspects
as the main contribution. The distribution of papers according
to steps is given in Figure 3. It is clear from the table that
there is no single paper with digital twins as a core focus.
In most cases, it is combined with modelling. A combination
of pre-processing and modelling is understandably the most
used.

FIGURE 2. Number of publications per year (from papers included in this
study).

FIGURE 3. An overview of the count of publication describing
pre-processing(PP),modelling(M), and digital twin (DT). Note that there is
no paper with sole focus on digital twin.

A. DATASET COLLECTION AND BENCHMARK DATASET
One interesting finding of our literature review is the lack of
public benchmark datasets consisting of point clouds in the
context of railway infrastructure. However, we have recently
published a fully labelled dataset consisting of catenary
arches [21], which is the only openly available dataset to
the best of our knowledge. Although a few datasets are
mentioned in the literature, they are not openly accessible.
The only paper we found concerning data collection in the
context of railway infrastructure is [22] that have reported
the most detailed data collection methodology. The authors
have presented the approach together with pre-processing.
The primary focus was on change detection for the safety and
security of railway infrastructure [22].
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The datasets from the included studies are summarised
in Table 2. The table presents a total of 46 datasets from
diverse geographical locations, predominantly from China
(11), the European Union (24), and other countries (11),
showcasing global research interest. Various data acquisition
methods are employed across studies. The majority of the
studies used MLS (31), followed by ALS (8), TLS (3) and
other methods (4). The datasets vary largely in terms of point
density, ranging from densities as low as 50 points/m2 to as
high as 2,500 points/m2, and cover short stretches (80 m)
to several kilometres (120 km). Additionally, while many
studies focus on geometric data, only the minority of
the datasets incorporate RGB information, highlighting the
multifaceted nature of the research.

In the process of collating data for the table, we occa-
sionally derived the density or length values from other
information provided within the papers. A notable observa-
tion was the complete absence of publicly available datasets.
While many papers emphasised the significance of point
density, it was interesting to see that a quantitative report on
density was often omitted rather it was described qualitatively
like low or high density. Interestingly, there was a dataset that
focused on lab-generated data of bolts [23], but we chose to
exclude it from the table for clarity. A particularly remarkable
dataset [24], originated fromChina. Despite being recorded at
an impressive speed of 193 km/h, it boasted an exceptionally
high point density of 3000 points/m2, underscoring the
advancements in data acquisition techniques. For some
datasets, we assumed that they were the same because
they are from the same research group and have the same
characteristics, although it was not stated explicitly in the
papers.

B. CHALLENGES OF POINT CLOUD DATA
Point clouds are irregular, unstructured and unordered,
unlike 2D images, and are thus a challenging data type to
work with [72]. Following is a list of the most significant
challenging characteristics that are inherent to point cloud
data. Sensor type, environment, weather conditions and
sensing distance influence the degree to which point clouds
suffer from these characteristics [6]:

• Irregularity: point clouds usually have non-uniform
distributed point density.

• Unstructured: point clouds are not placed on a regular
grid. Each point is scanned independently, and its
distance to neighbouring points is not fixed. This also
means that voxelisation of point clouds often leads to
empty voxels, i.e. data sparsity.

• Unordered: a point cloud is a set of points, the order
in which the points are stored does not change the
representation.

• Size: point clouds often contain millions of points
taking up large chunks of memory and thus it is
time-consuming to process and analyse them.

TABLE 2. An overview of the datasets used in the included papers.

• Measurement artefacts: point clouds can contain noise
in the data produced for example by errors of the scanner
or moving objects [73].

• (Partial) Occlusion: point clouds suffer from (partial)
occlusion of objects since other objects may block
them [74].

A challenge for railway scenes is the large variance in
object sizes (a top bar can be well over 20 metres long,
while an insulator typically is around 30 centimetres [21],
which is a size ratio of at least 60 times). An additional
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challenge is the huge class imbalance encountered within the
rail environment, for instance certain objects like masts occur
very regularly, but relay cabinets occur a lot less often.

IV. PRE-PROCESSING
Point clouds are unordered sets of points. Absence of
structure makes them a challenging datatype to deal with.
Pre-processing techniques help to reduce the volume of data,
introduce a structure or filter out the dispensable points.
In certain cases the boundary between pre-processing and
modelling is blurred due to the fact that the result of
pre-processing is sometimes already a feature. Therefore,
we do not apply the term in their strict sense instead focus
on the mechanisms of the techniques.

In general, the main goal of the pre-processing is to
cull points such that further processing steps require less
computational effort. In the following subsections we list
the pre-processing techniques found in literature and their
associated references.

A. CROPPING
Cropping is a very rudimentary pre-processing step that
removes points based on a specified bounding region. This
is predicated on the assumption that the points outside this
region do not contain information of interest. For instance,
the work of Ariyachandra and Brilakis, which focuses on
detecting elements of the overhead line equipment, remove all
points belonging to the ground by setting a threshold value of
0.23 cm. Points with a z-coordinate below this threshold are
removed [29]. Similarly Chen et al. also use fixed thresholds
to remove distant points with no information [36]. A more
advanced method of detecting ground points is proposed
by Chen et al. which use a Euclidean distance clustering
segmentation algorithm [37].When point clouds are collected
using a mobile scanner mounted on a train, the trajectory log
can play an important role in the culling of points. As an
example, Pastucha defines an extent of 5 m on both sides
of the trajectory. Points outside of this region are removed.
The scan angle, which is usually recorded as meta-data of
a point, can also be used as a filter condition to remove
points [43]. As an example of how the scan angle can be used
to crop relevant regions of points, the authors show how the
track centre lines and the ballast top can easily be recognised
from the point cloud data. To remove vegetation, the work
of Cserép et al. first project the scene to 2D by registering
the maximum value of the z-coordinate. After this contour
detection is used to filter out vegetation [39], unfortunately
no further details are provided for this approach.

Which points to cull is also highly dependent on the appli-
cation. If the application is to detect tracks, it makes sense to
only maintain points which relate to the tracks. Specifically
for this purpose, Ponciano et al. use a mask-based approach to
only keep points which relate to the tracks [34]. An alternative
approach provided by Zou et al. first filter the point cloud
based on intensity values, only values with a low intensity are
kept. After filtering, tracks remain, but still there is significant

noise. Further refinement steps are required to extract the
tracks [71].

B. PARTITIONING
Commonly the point cloud data provided covers a large
area. In order to create tractable pieces that can be used in
downstream processing steps the larger point cloud is usually
partitioned into smaller pieces. Ariyachandra and Brilakis
manually partitioned a large point cloud that covered≈18 km
into three pieces covering ≈6 km each [29]. In a related
work, the same authors employed an optimisation strategy to
determine the optimal number of partitions for splitting the
dataset [28]. Constraints used in this optimisation approach
were the curvature of the track, number of noise points, and
the cropping of masts. The width of the scenes was limited to
30 m.

The work of Lamas et al. use the trajectory log of the
measurement train to partition the data into pieces which are
100 m long and 20 m wide [45]. Pastucha uses even smaller
sections which are 0.5 m in length [61]. Surprisingly, only
a limited number of studies utilise the raw frame-by-frame
data from scanner, with most relying solely on aggregated
results. An exception is the work of Chen et al. that use 2D
laser scan lines to segment the overhead contact system [36].
This raw frame data is commonly used for applications such
as autonomous driving. The envisioned benefit of using this
raw data is that the data will have a fixed frame of reference,
i.e. it is always known how the data is captured with reference
to the current track.

C. NORMALISATION
Normalisation of the training data plays an important
role, especially when deep learning methods are involved.
To align individual pieces of point cloud data along the
x-axis Ariyachandra and Brilakis use a Principle Component
Analysis (PCA) to determine the major axis of the point
cloud [28]. The work of Lamas et al. also use PCA, albeit
in a slightly modified form, to align the direction of the
tracks along the x-axis. Corongiu et al. align the point cloud
subsets to the y-axis, unfortunately the method to do so is
not described [38]. The trajectory log of the mobile sensing
platform facilitates a convenient way of aligning sub-point
cloud to the track [61]. Of course, the aforementioned
partitioning of the scene into regular-sized pieces is also a
form of normalisation.

D. PROJECTION
As point cloud data has no structure, sometimes the point
cloud is projected to a 2D plane with a grid to create an image.
This image can then be processed with conventional image
processing techniques. For example, Corongiu et al. flatten
the point cloud to a 2D grid by summing in the z-direction.
Within this image masts will be visible as high-intensity
blobs, making it easy to locate them [38].

An interesting piece of work, albeit in a very premature
state, is presented by Wolf et al. Their approach to detect
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railway assets from point cloud data is to first render a
greyscale image from a slice of point cloud data [75]. The
pixel values are the intensity values from the original point
cloud data. These slices are taken perpendicular to the rail
track. The work shows results of both object detection, based
on the YOLOv3 model [76], and on semantic segmentation,
based on U-Net [77]. An image-based approach has two
major benefits: the field of image processing has advanced
much further than point-based methods and the processing of
raster data can be done much more efficiently compared to
point data.

E. DATA STRUCTURES
Voxelisation is the process of defining a regular 3D grid, each
element of the grid is referred to as a voxel. This is analogous
to a pixel in the 2D case. The benefit of the voxelisation
process is that it creates a structured format which can be
processed very efficiently. For example, Jung et al. extract
line segments per voxel [48]. Another data structure which
occurs is the kd-tree, this data structure is used for efficiently
selecting neighbour points around a query point [27].

When point clouds are captured using a laser scanner, the
captured point density close to the sensor is higher compared
to regions further away from the sensor. To homogenise the
density across the entire scene, a fixed number of points per
voxel can be retained [44], [45]. Not only does this improve
the homogeneity of the point distribution, but it also reduces
the number of points.

Besides voxelisation, different grid definition schemes are
possible. For instance, Yu et al. use pyramid partitions [69].
This approach defines smaller volumes close to the sensor
and increases the volume gradually when the distance to the
sensor increases. This ensures that the number of points per
volume remains roughly the same.

F. SAMPLING
Down-sampling is a common pre-processing step to reduce
the number of points or to achieve a fixed number of
points [40], [44]. Fixed number of points are usually required
when training deep learning models. For instance, Grandio,
Riveiro, Soilán, et al. used a fixed size of 16384 (214 and
32768 (215) points for training a PointNet++ segmentation
model [44]. Note that it is a common misconception that
such models require a fixed number of points as input. The
architecture of these models are agnostic of the point set size,
but the frameworks used to implement the models are the
bottleneck.

To create tractable pieceswhich can be used during training
of a deep learning model, Grandio, Riveiro, Soilán, et al.
extract cubes with a fixed edge length of 10 m from larger
scene [44]. The work of Corongiu et al. extract a cylindrical
region (radius=2 m) of interest around candidate points.
These cylindrical regions are then further processed to create
a semantic segmentation [38] of the scene.

Using information from the scanning geometry and the
time-stamp metadata of each point it is possible to extract

consecutive cross sections of the railway bed area [68]. These
so-called scan lines are then further processed to extract the
track locations.

G. FEATURE EXTRACTION
Point clouds offer a rich source of data from which a plethora
of features can be derived. Geometrically, one can extract
attributes such as normal vectors and curvature. From a
statistical perspective, features like local density and variance
are valuable. In terms of shape, roughness and linearity
provide insights into the structure of the data. Topologically,
connectivity sheds light on the relationships between data
points. Additionally, when colour information is available,
RGB values can be harnessed. These extracted features,
encompassing geometric, statistical, shape, topological, and
colour attributes, serve as foundational elements for subse-
quent modelling endeavours.

Geng et al. provide a comparison of several feature
extraction methods applied to a point cloud scene of a
Chinese high-speed railway collected using an airborne laser
scanner [42]. The work of Jung et al. extract line segments
per voxel [48]. These line segments are then classified using
a multi-range Conditional Random Field (CRF) classifier.

H. OTHERS
The majority of the works use laser scanning techniques
to capture a point cloud. An alternative approach is to use
photogrammetry techniques to create a point cloud based on
image data. This is done in the work of Sahebdivani et al.
which use a commercial drone to capture images from the
area of interest. These images are then processed to create
a point cloud [63]. The use of structured light is another
approach to create point clouds, this is done by Cui et al.
in their work to automatically inspect railway fasteners [40].

One pre-processing step which is often lacking from
literature is the processing of the raw point cloud data.
Often laser scanners will produce a stream of frames.
These frames are then combined to create a larger point
cloud scene. During this processing step, the points are
also mapped from their sensor’s local reference frame to a
global coordinate reference system. To do so, an accurate
Global Navigation Satellite System (GNSS) is required. The
reception and accuracy of GNSS is not always consistent,
therefore GNSS data is often augmented with gyroscope,
heading and odometer data. The work of Xu et al. sheds
some light on this matter [67]. During the processing of
raw frames into larger scenes, also duplicate measurements
are excluded. For instance, when the measurement train is
standing still, data is still being collected. This will contain
a lot of redundant data, which is removed during post-
processing.

I. SUMMARY OF PRE-PROCESSING TECHNIQUES
The pre-processing techniques described above are tied
closely to the purpose and each of them has its advantages and
challenges. The choice of the techniques is mostly dependent
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TABLE 3. Comparison of pre-processing techniques for point clouds and
their use in the context of railway infrastructure.

on the context and the data. In Table 3, we provide a concise
summary and comparison of these techniques. We have also
included their use in the context of railway infrastructure as a
result of our literature study. From the table, it is evident that
these pre-processing techniques are not mutually exclusive.
Instead, several techniques are often employed to maximise
their collective benefit.

V. MODELING TECHNIQUES
In this section, we compile a glossary of methods, algorithms,
and techniques for modelling point clouds, designed for
purposes like object classification, segmentation, and object

TABLE 4. Break down of the literature based on railway component.

detection. We categorise and describe these methods found
in the literature, focusing on their strengths and limitations.
The point cloud modelling methods are broadly divided
into two categories: structure-based methods and machine
learning-based methods. We describe each of these and their
sub-categorisation. Two aspects are linked to modelling. One
is the performance metric, while the other is the type of
railway infrastructure being modelled. We start this section
by providing information on these two essential aspects.

A. RAIL INFRASTRUCTURE
An essential aspect to consider in the railway environment is
the modelling goal concerning railway infrastructure. While
several researchers have focused on specific components
of the infrastructure, the complete railway infrastructure is
often overlooked. In Table 4 we have summarised the most
commonly studied infrastructure components along with the
corresponding research references.

It is important to acknowledge that certain aspects of the
railway infrastructure, such as foreign objects, bridges, and
tunnel deformation, have not been included in this paper due
to the set exclusion criteria. Nevertheless, these areas have
been gaining interest, particularly in the context of predictive
maintenance and the expansion of high-speed rail networks
in China (e.g., [37]). As the railway industry continues
to evolve, exploring these aspects becomes increasingly
crucial for comprehensive railway infrastructure modelling
and analysis.

B. PERFORMANCE METRICS
To evaluate the performance of modelling techniques various
metrics can be used. In the following, We define the most
popular metrics used in the context of point clouds.

1) ACCURACY, PRECISION, RECALL, F1-SCORE
These are commonly used metrics for evaluating classifica-
tion accuracy. For the sake of completeness they are defined
below:

• Accuracymeasures the overall correctness of a model’s
predictions by calculating the ratio of correctly predicted
instances to the total number of instances (Equation 1).
It provides a general assessment of how well the model
performs across all classes. The formula for accuracy is:

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(1)

where TP stands for true positive, TN is the true
negative, FP is false positive, and FN is the false
negative.
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• Precision focuses on the proportion of correctly pre-
dicted positive instances out of all instances predicted as
positive (Equation 2). It provides insight into themodel’s
ability to avoid false positives (instances predicted as
positive but are actually negative). The formula for
precision is:

Precision =
TP

TP+ FP
(2)

• Recall, also known as sensitivity or true positive
rate, measures the proportion of correctly predicted
positive instances out of all actual positive instances
(Equation 3). It indicates the model’s ability to identify
all positive instances and avoid false negatives (instances
predicted as negative but are actually positive). The
formula for recall is:

Recall =
TP

TP+ FN
(3)

• The F1-score is a harmonic mean of precision and recall
(Equation 4). It provides a balanced measure that takes
into account both precision and recall. The F1-score is
useful when one want to consider both false positives
and false negatives equally. The formula for theF1-score
is:

F1-score = 2
Precision · Recall
Precision+ Recall

(4)

In the case of Boolean data, the F1 score is also
sometimes referred to as the Sørensen-Dice coefficient.

2) ROOT MEAN SQUARE ERROR (RMSE)
It is the standard deviation of prediction error (Equation 5).
It is often used for regression problems. The formula to
compute RMSE is:

RMSE =

√∑N
i=1(Actuali − Predictedi)2

N
(5)

3) MEAN INTERSECTION OVER UNION
Mean Intersection over Union (mean IoU) is a metric
commonly used in evaluating the performance of semantic
segmentation models. It measures the overlap between the
predicted segmentation and the ground truth segmentation.

The Intersection over Union (IoU), also known as Jaccard
Index, for a single class is calculated by dividing the size
of the intersection of pixels between the predicted and
ground truth masks by the size of the union of those pixels
(Equation 6). It provides a measure of how well the model
accurately captures the boundaries and regions of the objects
of interest.

The mean IoU is then computed by averaging the IoU
values across all classes or categories. It provides an overall
assessment of the segmentation model’s performance, taking
into account the accuracy of segmenting multiple classes
simultaneously.

The formula for calculating IoU is:

IoU =
|Predicted mask ∩ ground truth mask|
|Predicted mask ∪ ground truth mask|

(6)

where ∩ is the intersection, ∪ is the union and | · | is the
cardinality. The mean IoU is computed by taking the average
IoU across all classes or categories (Equation 7). Here, N is
the total number of classes:

Mean IoU =
1
N

N∑
i=1

IoU class i (7)

Mean IoU values range from 0 to 1, with 1 indicating
a perfect overlap between the predicted and ground truth
masks, and 0 indicating no overlap at all. Higher mean IoU
values indicate better segmentation performance.

C. STRUCTURE-BASED METHODS
Structure-based methods exploit or enforce structure to the
point cloud scenes. These methods utilise the geometric
and topological properties of point clouds and often rely on
mathematical models to extract meaningful information from
the point cloud data.

These methods leverage geometric and topological prop-
erties, enabling them to represent the underlying 3D
structure and surfaces accurately. Moreover, these methods
are frequently characterised by well-defined mathematical
models. These models not only enhance our understanding
of the underlying processes but also ensure precision during
implementation.

Besides their advantages the structure-based methods have
limitations too. Themethods could struggle to model surfaces
that are complex since the underlying principles rely on
basic geometric primitives. Additionally, they can handle
noise to a certain level but remain sensitive to a high noise
level and outliers that can impact their performance and
limit their usability.Moreover, structure-basedmethods could
be computationally intense and they do not profit from
higher point densities. Their lack of adaptability is another
drawback, as they are often tailored to specific application
domains and may not generalise well to diverse datasets.

These methods can be further categorised (see e.g. [8],
[78]). The following subsections describe these sub-categories
and their use in the context of the railway environment.

1) EDGE-BASED METHODS
Edge-based methods usually have two main stages: (i)
detecting edges to outline borders of different regions
followed by (ii) the grouping of points inside boundaries
to generate the final segments. Edges are defined by points
where changes in the local surface properties exceed a given
threshold. Local surface properties are for instance normals,
gradients, principal curvatures or higher-order derivatives.
Edge-based methods are generally fast but may produce
inaccurate results in case of noise and uneven density of
point clouds. When disconnected edges are detected, a filling
or interpretation procedure is applied to identify closed
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segments. Ariyachandra and Brilakis [28] used this method
to detect pole-like objects. Their approach was based on line
detection and point clustering.

2) REGION-GROWING METHODS
Region-growing methods start from one or more seed
points that possess specific characteristics and then expand
to neighbouring points with similar characteristics. These
characteristics are for example surface orientation, curvature,
etc. Bottom-up approaches start from some seed points and
grow the segments on the basis of given similarity criteria.
Bottom-up region-growing algorithms include two steps:
identification of the seed points and adding points to them
based on predefined criteria. Top-down approaches start by
assigning all points to one segment and then subdivide the
segment into smaller ones guided by certain thresholds.
Region-growing methods are robust to noise (see e.g. [79]),
but they are sensitive to (i) the location of initial seed regions
and (ii) inaccurate estimations of the normals and curvatures
of points near region boundaries. For an explicit description
of the region-growing algorithm in the context of railways,
the interested reader is referred to Cserép et al. [39, Algorithm
1 and Algorithm 2]. Other examples of region-growing
algorithms can be found in the work of Arastounia [25],
Chbeir et al. [34], Zhang et al. [24], Lu et al. [23], and
Zou et al. [71].

3) MODEL FITTING METHODS
Model fitting methods are based on the observation that a lot
of objects are built-up out of geometric primitives like planes,
cylinders and spheres. Primitive shapes are fitted onto the
point cloud and the points that comply with the mathematical
representation of the primitive shape are labelled as one
segment. Widely employed algorithms for model fitting
are Hough Transform (HT), Random Sample Consensus
(RANSAC) and fast point feature histograms (FPFH). Note
that HT and FPFH are used to generate features that are
utilised as an input for the model fitting methods such as
RANSAC (see e.g. [80]). Model fitting methods are fast and
robust with outliers. However, they fall short when dealing
with complex shapes or fully automated implementations.
Moreover, they have problems when dealing with different
scales of input point clouds. References that utilise these
techniques in the context of railways are [26], [29], [30],
[31], [60], [61]. A comparison of these methods is presented
in [39].

4) GRAPH-BASED METHODS
Graph-based methods view point clouds as graphs. In the
simplest model, the vertices in the graph correspond to
points in the data and the edges represent certain pairs of
neighbouring points [81]. An alternative approach is to first
aggregate points into coherent patches, these patches are
then considered as the vertices of the graph [82]. Other
techniques first voxelise the cloud with for example an

octree or supervoxel method and construct a graph out of
the voxelised point cloud. Graph-based methods are able to
segment complex scenes in point cloud data with noise or
uneven density with good results for example by finding the
minimum-cut of the graph. However, these methods usually
can not run in real-time and some of themmay need an offline
training step.

Although the technique is applied in other contexts it is not
applied in the context of railway environments.

5) HYBRID METHODS
Multiple different methods are combined to exploit the best
parts of the methods. Most of the reviewed papers fall under
this category. Examples include [26], [28], [29], [34], [51].
Zhang et al. has used several algorithms to extract power
lines. They used the spatial structure of the power line for
initial segmentation followed by a region-growing method.
They applied PCA on the results of the region-growing
algorithm and as a final step, they used least square fitting
algorithm to model power lines [24]. Zou et al. has used
a combination of k-mean clustering and region-growing
algorithm to extract railway tracks from point cloud data.
Their focus was on extracting railway tracks with complex
topology like bends and turnouts [71].

6) SUMMARY OF THE STRUCTURE-BASED METHODS
All structure-based methods have their strong and weak
points. In Table 5, we have tabulated the advantages and
challenges associated with each of these methods. We have
also included the use of these methods in the context of the
railway environment based on our literature search.

D. MACHINE LEARNING-BASED TECHNIQUES
Machine learning algorithms owe their success to their
ability to learn from data. The popularity and widespread
adoption of these algorithms can be largely attributed to the
vast availability of data. Unlike structural methods, machine
learning approaches are inherently adaptive, autonomously
discovering patterns in the data. The performance of machine
learning methods heavily relies on the quantity and quality of
the training data.

Various machine learning techniques have been developed
specifically tailored to the unique structure of point clouds.
As mentioned before, working with point cloud data presents
its challenges, and the degree of success achieved by these
algorithms is often limited.Many of these algorithms struggle
to generalise well to different domains. Unlike computer
vision problems, where large pre-trained models are readily
available for transfer learning, point cloud tasks lack such
widespread pre-trained resources. Besides its limitation, the
use of machine learning-based techniques is trending, which
will become apparent in the following sections.

The machine learning-based techniques can be broadly
categorised as traditional machine learning-based techniques
and deep learning techniques.
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TABLE 5. Comparison of structure-based methods for point clouds.

1) TRADITIONAL MACHINE LEARNING
Traditional machine learning methods are employed as an
evolution towards methods that learn from the data and
have better generalisability. The main difference with deep
learning methods is that deep learning methods learn the
features themselves. This is generally faster and more
efficient since the model can derive more complex features
and can distinguish the most informative features.

The literature on traditionalmachine learning in the context
of the railway environment is currently limited.

Sturari et al. have presented a traditional machine learning
approach. The primary focus was on data collection method-
ology, and to provide proof of concept for applicability
of machine learning to the collected dataset. They have
compared four traditional machine learning methods, namely
decision tree, support vector machine, k-nearest neighbour
and random forest with a convolution neural network.

Notice that the learning task differed since the authors
were concerned with the classification problem instead of
segmentation or object detection [22].

The approach used by Uggla and Horemuz is interesting
since they combined synthetic and real-world data to create
synthetic railway scenes. They compared the performance
of the deep learning-based approach on real scenes and
the scenes synthetically generated from a point cloud.
They concluded that the synthetic data could be helpful in
generalising performance since more data can be generated
easily instead of going through a lengthy data collection
process [65].

2) DEEP LEARNING BASED METHODS
The problem of point cloud segmentation and classification
looks similar to the ones in computer vision. However, the
segmentation and classification are much more challenging
for point clouds due to the absence of the grid structure.
In computer vision, the images are represented using a
structured grid of pixels that allows the application of a
convolution neural network (CNN) to extract features. This
structure is not present in point clouds. Thus, CNN cannot be
directly applied.

The point clouds are irregular and sparse since the density
and distribution of points can vary significantly between
different scenes and objects.

Deep learning on point clouds requires a distinct approach,
and it is currently attracting increasing interest from
researchers, particularly in the context of self-driving cars [6].
For an empirical comparison of various deep learning
approaches, the interested reader is referred to [83]. It is
worth mentioning that Guo et al. conducted an empirical
comparison of existing deep learning-based approaches for
3D point clouds using various benchmark datasets. However,
it is important to note that none of these benchmark datasets
specifically include the railway environment.

The deep learning-based methods can be broadly classified
into three categories based on how they handle the point
clouds. The categories, indirect methods, direct methods and
hybrid methods are addressed in the subsequent sections in
context of the railway environment.

a: INDIRECT METHODS
Indirect methods rely on the volumetric representation of
point clouds before applying deep learning techniques. Due
to this volumetric representation, these methods are also
called volumetric or grid-based methods. The most often
used volumetric representations are voxel clouds, octree,
and projections. The main idea behind the volumetric
representation is to introduce a structure similar to images
to implement the neural network architecture similar to
computer vision. Furthermore, the volumetric representation
facilitates the use of 3D convolutions and learning global
context. These methods are also limited since creating
volumetric representation introduces an extra computational
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overhead. In the case of voxelisation, the performance
depends on voxel size since large voxel size may lead to loss
of fine-grained information.

Indirect methods are often used in conjunction with
the convolutional neural network. The fundamental differ-
ence among these methods is the underlying volumetric
representation. Example includes octrees (OctNet [84],
SPH3D-GCN [85], O-CNN [86]), voxel clouds [87] and kd-
trees (Kd-network [88]).

In the context of railway infrastructure, only a few papers
using three-dimensional CNNs were found during our litera-
ture search. Lin et al. has used CNN to identify the context
of each single frame point cloud [54]. On the other hand,
Corongiu, Masiero, and Tucci have used CNN with modified
Fisher vectors for object classification and extraction of
geometrical features with support vector machines [38].
Yu et al. has used voxelised data as input for the deep learning
algorithm. Their architecture is based on 3D CNN with a
shared MLP and max pooling [69].

Another way to create a volumetric representation is to
use projections. The projections convert the point clouds into
2D images, thus enabling 2D convolution. In the context of
railway infrastructure, Manier et al. has used a projective
descriptor together with neighbourhood selection for point
cloud classification. They focused on computational speed
gains though convergence is not guaranteed for challenging
datasets [58].

b: DIRECT METHODS
Another approach to handle point cloud data is to use
raw point clouds directly. Since these methods directly
utilise point clouds the computational- and memory costs
for intermediate representation, computation, and storage
are saved. Also, the direct use of point clouds facilitates
non-uniform density and spatial distribution. Moreover, these
methods can capture fine-grained point-level information,
which is not the case for indirect methods.

These methods have certain limitations. Due to the
large size of point clouds, these approaches are more
computationally involved. Another limitation is the lack of
context information since the neural network works directly
with the raw point clouds. However, they handle irregularity
better.

PointNet is one of the pioneering methods for directly
processing point clouds [20] (see also [83] for an empirical
comparison). The method has a shortcoming since it does not
consider the local relationships within the point cloud. It uses
a shared multi-layer perceptron (MLP) and a symmetric
function to aggregate information from individual points,
resulting in a global feature vector representing the entire
point cloud. However, creating this feature vector is solely
based on individual points resulting in a loss of contextual
or global information. PointNet++ is an evolved version of
PointNet since it also considers the hierarchical relationship
among different points reducing the computational require-
ment and increasing its accuracy.

PointNet++ is based on shared MLP and max pooling to
introduce the concept of local neighbourhood thus capturing
both local and global information. It is widely adopted
in the context of railway scene classification/segmentation,
examples include [44] that have used it together with
random subsampling while Dibari et al. [41] have used it in
conjunction with transfer learning for semantic segmentation.

c: HYBRID METHODS
Hybrid methods combine direct and indirect approaches,
incorporating raw point cloud data and some intermediate
representation. These methods often leverage the benefits
of both paradigms to achieve improved performance and
efficiency. The most often used terms in this respect are point
fusion and projection-based methods. The projection-based
methods are also classified as an indirect method depending
on whether the projection is used to introduce structure or
in conjunction with raw point clouds. Hybrid methods need
to effectively combine information from direct and indirect
representations, requiring careful design to ensure the fusion
process does not introduce artifacts or redundancies. Some
hybrid methods may require storing both raw point clouds
and intermediate representations, leading to higher memory
usage.

Liu et al. have designed a lightweight neural network
with an attention mechanism. The attention mechanism was
designed to concentrate on important features ignoring the
unimportant ones mimicking human cognition [55].

The approach adopted by Chen et al. can be considered as a
hybrid approach. They aimed to consider the point cloud data
as sequential data mimicking the scan line view of railway
infrastructure. They have used a point partitioning algorithm
to determine the region of interest for extracting features.
The points in the region of interest are then used to create
a neural network-based architecture. The author designed a
multi-layer neural network architecture with PointNet as one
of the layers. To capture sequential information, they used a
form of recurrent neural network [36].

d: SUMMARY INDIRECT, DIRECT, AND HYBRID METHODS
The three classes have their own advantages and disadvan-
tages and their use is tied to the context. In Table 6 we have
summarised these methods with respect to their advantages
and challenges. We have also included references to the use
of these methods in the context of railway environment.

e: FUSION WITH IMAGES AND DEEP LEARNING
Point clouds are usedmostly in the settingwhen the collection
of image data is not always feasible. In some settings image
data is also available. Thus it is intuitive to apply computer
vision techniques to this dataset. In the scenario when both
image and point cloud data are available, one can fuse them
together to reap benefits from the structure of both data.

A notable work in this direction is presented by [66].
They combined image data and point cloud data to
develop an attention mechanism-based algorithm where the
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TABLE 6. Summary of direct, indirect, and hybrid methods and reference
to their use in the context of railway environment.

transformation is performed by spherical projection. Sim-
ilarly, Wolf, Richter, and Döllner have converted point
clouds into images. They used the well-known YOLO [76]
framework which can be used for image segmentation and
classification.

f: FUSION WITH OTHER DATA AND DEEP LEARNING
Generally, the data collection is not limited to only one
sensor instead multiple sensors are used simultaneously to
collect various types of data. These data may include images,
GPS data, inertial measurement unit, and mapping infor-
mation. Fusing these datasets into a working methodology
could help improve the performance of segmentation tasks.
Mahtani et al. have used GNSS data, IMU data and point
clouds to develop a semantic segmentation algorithm for
railway infrastructure. For the point clouds they have used
KP-FCNN [89] which is based on point convolution that does
not require any intermediate representation.

E. OTHER TECHNIQUES
1) SEMANTIC AND ONTOLOGY BASED METHODS
These methods incorporate semantic and ontological infor-
mation of point cloud data to enhance the understanding and
classification of 3D point cloud data. These methods aim
to assign semantic labels to individual points or segments
of the point cloud, indicating the object category or class
they belong to. Karmacharya, Boochs, and Tietz have used
semantics for object annotation. They combined numerical
techniques (structure-based methods (see Section V-C)) with
expert domain knowledge to develop inference rules. The
rules are used to annotate objects of interest from the point

clouds [50]. On the other hand, [33] have used a three-stage
approach to use semantic information for object detection and
classification.

2) SOFTWARE-BASED APPROACH
Detection of rails using MLS, building detection using
polygons. The work is based on existing software tool
TerraScan [52].

F. COMMERCIAL SOFTWARE
There has been an uptake of point cloud based information
extraction for the railway domain by commercial software
vendors. This is a good indicator of the domain becoming
more mature. A small, and by no means complete, desk
study has been conducted to evaluate the current state and
possibilities provided by these commercial software vendors.
A total of six software vendors have been compared, and a
summary is provided in Table 7.

Half of the products provide a digital terrain model (DTM)
of the ballast. Terrasolid states that is capable of detecting
missing ballast, though it remains unclear what exactly is
meant with this. Another oddity is claim of Leica about
measuring ballast volume. This is not possible based on
point cloud data alone. The majority of the products are only
capable of extracting the wires from the point cloud. Only two
products provide detailed information about the wires such
as height and stagger. Also, most product provide clearance
measurement options.

Products from Leica and TopoDOT provide (semi)-
automated object detection algorithms to detect objects
such as platforms, poles, and signals. A fully automatic
segmentation of the scene is provided by TheCrossProduct
and is based on a deep learning approach. Most of the
commercial software product also support tunnel deformation
measurements. Another unique feature advertised by the
Terrasolid product is the risk evaluation of trees adjacent to
the track. It evaluates the risk of trees falling on the track or
within the clearance space.

VI. DIGITAL TWIN
Digital twins can be defined as a bidirectional effortless data
integration between a physical and virtual machine [90]. The
terminology is defined extensively and is often confused
with the notion of a static digital model, which is a mere
virtual representation of the physical world [90]. However,
as opposed to static models, digital twins are a dynamic
digital representation of a physical object or system. This
goes beyond just a mere 3D representation to include
real-time data which allows the digital twin to simulate,
predicate and optimize its physical counterpart’s performance
and operation. This of course costs a continuous flow of data
from the physical object to maintain the accurate simulation
and analysis. Throughout the lifetime of a digital twin, a real-
time mirroring is required to reflect any changes or updates,
which makes it a powerful tool in understanding, analyzing
and improving real-world objects and systems.
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TABLE 7. A comparison of features offered by commercial software vendors.

The use of digital twins is gaining traction in the context of
railway infrastructuremaintenance andmonitoring. However,
the scientific literature is scarce and the focus is on creation
of digital model of railways with emphasis on 3D model
generation and integration.

In the context of digital twins, 3D model generation
refers to the process of creating a 3D representation of the
physical objects or environment in a digital twin environment.
Incorporating 3D models enables realistic and immersive
visualisation of railway assets allowing an assessment of the
current state and prediction of the future state.

The earliest work in the included studies is that of Ben
Hmida, Cruz,. They have created VRML files with different
coloured object classes using an ontological approach.
Ariyachandra and Brilakis have focused on generating
Industry Foundation Classes (IFC) models. In their first
paper, they fitted the detected point clusters into 3D models
in IFC format [28]. While the second paper was focused on
generating dynamic IFC models of overhead line equipment
configurations and merging them with point clusters using
the iterative closest point algorithm [29]. Soilán, Sánchez-
Rodríguez et al. has reported work on generating IFC files
for track models and rail alignment (see also [64]).

The other approaches were based on geometric-based
modelling with curve fitting. The studies employing
curve-fitting approaches include:

• Parameter estimation using Markov Chain Monte Carlo
and curve fitting for rail track modelling [60].

• Rotational correction and projection of 3D points, fitting
a pre-defined rail model, and interpolation using Fourier
curve fitting [63].

• Piecewise straight line fitting for contact wire and
dropper [67].

• Identifying and classifying railway cables (contact,
catenary, return current) [37].

• Trackmodel reconstruction using a third-degree polyno-
mial function [49].

• Hybrid overlay technique using point data and
polygons [52].

• Use of particle swarm optimisation to reconstruct the
track considering the so-called track lining distance as
an evaluation index [53].

• Heuristic-based point cloud pre-processing is used to
segment railway to generate 3D model based on IFC
requirements [46].

In the context of model generation Zhu and Hyyppa have
developed a complete building model by fusing facades
with roofs, planar detection of buildings, ground model
simplification, orthophoto for ground texture, and 3Ds Max
for model visualisation.

Despite the scarcity of the literature in the application
of digital twin technology in railway infrastructure, a wider
adoption is expected to revolutionize railway monitoring and
optimization. Digital twin has the potential of enhancing
predictive maintenance enabling proactive issue resolution.
This technology will not only optimize railway operations but
also significantly improve its safety through simulations and
hazard identification.

VII. DISCUSSION
In this section we summarise our findings and highlight
potential challenges and research directions.

A. PRE-PROCESSING TECHNIQUES
Most of the pre-processing techniques are aimed at reducing
the volume of data. Since current models cannot handle
large volumes of data due to memory requirements or
computational resources. Most post-processing techniques
are based on heuristic methods, where parameters such as
partition sizes and down-sampling ratios are empirically
defined. A possible approach to address this issue is to
explore new and innovative models which can handle large
volumes of data by themselves. These models could learn
to focus on the relevant parts of the input, and might be
able to learn sparse structures which fit the underlying
data. These approaches could be encoded as a dedicated
head of a machine learning model which can be easily
added to existing models. An alternative would be to
use the raw frame-by-frame data which avoids the issue
of partitioning the data into tractable pieces altogether.
Furthermore, the format which point cloud data is stored can
be enhanced. One such enhancement is to explore formats
where the level of detail can be automatically encoded.
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TABLE 8. A summary of modelling techniques with related references.

This would aid the construction of models which work
from coarse detection towards fine detection. For instance,
detecting locations of catenary arches would require a
low level of detail, whereas locating the exact location of
insulators within the scene would require a high level of
detail.

B. MODELLING TECHNIQUES
Machine learning-based methods have gained significant
importance in railway point classification as shown in
Table 8, with seven publications using it for point cloud
classification or segmentation. Though the models involved
usually require large training datasets of point cloud data
to be able to learn patterns, features and relationships, the
efforts are worthwhile in terms of performance and allow
for transferability to other problems (model reuse or transfer
learning). Convolutional and graph neural nets dominate the
machine learningmodels used in the various problems related
to railway point clouds, such as object detection or rail track
detection. Machine learning approaches are also powerful
in the sense of their generalisability to different railway
environments and condition on top of the availability of
pre-trained models ready for reuse under minor fine-tuning.
The drawback of such approaches remains their limited
explainability, especially for transformer-based and recurrent
models.

The runner-up technique is model fitting, which involves
fitting geometric models to the point cloud data, enabling
the identification of rail tracks, switches, poles, or other
relevant structures. Such techniques have been used in
four of the surveyed works. The technique is powerful
in the sense that it allows to explicitly model and detect
specific railway objects and structures, as well as its
robustness against outliers. Its main drawback remains
however the labour-intensive effort to initialise and set the
parameters for the models with due care to the calibration
to optimise the results. Such calibrations efforts should
of course factor in the various railway environments and
conditions.

C. RESEARCH ROADMAP
We have condensed the information and insights from this
literature review into a research roadmap. This roadmap
indicates several pointers for future research. First the need
for a benchmark dataset is put forward, together with the
requirements of such a dataset. After this we focus on the
advancements within the area of machine learning which are
needed to efficiently and effectively deal with large volumes
of point cloud data. Lastly we provide indicators within the
area of usability, such as visualisation and interoperability.

1) BENCHMARK DATASET
We like to emphasise the need for an open benchmark
dataset to rank various techniques proposed in literature. The
number of publications in the context of point cloud, machine
learning and railway infrastructure is increasing. However,
one cannot objectively compare these techniques due to a
lack of a common benchmark dataset. We again emphasise
developing a benchmark dataset set comparable to the KITTI
dataset [92] available for self-driving cars. The dataset
published by Ton [93] is a positive step in this direction.
We propose the creation of a public benchmark dataset as
a joint collaborative effort between academics and industry.
Goal will be to create dataset with a large variety of railway
scenes. Within a single country the railway components can
vary significantly in appearance. Ideally the dataset should
have a large inter-country and intra-country variation. The
dataset should also support multiple machine learning tasks
such as segmentation and object detection. Regarding object
detecting, the dataset should also encode the directionallity
of the object. Furthermore a hierarchical labelling scheme is
recommended, the dataset should facilitate detecting larger
scale object such as catenary arches, but also individual
components such as insulators. From previous experience it
was noted that each labelled object should also have a unique
identifier, this aids the automated iteration of objects.

2) MACHINE LEARNING ADVANCEMENTS
A focus area of active research could be the creation of
lightweight machine learning models which are able to
consume raw point clouds directly. Current machine learning
models are not capable of this yet.

a: WEAKLY SUPERVISED LEARNING
Machine learning-based techniques and structure-based
methods have shown promising performance. However, the
cost of data labelling hampers large-scale application of
machine learning-based techniques. Data annotation is a
tedious, time-consuming, and error-prone task. Applying
various machine learning techniques that work with partially
labelled data is advisable. Our research group has had some
success in this direction (see [94]), hindered mainly by
the data labelling process. We have worked with an active
learning approach; the results will be published elsewhere.
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We emphasise that the scale of our experiments are limited,
and there is a need for larger-scale experimentation to
quantify the strength and feasibility of applying machine
learning techniques for partially labelled data.

Another promising direction is self supervised learning
(see e.g. [95]). Often, there are large volumes of unlabelled
data available and very few labelled examples. Goal would
be to leverage this huge volume of unlabelled data to encode
some ‘common sense‘ into a model. Knowledge of this model
can then be transferred when training a new model based on
labelled data. This technique has been applied to point clouds
for other domains but to the best of our knowledge has not
been applied to railway datasets yet.

b: MULTI-MODAL AND ENSEMBLE MACHINE LEARNING
The railway environment can be captured using different data
modalities that can be combined for an optimal performance.
Fusion of image data with point clouds have shown promising
results (see e.g. [57], [66], [75]). Different data modalities
can be combined systematically to develop a multimodal-
model. However, this approach has its own challenges [96].
This approach is already used for point cloud data (see
[97]) however it is not applied in the context of railway
environment.

Another challenge in railway data is relative sizes of
objects that hampers development of a single model that
captures all variation. These could also be handled by
multimodal-model approach where variation is used as a
modality for modelling. Another way to handle variation is
develop separate models based on object sizes and ensemble
them.

c: HYBRID APPROACH
Structural methods exploit topological structure, and the
railway environment has fixed topology to some extent.
A combination of machine learning and a structural approach
could lead to promising results in the context of railway
infrastructure. Based on our experiments with various
structural and machine learning-based methods, for objects
with defined shapes like track lines and catenary cables,
structural approaches could be more fruitful for complex
objects such as an insulator or signalsmachine learning-based
approaches could be promising. Thus, a combination of both
has the potential to optimise accuracy for segmentation and
object detection tasks.

d: EXPLAINABLE AI
The other aspect is the application of explainability. Current
machine learning models for point clouds are mostly black
boxes. In our literature search we cannot find a reference
where explainablity is applied to point cloud data irrespective
of application domain. Since the point cloud data is distinct
in its working, there is a need to develop explainable AI
techniques tailored towards point cloud data. As a first step
one can evaluate the applicability of the so-called model
agnostic approaches (see e.g. [98]) for point cloud datasets.

3) USABILITY
The final research direction is the usability of the results
obtained from the data. Questions arise, such as: How
to visualise and interact with the results, how to ensure
interoperability of the results?

The world around us is three-dimensional, but still the
most common way to visualise data captured from this
three-dimensional world is on a two-dimensional screen.
Recent technological advancements within the area of
head-mounted displays (HMD) have enabled very interesting
opportunities to visualise and interact with 3D data (see e.g.
[99]). This technology can also be used to interactively label
the data and to visualise the results from the machine learning
models.

As the informationwhich is extracted from point cloud data
will likely be used in a larger context, the interoperability
of this information is vital. Without proper interoperability,
there is a risk of isolated digital environments being
formed [100]. To overcome this risk, techniques such as
linked data [101] can be explored. These techniques can
leverage information derived from point clouds into broader
contexts, such as asset monitoring [102].

VIII. CONCLUSION
This paper has reviewed the literature on using point clouds
in the context of railway infrastructure. We have divided
the literature into pre-processing, modelling, and digital twin
creation. We have described different techniques describing
their strengths and weaknesses.We have focused on literature
concerning railway infrastructure and point clouds, thus
excluding literature studying the presence of foreign objects
in railway infrastructure that could be an exciting topic
concerning predictive maintenance.

The current trend for modelling is focused on machine
learning-based techniques, particularly deep learning-based
techniques. However, contrary to the usual practice in AI
research, data and implementation code is not published
for most research, hindering reproducibility and cross-
comparison. We emphasise a need towards open publication
of data and implementation for scientific research, enabling
breakthroughs in this area of research.

Besides the typical challenges associated with point cloud
data, railway data have additional challenges, such as
variation in object types and sizes, vast sizes of data, and the
critical nature of infrastructure hindering the open publication
of point cloud data.

As a future research direction, we propose to focus
on hybrid methods to reap benefits from the strengths
of structure-based and machine learning-based techniques.
Also, a focus on developing large pre-trainedmodels for point
clouds, in general, will enable transfer learning that reduces
the training efforts. Similarly, machine learning techniques
focused on partially labelled data can improve the state of
the art. From the perspective of digital twins, in the context
of railway infrastructure and point cloud, there are still many
open research opportunities.

134370 VOLUME 11, 2023



B. Dekker et al.: Point Cloud Analysis of Railway Infrastructure

To conclude, the current state of the art is varied in
terms of techniques and technologies and could be further
strengthened with the use of hybrid methods, multimodal-
model and ensemble learning approaches, partially labelled
data approaches, and the creation of digital twin to reap
full-scale benefits of predictive maintenance enabled and
digitalised railways.
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