IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 1 November 2023, accepted 21 November 2023, date of publication 24 November 2023,
date of current version 29 November 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3336810

==l RESEARCH ARTICLE

A Hybrid K-Means and Particle Swarm
Optimization Technique for Solving the
Rechargeable E-Scooters Problem

MAHMOUD MASOUD

Department of Information Systems and Operations Management, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia
Center for Smart Mobility and Logistics, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia

e-mail: Mahmoud.masoud @kfupm.edu.sa

This work was supported by the King Fahd University of Petroleum and Minerals during the academic year 1444AH/2023AD.

ABSTRACT E-scooters are gaining popularity for short-distance travel, but their recharging presents
challenges. To reduce their downtime, we propose a Hybrid K-Means/Particle Swarm Optimisation (PSO)
approach, optimizing charging routes using machine learning and meta-heuristics. The research in this paper
attempts to determine if a combination of a meta-heuristic such as PSO and a machine learning algorithm
for clustering such as K-Means, would be effective at solving the vehicle routing problem for e-scooters.
We compared this method with other algorithms and found that Tabu Search excelled in over 95% of
tests. While Hybrid K-Means/PSO led in only approximately 52% of scenarios, it was also the only one
to provide an output that surpassed Tabu Search in one of the scenarios. The core difference in efficiency is
due to traditional meta-heuristic methods providing routes that while optimal, may also travel from locations
relatively far from each other, while Hybrid K-Means/PSO will provide routes between locations that are
clustered and in local groups. This results in Hybrid K-Means/PSO being slightly less efficient but may be
more practical for charging personnel as they can operate in designated areas close to each other rather than
a more optimal route with nodes further apart. This research underscores the effectiveness of Tabu Search
and the potential of our Hybrid K-Means/PSO approach for optimizing e-scooter charging routes.

INDEX TERMS E-scooter rechargeable, hybrid optimization k-means/particle swarm, tabu search, guided
local search, simulated annealing.

I. INTRODUCTION

With the popularization of e-scooters comes a new way of
transportation to complete that last-mile journey. This pop-
ular form of transportation, however, has its own new set
of problems to tackle in order to become better and more
efficient. Some such issues include e-scooters needing to be
recharged and their generally bulky size can make it difficult
for freelance chargers to bring multiple home to recharge
them [17], [18]. In order to remedy this, rechargeable bat-
teries are being gradually implemented to become the norm.
This means that the operators that charge these e-scooters
can bring dozens of batteries on their person at a time and
go on a route where they simply need to replace the battery
of the scooter, decreasing the amount of time and effort
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needed to charge any one scooter [1], [2], [16]. This process,
however, can be made to be more efficient as it is possible to
optimize the route and minimise the amount of distance the
operators have to travel which will lower fuel costs and time
investment [11].

This problem can be overtly described as a similar problem
to the capacitated vehicle routing problem, which in itself is
derivative of the traveling salesman problem. The generally
idea is that a traveling salesman has to go from location to
location selling their goods, the salesman wishes to minimize
the overall distance travelled as it will consume less time.
The vehicle routing problem is essentially the same but with
multiple salesman instead of one, where the capacitated vehi-
cle routing problem includes adding a capacity to both the
vehicle travelling around and the locations the vehicles arrive
at. This means that the vehicles not only have to minimize
the overall distance their routes take, but also supply the
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necessary capacity of goods at each location based on how
much they can carry.

This paper presents a new method using K-means and
Particle Swarm Optimisation in order to solve this prob-
lem, while also comparing it against other methods. These
methods include Guided Local Search, Simulated Anneal-
ing, Tabu Search, and Greedy Descent, all of which will
be implemented using Google OR-Tools for convenience.
The hybridization of PSO and K-Means clustering can be
beneficial for companies in the decision-making process of
deploying operators for managing scooters. While K-Means
clustering is effective in determining the optimal number of
operators and assigning them to specific areas [26], it does not
consider the efficiency of travel distance. On the other hand,
PSO excels at optimizing travel routes but may not provide
an accurate allocation of operators across different areas.
By combining these two algorithms, the hybrid approach
leverages the strengths of both. K-Means clustering helps in
determining the appropriate number of operators and assign-
ing them to specific regions based on factors like demand
or population density. This ensures efficient scooter manage-
ment and availability in different areas. This hybridization
allows companies to strike a balance between convenient
operator deployment and efficient travel distance, resulting
in an optimized scooter management system.

The field of e-scooter optimization is relatively new, and
as such, there is a scarcity of literature exploring this specific
domain. One paper utilizes a mixed-integer linear program-
ming (MILP) model along with comparisons between an
adapted college admission algorithm (ACA) and black hole
optimizer (BHO) [17]. The solution presented in their paper
attempts to provide optimal route assignments but will pro-
duce results that have operators overlapping in areas to
produce the best route with the smallest distance. The method
presented here attempts to create separate designated areas
for operators and to the best of our knowledge is among
the first to apply this technique. The core idea behind this
decision is through the implementation of designated local
areas based off of k-means, the allocation of operators will
be more simple and effective, where PSO is used to deter-
mine the most effective routes in each area. This lack of
research poses significant research gaps in understanding
the optimal deployment and management of e-scooters. This
paper contributes to the existing literature by addressing these
research gaps through the application of different algorithms.
By utilizing various optimization techniques such as Par-
ticle Swarm Optimization (PSO), K-Means clustering, and
comparing them with algorithms like Tabu Search, Greedy
Descent, Guided Local Search, and Simulated Annealing,
the paper expands the knowledge base in e-scooter optimiza-
tion. The application of these algorithms provides valuable
insights into the effectiveness and efficiency of different
approaches, paving the way for further advancements in opti-
mizing e-scooter systems. In this paper we are proposing
a new approach using K-means and Particle Swarm Opti-
misation in order to solve the vehicle routing problem for
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e-scooters. The e-scooters vehicle routing problem will also
be solved using other methods such as Guided local Search,
Simulated Annealing, Tabu Search and Greedy Descent in
order to compare the effectiveness of our method against
traditional meta-heuristics. These methods were chosen due
to the fact that these meta-heuristics are fitting to the nature of
the problem and are easy to implement with Google OR-Tools
and can be compared against our method with little friction.

A. RECHARGEABLE E-SCHOOTERS

Public rechargeable e-scooters are a type of e-scooter that
can be rented and used by anyone, similar to how public
bikes are used in many cities. These scooters can be found in
designated areas throughout a city and can be easily accessed
using a smartphone app. Once a user has finished using the
scooter, they can leave it at any designated drop-off location
for the next person to use. Public rechargeable e-scooters
have become a popular transportation option in many cities
around the world due to their convenience and environmental
benefits. Unfortunately, e-scooter sharing is a relatively new
business, with many issues left unaddressed. One major issue
to highlight is the environmental life cycle of an e-scooter,
where although it produces no emissions during use, the
charging of the e-scooter does. From the emergence of public
e-scooters as a method of micro-transportation, they have
been recharged by freelancers by taking the whole e-scooter
and charging it in a different location and then bringing it
back. This method is gradually being replaced by a new
method where the e-scooters are fitted with a replaceable
battery [17], [19] and can be charged on the street, no longer
needing to collect them. With this emerges a new issue,
and that is how will these replaceable batteries be delivered.
A potential solution being explored that is also eco-friendly
is using e-cargo bikes, currently these bikes have a capacity
between 20-40 batteries and have a range of approximately
30km. As the environmental footprint of the recharging of
e-scooters is quite significant, as it amounts to 43% of
the total environmental impact of an e-scooter, reducing it
as much as possible could make a substantially positive
influence as a whole.

B. CAPACITATED VEHICLE ROUTING PROBLEM

The Vehicle Routing Problem (VRP) can be described as an
extension of the Travelling Salesman Problem (TSP). Where
given a list of locations, the objective is to minimize the
total cost (i.e., the distance or travel time) needed to serve
all the customers. Unlike TSP, VRP is defined as having
multiple salesmen or vehicles which can travel around to
any of the locations in any order as long as all locations are
visited with the objective of shortening the overall combined
distance of all vehicles. The Capacitated Vehicle Routing
Problem (CVRP) is defined as a VRP with vehicles that have
a limited carrying capacity and the need to pick up or deliver
items at the given locations. As the problem being tackled
in this paper involves recharging e-scooter batteries using a
number of operators, it can be seen how these dilemmas can
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be equated with each other. One issue with determining an
optimal solution to VRP is that it is classified as NP-hard,
which means if the problem is too large, optimally solving
it using mathematical programming may be difficult as it
would simply take too much time to run. Thus, it is much
more practical to use heuristics to solve this type of problem
as the size and frequency of real world VRPs tend to be
significant [5].

As VRPs generally relate to the service of a delivery com-
pany, a depot or location where the vehicles must start out
from and return to is generally required to be included. In our
case a depot would also be necessary as it is assumed there
will be a location that the operators need to go to pick up
the replaceable batteries. Normally, this problem would also
model when it is impossible to satisfy all of the customer’s
demands, however, in this case it was assumed that the mini-
mum number of operators needed to charge every scooter will
be available as the exact number of scooters and load capacity
of each operator is known and not variable [3], [8].

The problem of recharging e-scooters has been pre-
sented as a multi-depot periodic vehicle routing problem
(MDPVRP) in [3]. The MDPVRP problem is the challenge of
constructing a set of routes for each day of a specified p-day
period for a homogenous fleet of vehicles of capacity Q. Day
k routes must be accessed by mk vehicles located in the depot
designated for day k. Each vehicle can only travel one route
each day, and each route must begin and end at the same
depot. Each e-scooter may demand visits on fi (say) different
days over the time, and these visits may only occur in one of a
limited number of day combinations. Also, the mixed-integer
linear programming (MILP) is developed [17].

Il. METHODOLOGY

The implementation of the separate methods for optimiz-
ing the routes for the capacitated vehicle routing prob-
lem described in this paper can be split into five major
components.

1. Cleaning and extraction of data.

2. Implementing a machine learning method (K-means) on
the data to create clusters of locations.

3. Running PSO on the produced clusters (Hybrid method)
in step 2, to produce optimized routes.

4. Run the data through the Google OR-Tools API with the
different methods provided (i.e., Guided Local Search,
Simulated Annealing, etc...).

5. Compare and analyse the results

Figure 1 shows the main framework of the proposed
methodology.

A. DATA EXTRACTION

The E-Scooter Trips 2019 Chicago Pilot dataset is a consid-
erably large dataset containing 710839 e-scooter trips with
information detailing the trip distance, time, location, and
area. For our algorithm, only the location of the e-scooter
at the end of the trip is required as that is presumably
when a scooter may need charging. The overall data will
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FIGURE 1. M methodology flowchart.

be cleaned through removing rows that contain NaN values
in the relevant columns needed, of which include the End
Community Area Number, End Centroid Latitude and End
Centroid Longitude. In order to evaluate the effectiveness of
the various route optimization methods over many different
scenarios, the data is first split into its separate areas. This will
produce multiple sub datasets that can be evaluated, such as a
dataset specifically in the West Town area of Chicago. These
separate datasets will produce results showing how effective
each method is under different circumstances. Table 1 shows
Relevant Columns Used for Implementation.

During extraction of the data, one quirk found within the
dataset was the fact that there would often times be multiple
scooters in the same location at the same time stamp. This
caused some issues as the dataset only provided unique trip
IDs and not unique scooter IDs, making it difficult to identify
whether or not it was multiple scooters ending at that location
or one scooter being used multiple times within the hour.
In order to remedy this, we made the assumption that every
unique trip would be treated as a unique scooter, but the maxi-
mum number of scooters at any one location would be limited
to 15. The reason for this assumption was due to the fact that
it is unreasonable to expect that no scooters will be parked
next to each other and also unreasonable to expect there to
be dozens if not hundreds of scooters parking in the same
spot over the course of a day. The data was also in latitudinal
and longitudinal coordinates which needed to be converted
to X and Y coordinates. This was done using the geometric
parameters of the World Geodetic System 1984 (WGS84)
ellipsoid [9]. Cartesian coordinates can be calculated from
geographical coordinates using the following equations.

X = (v+ h) cos (¢p) cos (/'L) )
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TABLE 1. Units for magnetic properties.

Column Name Description

Trip ID A unique code used for identifying each
trip

End Time Timestamp of when the trip ended,

rounded to the nearest hour
A number identifying the Community

End Community

Area Number Area where the trip ended

End Community | The Community Area name where the
Area Name trip ended

End Centroid | The Latitude of the centre of the trip
Latitude end census tract

End Centroid | The Longitude of the centre of the trip
Longitude end census tract

Y = (v+ h) cos (¢) cos (l) 2)

where ¢ is latitude, A is longitude, 4 is height, and v is the
radius of the curvature in the prime vertical plane and is
given as:

a
L — 3)
1 —e2sin’ ¢

where ¢?, the square of the first eccentricity is given by

F=f2—f) 4

The geometric parameters of WGS84 are:
Semi-major axis a = 6378137 m
Flattening f = 1/298.257223563
Semi-minor axis b = a (1 — f) = 6356752.3142 m
The pseudo-code for the data extraction can be seen below:

B. CLUSTERING USING K-MEANS
K-means is a machine learning technique that is one of the
most widely used clustering techniques in the world due to its
simplicity and speed. The way k-means works, is through first
arbitrarily choosing k number of initial centres, after which
it seeks to minimise the average squared distance between
points in the same cluster by moving the centroids through
constant iterations until they no longer change. The end out-
come is a k number of clusters each consisting of the closest
datapoints surrounding the centroids. Constrained K-means
is simply k-means given specific parameters constraining the
centroids such that they meet the specified minimum and
maximum group of nodes for each cluster [13], [20], [21].
With the data fully prepared for evaluation, the Area
datasets can then be clustered using K-means clustering.
Through finding the number of scooters in the area, it is
possible to determine the number of clusters needed based
on the number of batteries any single operator can carry.
As the assumption made in this paper is that e-scooters will
be charged using replaceable batteries, a single operator can
carry a considerable number. While there is no consensus
on battery size and weight, for the purpose of this method-
ology we will assume that any and all operators can carry
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Algorithm (1):

1. Load data as Dataset,;

2. Remove unnecessary rows with NaNs as values for
relevant columns in Dataset,y as Dataset cjeaned

3. For ‘i’ = number of community areas:

a.  Extract all rows and columns of community
area ‘i’ in ‘End Community Area Number’
[from Dataset jeanea as Datasetareq,

b.  Find timestamp t,,, in ‘End Time’ from
Datasetsreq; with maximum number of rows

c. Extract all rows and columns of timestamp
tnax in ‘End Time’ from Datasetareq;, as
Datasetpyeq,

d.  Extract ‘End Centroid Latitude’ and ‘End Centroid
Longitude’ columns from Datasetsreq; as
Datasetpyeq,

e.  Convert Datasetayeq, from ‘End Centroid Latitude’
and ‘End Centroid Longitude’ to ‘X’ and ‘Y’:

i. Initialise Datasetpreqxy, as empty

ii.  Initialise parameters of WGS84,
a = 6378137, f = 1/298.257223563,
b=a(l—f),e=f2~f)h=0

iii. ~ Convert Datasetareq; from degrees to radians
using DatasetareaRadians; = Datasetpreq; X (l%)

iv.  For j’ = number of rows in
DatasetAreaRadiansi :

1. Calculate ‘v’ using Equation

(3):v= —4—
A 1—¢2sin2 ¢

2. Calculate ‘X’ using Equation
(1):X = (v + h) cos (¢) cos (QL)

3. Calculate 'Y’ using Equation
(2):Y = (v + h) cos (¢) cos (1)

4. Append ['X’, ‘'Y’] onto
Datasetpreaxy;

4. Output Datasetareqxy; as the datasets to be used for
evaluation in each algorithm

30 replaceable batteries as e-cargo bikes can carry approxi-
mately 20-40 [21]. The ‘k’ number of clusters will always be
determined to be the minimum number of clusters required to
charge every e-scooter, for example if there are 91 scooters,
then k will equal 4. Once the area dataset has been clustered,
each cluster can then be extracted to be used for evaluation
using PSO.
The pseudo-code for the implementation of constrained

K-means can be seen below:

1. Define constraint parameters of the clusters:

sizemin = 10, sizepax = 30
2. Calculate number of clusters needed using

. len (Datasetmwxyi)

Nelusters = ceil e where ceil is

‘ceiling’, i.e. round up, and len(Datasetareqxy;) is the
number of data points in the dataset

3. Cluster the data using the constrained k-means function
through inputting the number of clusters, minimum size,
maximum size and Datasetareaxy;.
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C. PARTICLE SWARM OPTIMISATION

Particle Swarm Optimization (PSO) is an optimization
algorithm used for primarily minimising the cost of an
objective function. It optimizes a problem through scattering
particles (solutions) into a search space and then iteratively
moving those particles in order to find the global minimum.
These particles move in the direction of their respective local
minimums and the global minimum at velocities dependent
on how far away from either point they are. The local min-
imum is the best solution that the particle has obtained so
far and is called pbest, while the global minimum is the best
solution that the whole group of particles has obtained so far
and can be denoted as gbest, [12], [14]. Once the two best
values are found, the position and velocity of the particles are
updated by Equations 5 and 6.

vi = wv; + c1r1 (pbest; — x;) + car2 (gbest — x;)  (5)
Xi=x;i+v; (6)

where v; is the velocity of the ith particle, w, ¢, and c; are
constants that define the weight of each variable, r| and r;
are random variables in the range O to 1 and x; is the solution
of the i particle. pbest;, as stated previously, is the personal
best solution of i particle while gbest is the best solution
found from all particles [10]. As PSO is being used to solve
a problem similar to the travelling salesman problem, the
implementation of the algorithm will have to be modified for
a discrete array of routes and distances. An existing method
to solve this particular type of problem is called the Swap
Operator (SO) and Swap Sequence (SS) [4], [12], [15], [23].

The swap operator can be defined as followed, consider a
normal solution sequence of TSP with S = (a;),i=1...n.

The Swap Operator SO (i, i) denotes the indices of two
locations in the route and is used to swap location a;, and
location a;, in the solution S. This new solution can then be
defined as

S’ =S+ 80 (i1, ir) @)

To take as an example, if a solution S = (2, 1,4, 5, 3), and
the swap operator is SO (3, 4), then the new solution S’ is

S =85+S503,4)=(2,1,4,5,3)+(3,4)
=(2,1,5.4,3) ®)
where + is defined as applying the swap operator in order to
swap the position of the location nodes in the route.

The Swap Sequence SS is essentially a list containing one
Or more swap operators.

SS = (501,502,803 ...,50,) ©)]

S01, SO, ...S0O, are swap operators, and the order of the
SOs in the swap sequence is important [ 10]. A swap sequence
being applied to a route means all of the swap operators of
that SS are applied in order which can be described by the
following formula:

S =85+485 =S8+ (S01,50,,80;3...,80,)

132476

=(...((S+50)) +50) + ...+ 50,) (10)

Using this method of interaction for the particles, the original
formula will then have to be changed in order to make it
applicable, where the formula is now

vi = v; @ r (pbest; — x;) ® ry (ghest —x;)  (11)

where (pbest; — x;) and (gbest — x;) are now SSs and @ is
defined as merging two swap sequences into a new swap
sequence. This in execution is essentially when a merged SS
is applied to a solution, SS; is applied and then the second
SS» is applied afterwards.

Once the data had been clustered, Particle Swarm Opti-
mization can be applied to determine the optimal route for
each cluster. As the PSO method being implemented uses
swap operators and is used for evaluating the traveling sales-
man problem, the algorithm needs to be separately applied
on each cluster. This will produce multiple routes originating
from the depot, after which the results can be combined to
produce the final routes and distance. This depot needs to
be independently created and inserted into the dataset as an
assumption to where the e-scooter company may set up a
location to store batteries. For this, the depot is created using
the mean of the latitudes and longitudes of the area, where
we are assuming that the depot will be in the approximate
centre of the area. As we are predominantly comparing the
optimisation capabilities of the algorithms, the same will be
done for the case where all the locations in Chicago are
compared and will not have multiple depots introduced.

The pseudo-code for the PSO algorithm used can be seen
below:

Algorithm (2):

1. Initialize particles with randomized routes.
Calculate the distance travelled for each route and treat
them as pbest;. Set gbest as the pbest; with the smallest
distance.

2. For each particle:

a.  Calculate the Swap Sequences through finding the
difference between pbest; and x; and determine
velocity using Equation (11):

vi = v; @ ry (pbest; — x;) @ ry (gbest — x;)

b.  Calculate new route x; using Equation (6):

Xi =X +v;

c.  Update pbest; is the new route has a smaller

distance than the previous route

3. Update gbest if a route with a smaller distance than
the previous gbest exists

4. Ifstopping criteria (for e.g. 1000 iterations) is reached,
then take gbest as the solution and output. Else, return
back to step 2 and loop.

The trade-off between exploration and exploitation capa-
bilities in PSO is effectively handled through the hybrid
approach by incorporating the strengths of K-Means
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clustering. PSO inherently possesses strong exploration capa-
bilities [25], allowing particles to explore the search space
to discover potentially better solutions. However, this explo-
ration might lead to a slower convergence towards the optimal
solution. In the hybrid approach, the K-Means clustering
component helps strike a balance between exploration and
exploitation. By using K-Means clustering, the algorithm
identifies the optimal number of clusters or regions in the
problem space. This process ensures that particles in PSO
are distributed across different clusters, enabling both explo-
ration and exploitation to take place effectively. Each cluster
represents a specific region of interest, and particles within
that cluster explore and exploit solutions within their local-
ized area. This allows for focused search and exploitation of
the best solutions within each cluster. The hybrid approach
strikes a balance between exploring diverse regions of the
problem space (through cluster assignment) and exploiting
the best solutions within each region (through PSO’s par-
ticle interactions). This synergy enhances the algorithm’s
overall performance and increases the likelihood of finding
high-quality solutions efficiently.

D. IMPLEMENTING THE OTHER METHODS

Using Google’s OR-Tools API, it is possible to quickly set
up code that will run optimization methods for the capaci-
tated vehicle routing problem. Such methods include Guided
Local Search, Simulated Annealing, Tabu Search and Greedy
Descent. Unlike PSO with K-means, these methods do not
need the area data to be clustered and then run on each
cluster. These methods were run directly on the area data after
specifying the specific number of operators and the location
of the depot.

1) SIMULATED ANNEALING

Simulated Annealing is a heuristic optimization algorithm
that uses randomness to find the global minimum or maxi-
mum of a function. It is based on the concept of annealing in
metallurgy, where a material is heated and then slowly cooled
to increase its hardness and reduce defects. In simulated
annealing, the solution to a problem is represented as a point
in a search space, and the algorithm uses random moves to
explore different points in this space [22].

At each step, the algorithm considers a new solution and
decides whether to accept it based on its quality compared
to the current solution. If the new solution is better, it is
always accepted. If it is worse, it is sometimes accepted
with a probability that depends on how much worse it is,
and a parameter called the temperature. The temperature is
gradually decreased over time, which causes the algorithm to
become more selective and converge on the optimal solution.
The key to the success of simulated annealing is the tempera-
ture schedule, which determines how quickly the temperature
decreases and how selective the algorithm becomes over
time. A well-designed temperature schedule can help the
algorithm avoid getting stuck in local minima and find the
global minimum.
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Pseudo-code for the general formulation of the Simulated
Annealing algorithm can be seen below:

Algorithm (3):
1. Initialize solution (i.e. in this case a set of routes
determined by using the First Solution Strategy:
“PATH_CHEAPEST_ARC” from Google OR-Tools).
PATH_CHEAPEST_ARC starts from a route “start”
node and iteratively connects to the next node that is the
shortest distance away from it until it returns to the
“start” node.
Initialize ‘temperature’ variable
3. While the stopping condition has not been met (for e.g.
1000 iterations) and the temperature is above a
minimum threshold.:

N

a. Generate a set of potential routes by performing local
search from the current route

i. Select a random route from the set of routes
ii. Select a random e-scooter from the route
iii. Generate a set of possible new routes by removing
the selected e-scooter from the selected route and
inserting it into each of the other routes
iv. Evaluate each of the new routes based on distance
and load capacity
v. Select the new route with the smallest distance
travelled that still satisfies the load constraint

b. If the new route is an improvement over the previous
route, update the set of
routes with the new route

c. Else if the new route is not an improvement, accept
the new route based on a probability equal to e T ,
where A is the difference in distance between routes,
and T is the temperature

d. Decrease the temperature based on a pre-defined
cooling schedule

e. If stopping condition has not been met return to 3a
and loop.

4. Ifthe stopping condition has been met, output the current
set of routes as the optimal solution

2) GUIDED LOCAL SEARCH
Guided local search is a metaheuristic optimization algorithm
that combines elements of local search and constraint satis-
faction techniques. It is called a metaheuristic because it is
a higher-level algorithm that guides the search for a solu-
tion, rather than a specific solution algorithm for a particular
problem. The algorithm works by first starting with an initial
solution to a problem, and then iteratively improving the
solution by making local changes. This process is guided by
a set of constraints that must be satisfied, as well as a quality
function that evaluates the goodness of a solution [5].
During each iteration, the algorithm first applies a local
search procedure to the current solution to try and find a
better one. This can involve making small changes to the
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solution, such as swapping two items in a list or adjusting
the values of variables. The algorithm then evaluates the new
solution using the quality function, and accepts it if it is an
improvement over the current solution. If the new solution
does not satisfy the constraints, the algorithm may use a
repair procedure to modify the solution so that it satisfies
the constraints. This process is repeated until the algorithm
converges on a satisfactory solution.

Pseudo-code for the general formulation of the Guided
Local Search algorithm can be seen below:

Algorithm (4):

1. Initialize solution (i.e. in this case a set of routes
determined by using the First Solution Strategy:
“PATH_CHEAPEST _ARC” from Google OR-Tools).
PATH_CHEAPEST_ARC starts from a route “start”
node and iteratively connects to the next node that is
the shortest distance away from it until it returns to the
“start” node.

2. While the stopping condition has not been met (for e.g.

1000 iterations):

a. Generate a set of potential routes by performing
local search from the current route

i.  Select a random route from the set of routes
ii.  Select a random e-scooter from the route
iii.  Generate a set of possible new routes by
removing the selected e-scooter from the
selected route and inserting it into each of the
other routes
iv.  Evaluate each of the new routes based on
distance and load capacity
v.  Select the new route with the smallest distance
travelled that still satisfies the load constraint

b.  If the new route is an improvement over the previous
route, update the set of routes with the new route

c.  Else if the new route is not an improvement, apply
a probability factor to determine whether to accept
the new route anyway

d.  If stopping condition has not been met return to 2a
and loop.

3. If the stopping condition has been met, output the
current set of routes as the optimal solution

3) TABU SEARCH

Tabu search is a metaheuristic optimization algorithm that
is used to find good solutions to problems that are diffi-
cult to solve using traditional optimization techniques. The
algorithm works by iteratively improving a solution to a
problem by making small changes to the current solution,
while avoiding making the same change multiple times. This
is done by maintaining a list of “tabu” moves, which are
changes that are not allowed to be made again in the current
search.
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The tabu search algorithm begins with an initial solution
to the problem, and then iteratively makes changes to the
solution in order to improve it. At each step, the algorithm
evaluates the possible moves that can be made to the current
solution, and selects the best move that is not tabu. If no such
move can be found, the algorithm may make a move that is
tabu, but with a reduced probability. The algorithm continues
to make moves until it reaches a predefined stopping condi-
tion, such as a maximum number of iterations or a satisfactory
level of solution quality [7], [11], [16], [24].

Pseudo-code for the general formulation of the Tabu
Search algorithm can be seen below:

Algorithm (5):

1. Initialize solution (i.e. in this case a set of routes
determined by using the First Solution Strategy:
“PATH_CHEAPEST _ARC” from Google OR-Tools).
PATH_CHEAPEST_ARC starts from a route “start”
node and iteratively connects to the next node that is
the shortest distance away from it until it returns to the
“start” node.

Initialise the Tabu List to be empty
While the stopping condition has not been met (for e.g.
1000 iterations):

a. Generate a set of potential routes by making small
changes to the current route (e.g. using 2-opt which
is swapping the order of the locations of two
e-scooters on a route)

b.  Evaluate each potential route to determine distance
travelled

c.  Choose the best route with the smallest distance
travelled that is currently not on the Tabu List

d.  Update the Tabu List by adding the current route
onto it

e.  If stopping condition has not been met return to 3a
and loop.

If the stopping condition has been met, output the current
set of routes as the optimal solution

1. NUMERICAL RESULTS

The following subsections implement the methodology for
the route optimization algorithms, display the results and
summaries the findings.

A. IMPLEMENTING THE OTHER METHODS

A flowchart diagram detailing the process for our hybrid
PSO K-Means method can be seen in Figure 2. Where the
extracted and processed data is clustered using constrained
K-means and is then evaluated through PSO. Through using
constrained K-Means, it is possible to create as many clus-
ters as is needed to separate each cluster into no more than
30 scooters. The constraints for the clustering are a maxi-
mum of 30, a minimum of 10, with k equal to the number
of scooters divided by 30 rounded up. These constraints
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Extract Data from
Dataset

Clean Data (i.e., Remove unwanted
data, NaN values, unnecessary
columns, etc...)

Sort and Separate Rv Area (Using End
Community Area Number column in
data)

Feature Extraction (Reduce data to
only coordinate columns and then
convert from latitude and longitude to
XY values)

Apply Constrained K-Means with
min=10 and max=30 on chosen Area
Data to obtain clusters and number of
clusters

Apply PSO on clustered data and
search for best solution

S

Calculate velocity of each particle

Update positions of each particle

All Clusters in
Area have
been
evaluated

Update best solution

Max num of iterations is reached or all

particles have converged on best
solution

Final solution obtained and can be
visualized through combining all
clusters into one diagram

FIGURE 2. Hybrid PSO K-Means flowchart diagram.
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FIGURE 3. E-Scooters in Chicago clustered.

produce Figure 3 when applied on all of Chicago at a single

timestamp.

With the locations of the scooters clustered, particle swarm
optimization could be applied to solve what is essentially the
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travelling salesman problem. By applying PSO separately on
each cluster, it will produce the optimized route from the
depot and back, where an example of the result can be seen
in Figure 4 below.
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TABLE 2. Comparison table of results for all methods.

Area Load No. of PSO+K-Means | Guided SA TS Greedy
Locations Local Descent
Search
7 31 5 5147 5147 5147 5147 5147
8 32 6 6882 6882 6882 6882 6882
9 84 8 11883 11759 12143 11759 12143
1 1.05% 13.27% 13.27%
10 15 3 1326 1326 1326 1326 1326
11 53 11 10231 10231 12226 10231 12226
119.5% 119.5%
13 30 5 2185 2185 2185 2185 2185
14 44 8 4816 4796 4796 4796 4796
10.417%
15 453 34 46874 45617 45873 45613 45873
12.76% 10.009% | 10.570% 10.570%
16 32 8 7514 7462 7462 7462 7517
10.697% 10.737%
17 525 36 51501 49623 49702 49404 49702
14.24% 10.443% | 10.603% 10.603%
18 364 26 42790 41576 42005 40851 42005
14.75% 11.77% 12.82% 12.82%
19 18 4 2175 2175 2175 2175 2175
20 22 3 1786 1786 1786 1786 1786
21 322 23 37201 37648 37904 37857 37904
11.20% 11.89% 11.76% 11.89%
22 40 4 4160 4160 4160 4160 4160
24 40 7 7563 7563 7563 7563 7563
25 40 6 8213 8053 8053 8053 8053
1 1.99%
45 35 4 4695 3746 3746 3746 3746
125.3%
67 65 6 12337 12119 12119 12119 12119
1 1.80%
76 45 3 3910 3910 3910 3910 3910
All 377 58 106044 102433 111503 99878 111503
16.17% 12.56% 11.6% 111.6%
Mean % Increase from Best 12.34% 10.285% | 11.92% 10.084% | 11.95%
With all of the clusters routes solved using PSO, we can the scooters in their respective routes. From Figure 5 below,
then combine them into a single figure to obtain a more it can be seen that there is one depot where all operators start

encompassing visualisation of how the operators will charge and end at.
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FIGURE 7. PSO with K-Means for area 21.

The results obtained from Google OR-Tools do not need
to be combined as they were not separated using clusters,
as such the end result is directly output and can be seen below
in Figure 6.

From comparing the two figures, it can be observed that
PSO with K-means produces results where the locations are
all in similar directions and very rarely overlap unless one
of the location nodes has too many scooters for one operator
to handle. Tabu search on the other hand will sometimes
have routes that surround other routes but never have multiple
operators arrive at the same destination.

As can be seen from the comparison Table 2 below,
the highlighted values in green show which algorithm per-
formed the best and produced the smallest distance for
each respective area. Each value in the columns beneath the
meta-heuristic methods is the best result out of 10 runs using
each method for each area. The algorithm with the largest
number of highlighted values is Tabu Search, with Guided
Local Search being not too far behind. The method of utilising
K-Means with Particle Swarm Optimization ultimately did
not have ideal performance, with only very few scenarios
where it produces a smaller cost than the other methods. This
may be due to the fact that it is only capable of creating routes
in localised areas as a result of the clustering and removes
that step outside of the optimization. This can mean that
sometimes the optimal solution may require a route to reach
a further destination than in the local cluster before returning
to the depot. In order to make sure all of the algorithms were
compared under similar conditions; each algorithm was com-
puted using 1000 iterations. Table 2 includes a percentage
increase value for each of the non-best distances in the table,
for example in row 3 PSO+K-Means is 1.05% (11883/11759)
greater than Guided Local Search and TS. The mean %
increase is the sum of all percentage increases divided by the
number of cases (21) for each algorithm respectively.

When looking at one of the solutions where PSO with
K-Means performs better than the other methods, it can be
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seen that in Figure 7 that the routes have all of their nodes
occur in the same direction away from the depot. Whereas,
in Figure 8 the second best result from GLS has routes that
go in multiple directions away from the depot, resulting in
extra distance travelled. This is most likely due to the fact
that GLS never visits the same node twice, while PSO with
K-Means does not have that restriction allowing routes like
route 1 from Figure 8 to be avoided as other operators can
also visit those locations. While the restriction that only one
vehicle can visit one location makes sense in the context of
the original vehicle routing problem, as customers would only
want to be visited once by someone who will serve them fully.
It is not as fundamental rule for our case as different people
going to change the batteries of scooters in the same location
will not inconvenience any customers.

IV. CONCLUSION
This paper detailed the development, analysis and compari-
son of a route optimisation algorithm using PSO and K-means
against other similar methods such as Guided Local Search,
Simulated Annealing, Tabu Search and Greedy Descent. The
optimisation algorithms were applied onto an e-scooter trip
dataset from the 2019 Chicago Pilot in order to determine
their effectiveness as a method for optimising e-scooter bat-
tery charging routes. The results showed that although in
certain cases it was possible for the PSO with K-means
method to produce the best result, the majority of the time
Tabu Search was the best algorithm for this scenario. Guided
Local Search was the algorithm with the second highest num-
ber of best costs, with Simulated Annealing being slightly
worse and Greedy Descent with the fourth highest number
of best costs. One thing to take of note is that while PSO
with K-means overall performed the weakest, it was the
only algorithm to produce better results in some cases when
compared to Tabu Search, whereas the other methods were
almost always the same or generally worse.

The main contribution of this paper is the proposal of
a novel hybrid approach that combines Particle Swarm
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Optimisation (PSO) and K-Means clustering, leveraging their
respective strengths to address the challenges in efficient
scooter deployment and route optimisation. The integration
of PSO ensures effective exploitation capabilities for route
optimisation, while K-Means clustering enables optimal allo-
cation of operators based on demand and population density.
This hybridisation strikes a balance between convenient
operator deployment and efficient travel distance, resulting
in an optimised scooter management system. Additionally,
the paper presents empirical results based on real-world
data from the 2019 Chicago pilot program, highlighting the
superior performance of Tabu Search algorithm in optimizing
charging routes for e-scooters. The findings provide valuable
insights for companies seeking to enhance the management
of scooter charging operations.
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