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ABSTRACT Gastrointestinal (GI) cancer is the most common cancer in men and women. GI cancers are
increasing every year worldwide. In the biomedical industry, Radiation treatment is a frequent choice for
treating cancers of the GI tract in which the oncologist focuses the high range of X-ray beams on the
tumor while avoiding the healthy organs. Manual segmentation of healthy organs to focus X-ray beams
only on the tumor portion is very tedious and time-consuming, which can lead the treatment from a few
minutes to hours. Deep learning techniques can concur with this problem by segmentation of healthy organs.
This research article proposes a deep learning-based model Pyramid Scene Parsing Network (PSPNet) for
segmenting organs such as the stomach, small bowel, and large bowel in the GI tract. The model has been
simulated with five feature encoding networks: ResNext 50, Timm_Gernet_S, ResNet 34, EfficientNet B1,
andMobileNet V2. These encoders were used for downsampling the feature map in the PSPNet architecture.
The implementations have been performed using the UW Madison GI tract dataset, which contains 38,496
MRI scans of cancer patients. The model was evaluated using validation dice, Jaccard, and validation loss.
The results reveal that the PSPNet model combined with ResNet 34 as encoder outperforms the other feature
encoding networks with validation dice as 0.8842, validation Jaccard as 0.8531, and validation loss as 0.1365.
Radiation oncologists can use the proposed model to speed up radiation therapy for cancer treatment.

INDEX TERMS Segmentation, gastrointestinal tract, PSPNet, encoders, MRI scans, radiation therapy,
UW madison.

I. INTRODUCTION
Segmentation of gastrointestinal (GI) tract organs is vital
in medical imaging and computer-aided diagnosis, offering
profound implications for early detection, diagnosis, and
treatment of GI diseases. Gastrointestinal disorders, includ-
ing gastrointestinal (GI) tumors, colorectal cancer, Crohn’s
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disease, and ulcers, pose significant health risks to individuals
worldwide.

Globally, gastrointestinal (GI) tumors are the most preva-
lent forms of cancer [1], [2]. According to the American
Cancer Society, there will be around 26,500 new instances of
stomach cancer in the United States in 2023 (15,930 in men
and 10,570 in women) and approximately 11,130 fatalities
from this kind of cancer (6,690 men and 4,440 women) [3].
GI tract cancer is developing cancerous cells in any part of the
gastrointestinal system, including the esophagus, stomach,
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small bowel, large bowel, liver, pancreas, and anus [4]. The
most commonGI cancers include colorectal, gastric, and pan-
creatic cancers. Depending on the location, stage, and kind of
cancer, GI cancer treatment often includes surgery, radiation
treatment, and chemotherapy [2]. Radiation treatment is a
frequent choice for treating cancers of the GI tract. This treat-
ment utilizes high-energy radiation to kill cancer cells [5], [6].
Before starting radiation therapy, a healthcare professional
will carefully evaluate a person’s medical history, overall
health, and cancer stage to determine the best treatment plan.
The oncologist focuses the X-ray beams on cancer while
avoiding the healthy organs. Radiation is often administered
daily over several weeks. Segmenting the healthy organs of
the GI tract from cancer is necessary. This can be very tedious
if performed manually.

As the prevalence of GI-related illnesses continues to rise,
the demand for reliable and automated segmentation meth-
ods has grown exponentially. The segmentation of GI tract
organs presents a unique set of challenges due to the complex
anatomical structures, variability in patient anatomy, and the
potential presence of pathologies. Therefore, it is essential
to develop advanced computational techniques that can accu-
rately and efficiently delineate the boundaries of GI organs,
providing healthcare professionals with precise insights into
the patient’s condition.

Deep learning is a solution to this problem, which can auto-
matically segment healthy organs to speed up the treatment.
In medical imaging, deep learning algorithms may segment
or identify specific structures or regions of interest within
an image [7], [8], [9]. The segmentation method requires
training a model on a vast dataset of annotated images, where
the GI tract is designated as a distinct region of interest
[10]. The model then applies this training to new images
to partition the gastrointestinal tract. This paper proposes a
Pyramid Scene Parsing Network (PSPNet) to segment the
GI tract’s healthy organs using the UW Madison GI tract
database.

Further, five different pre-trained models were used as
the backbone of the PSPNet model. Experimenting with
different transfer learning models allows to gain insights
into which architectures work well for your particular seg-
mentation problem. This research can lead to a deeper
understanding of the relationship between feature extraction
and segmentation performance and guide improvements in
future models. The PSPNet model also includes a decoder
module to refine segmentation findings and enhance the
model’s overall performance.

The following are the primary contributions of this
manuscript:

• A deep learning model, PSPNet, with a feature encoding
network, pyramid pooling module, and decoder, has
been proposed for segmenting small bowel, large bowel,
and stomach in the GI tract to help radiation oncologists
speed up cancer treatment. The significance of the fea-
ture encoding network lies in its ability to capture and
represent the hierarchical, context-rich information from

the input image, which is essential for accurate and fine-
grained segmentation.

• Different transfer learning models, such as ResNext
50, Timm_Gernet_S, ResNet 34, EfficientNet B1, and
MobileNet V2, have been pre-trained on GI tract
datasets for feature encoding network and have learned
to capture different types of features. A more compre-
hensive set of features can be potentially extracted using
a variety of these models. This diversity in feature repre-
sentation can be beneficial for capturing a wide range of
visual patterns and semantics in the input images, which
may lead to better segmentation performance.

• The evaluation of various feature encoding networks
in the PSPNet segmentation model has revealed that
ResNet-34 stands out as the top-performing choice,
demonstrating superior results in metrics such as the
Dice coefficient, Jaccard index, and loss. The perfor-
mance of different feature encoding networks has been
evaluated in which ResNet 34 has performed best in
terms of dice coefficient, Jaccard, and loss.

The remaining part of the manuscript is arranged as Section II
describes the related work of the gastrointestinal tract.
Section III shows the proposed methodology utilized for the
segmentation. Section IV represents the dataset used for this
study. Section V describes the PSPNet design. The results
and discussions are presented in Section VI, and the article
is wrapped up in Section VII.

II. RELATED WORK
In recent years, a great deal of study has been conducted
on gastrointestinal (GI) tract cancer, which has been classi-
fied. In 2012, Li B. et al. addressed the issue of automated
tumor detection in Wireless Capsule Endoscopy (WCE)
images. To describe wireless capsule endoscopy (WCE)
images, texture statistics incorporating uniform local binary
patterns (LBP) and wavelets were presented. The suggested
attributes are insensitive to changes in light and explain the
multi-resolution properties of WCE images. Comprehensive
testing shows that the recommended computer-aided diag-
nostic method has a good % tumor detection accuracy of
92.4% in WCE images [11]. Zhou et al. established a global
arithmetical approach for repeatedly detecting cysts and
determining their ranges in Video capsule endoscopy (VCE)
frames in 2014. The suggested system collects statistical data
from RGB channels. The statistical data was then loaded into
a Support Vector Machines (SVM) to assess the presence
and radius of polyps [12]. Wang et al. introduced ‘‘Polyp-
Alert,’’ a software solution that provides visual feedback
during colonoscopy to aid endoscopists in locating polyps.
Polyp-Alert detects a polyp along the shape of a polyp—
using our prior edge optical characteristics and a classifier.
Using 53 video clips of complete operations, the program
accurately recognized 97.7% of polyp shots [13]. In 2017,
Li et al. introduced a Convolutional Neural Network (CNN)
topology for segmenting colorectal polyps. This approach
may generate a prediction map with the exact dimensions
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as the original image of the input network. They evalu-
ated their strategy using the CVC-ClinicDB database [14].
Nguyen et al. suggested an encoder-decoder network-based
polyp segmentation approach. They make an accurate fore-
cast by integrating many models to equate the likelihood of
each image created using the model. The suggested strategy
outperforms state-of-the-art findings, according to an evalua-
tion utilizing the ETIS-LariPolypDB database [15]. In 2019,
Dijkstra et al. reported a one-shot approach for characterizing
polyps in colonoscopy images. For semantic segmentation,
they employ a CNN model. The network was tested on
publicly available datasets and yielded encouraging results
[16]. Nguyen et al. introduced MED-Net, a novel polyp
segmentation approach based on the construction encoder-
decoder model, in 2020. Moreover, they provide a supple-
mentary technique for boosting the system’s segmentation
performance using an augmentation and loss function [17].
Jha et al. published the ‘‘Kvasir-Instrument’’ dataset in
2022, with almost 600 frames featuring GI operation equip-
ment. Two professional GI endoscopists validated the dataset,
which contains masks in addition to the images. Furthermore,
they serve as a foundation for segmenting GI models to boost
research [18]. Sharma et al. employed a conventional U-Net
design with a different encoder in 2022. More sophisticated
algorithms have shown excellent results in many categoriza-
tion problems. These algorithms can be used as encoders
[19]. In 2022, Ye et al. suggested the SIA-Unet, an upgraded
model withMagnetic resonance imaging (MRI) images. SIA-
Unet additionally contains an attention tool that filters the
spatial information of the feature map to extract relevant
data. Comprehensive tests on the UW-Madison dataset were
carried out to assess the performance of SIA-Unet [20].
In 2022, Nemani et al. presented a hybrid CNN-transformer
architecture for segmenting distinct organs from images.
With Dice and Jaccard coefficients of 0.79 and 0.72, the
suggested approach proved resilient, scalable, and compu-
tationally efficient. The suggested method also illustrates
the idea of deep automation to increase treatment efficacy
[21]. In 2022, Chou et al. used U-Net and Mask R-CNN
approaches to segment different regions. For the validation
set, the top Mask R-CNN model received a Dice score of
0.73 [22]. To conduct pixel-level image classification and
segmentation, an encoder for the U-Net model, a U-Net
decoder, and feature fusion architecture are all components
of the network model for GI segmentation that Niu et al.
published in 2022. The experimental findings demonstrate
that their model improves its Intersection over union (IOU) as
matched to other networks [23]. In 2022, Li et al. developed
an enhanced 2.5D approach for GI Tract image segmenta-
tion. They suggested a technique for combining 2.5D and
3D findings. The findings combination approach enhances
scores by 0.007 compared to 2.5D and by 0.009 compared
to 3D [24]. In 2022, Chia et al. introduced two baseline
methods: a UNet trained on a ResNet50 backbone and a
more economical and streamlined UNet. They also examine

Feature-wise Linear Modulation (FiLM), a way of improving
the UNet model by adding image metadata such as the posi-
tion of the MRI scan cross-section and the pixel height and
breadth [25]. Georgescu et al. suggested a unique technique
for generating ensembles of diverse architectures for medical
image segmentation that uses the diversity of the models in
the ensemble. They run gastrointestinal tract image segmen-
tation studies to compare their diversity-promoting ensemble
(DiPE) with another technique for creating ensembles that
rely on picking the highest-scoring U-Net models. Their
empirical data demonstrate that DiPE outperforms individual
models and the ensemble building technique based on select-
ing the highest-scoring models [26].

III. PROPOSED METHODOLOGY
The Proposed model has been implemented for the UW
Madison GI Tract dataset with MRI scans of cancer patients.
These scans have been carefully annotated to identify the
small bowel, large bowel, and stomach regions. The proposed
model for segmenting GI tract organs utilizes the PSPNet
architecture, which consists of three main modules: the
Feature Encoding Network, Pyramid Pooling Module, and
Decoder, as shown in Figure 1. The feature encoding network
consists of three main blocks: the Convolution Block, which
extracts local patterns from the images. The Special Block
incorporates spatial attention mechanisms, and the Average
Pooling and Dense Layer Block refine the extracted features.
To improve the model’s performance, five transfer learning
models, namely ResNext 50, Timm_Gernet_S, ResNet 34,
EfficientNet B1, and MobileNet V2, were used as encoders
for the PSPNet. The Pyramid Pooling Module is designed
to gather context information at several scales, enabling a
more comprehensive understanding of the image. On the
other hand, the decoder utilizes upsampling techniques to
build the final segmentation map that aligns with the original
image resolution. This technology’s primary objective is to
precisely segment gastrointestinal (GI) tract organs, improv-
ing the interpretation and diagnosis of medical images.

IV. INPUT DATASET
The Institution ofWisconsin-Madison inMadison,Wisconsin,
has made an MRI scan dataset available. This database
contains 85 patients having scans of 1 to 6 days. Every
day’s scan has 144 or 80 images for diverse patients. The
images in the dataset are in RLE encoding form. By using
these RLE-encoded images, masks are produced using deep
learning algorithms. The size of the images in this database
is 224 × 224 × 3. The collection has 38,496 images in total.
The images are divided into train and test with a ratio of
80:20, respectively. The numbers of train and test images are
30796 and 7700, respectively. Figures 2 (a), (b) & (c) show
some sample images from the dataset, and figures 2 (d), (e),
and (f) show their respective ground truth masks. Here, red
indicates the large bowel, green indicates the small bowel,
and blue indicates the stomach.
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FIGURE 1. Proposed research methodology.

FIGURE 2. UW Madison GI tract dataset. (a), (b) & (c) Input images &(d),
(e) & (f) Ground truth masks.

V. PSPNet IMPLEMENTATION
Here, Pyramid Scene Parsing Network (PSPNet) is imple-
mented to segment GI tract from UW Madison GI Tract
dataset images. PSPNet is a semantic image segmenta-
tion convolutional neural network architecture. PSPNet is

FIGURE 3. PSPNet architecture.

intended to identify every pixel in an image with its match-
ing object class, a fundamental problem in computer vision.
Its basic concept is to employ a pyramid pooling module
that gathers contextual information at multiple scales to
increase segmentation accuracy. The pyramid pooling mod-
ule comprises many parallel layers with varying kernel sizes
concatenated and fed into a CNN for classification [27].
Figure 3 depicts the PSPNet model’s architecture.

PSPNet can be wisely used for biomedical image segmen-
tation [28], [29], [30]. The PSPNet (Pyramid Scene Parsing
Network) architecture comprises a pyramid pooling unit and
the characteristic mixture element. The pyramid pooling unit
is a critical PSPNet component that gathers various sizes of
contextual information. It is made up of numerous parallel
pooling layers with varying kernel sizes that are used to
extract features at different scales. Each pooling layer gen-
erates a feature map with another resolution. These feature
maps are then concatenated and sent through a convolutional
layer to form a single feature map with a broad receptive
field. The feature fusion module combines the pyramid pool-
ing module’s high-level features and the lower-level features
from the network’s earlier layers. This aids in the preservation
of spatial information and improves segmentation accuracy.
The feature fusion module comprises convolutional layers
and skips connections that concatenate the feature maps from
the module with the outputs from the network’s prior layers.
PSPNet’s architecture is based on a Fully Convolutional Net-
work (FCN) with a deep encoder and a decoder. The encoder
comprises multiple convolutional layers that extract features
from the input image.

The architecture mainly consists of three components: a
feature encoding network, a pyramid pooling module, and
a decoder network. The working and description of each
element are explained below.

A. FEATURE ENCODING NETWORK
The input image is fed to the feature encoding network to
get the feature map. The feature encoding network consists
of several convolutional blocks with residual connections.
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The output of the feature encoding network is upsampled
to the original image size using bilinear interpolation. The
upsampled feature map is concatenated with the pyramid
pooling module’s matching feature maps. The concatenated
feature maps run the final segmentation mask through many
convolutional blocks with residual connections to get the last
segmentation mask.

Here, five transfer learning models named ResNext 50
[31], Timm_Gernet_S [32], ResNet 34 [33], EfficientNet B1
[34], and MobileNet V2 [35] were used as the encoder of the
PSPNet for getting the feature map F(X).

Let X be the input imagewithWxH channels, andY be the
output feature map with W’ x H’ channels and K channels,
where K is the number of filters in the final convolutional
layer. Three blocks process the input image X: convolution,
special, global average pooling, and dense layer.

• CONVOLUTION BLOCK
First, a convolutional layer with F filters, a kernel size of

K x K, a stride of S, and P padding is applied to the input X.
The output is then subjected to a batch normalization layer
and a rectified linear unit (ReLU) activation function. Let Z1
serve as this block’s output. The encoder type will determine
the values of F, K, S, and P. The PSPNet was encoded using
the ResNext 50, Timm Gernet S, ResNet 34, EfficientNet
B1, and MobileNet V2 transfer learning models to get the
feature map. Table 1 provides the parameter values utilized
by various encoders.

• SPECIAL BLOCK
Depending on the type of encoder used, it consists of a

special convolution block. The block might be a residual
block for ResNet 34 and ResNext 50, a gernet block for
Timm_Gernet_S, an inverted mobile block for the Efficient
Net B1, or a depth-wise separable convolution block for the
MobileNet V2 encoder. Table 2 provides a thorough overview
of these components.

• AVERAGE POOLING AND DENSE LAYER BLOCK
To obtain a feature vector of size, the output of the last

special block is sent through a global average pooling layer.
A dropout layer with a rate of 0.5 is added to the feature vector
to prevent overfitting. A dense layer with a softmax activation
is used in the feature vector to achieve the final output.

B. PYRAMID POOLING MODULE
The input X is first passed through a feature encoding network
whose output is fed into a pyramid pooling module, which
extracts features at multiple scales. Let P_k(X) be the output
of the k-th pooling layer, where k = 1, 2, 3, 6. For each pool-
ing layer, the feature map is first divided into non-overlapping
regions of size (W_k, H_k), where

W_k = ceil(W/k) (1)

H_k = ceil(H/k) (2)

Here, W and H represent the width and height of the input
feature map, and k is the pooling scale factor. By dividing the
original dimensions by k and taking the ceiling of the result,

TABLE 1. Parameter values of different encoders.

these equations ensure that pooling operations capture con-
textual information at various spatial resolutions. In practice,
the input feature map is pooled at multiple scales (com-
monly 1×1, 2×2, 3×3, and 6×6), resulting in feature maps
with dimensions W_k and H_k. These pooled feature maps
are then resized back to the original dimensions, forming a
pyramid of feature maps that collectively capture multi-scale
context, which is essential for accurate image segmentation
in the PSPNet model.

Then, a global average pooling operation is applied to each
region to obtain a feature vector of dimension D, where D
is the number of feature channels. The feature vectors are
concatenated along the channel dimension, resulting in a
pooled feature map P(X) of size (W’, H,’ 4D).

C. DECODER NETWORK
In the previous sections, the feature encoding network out-
put is upsampled using bilinear interpolation to the original
image size. Let F(X) be the output of the feature encoding
network, which is upsampled to get the original image size.
Then, the upsampled feature map is concatenated with the
corresponding feature maps from the pyramid pooling mod-
ule (P_k(X)), where P_k(X) is the output of the k-th pooling
layer and k= 1, 2, 3, 6. The outputs are passed through several
convolutional blocks with residual networks to get the final
segmentation mask Y.

Let D(P(F(X)) be the concatenation of the upsampled fea-
ture map P(F(X)) and the corresponding feature map from the
pyramid pooling module P_k(X), where k = 1, 2, 3, 6. Then,
the final segmentation mask Y is obtained as:

Y=Conv(D(P(F(X)),P_1(X))+Conv(D(P(F(X)), P_2(X))

+Conv(D(P(F(X)), P_3(X))+Conv(D(P(F(X)),

P_6(X))) (3)

where Conv denotes a convolutional layer with appropriate
parameters.

The capacity of PSPNet to gather contextual information at
multiple scales is crucial for effectively recognizing the bor-
ders of different structures and tissues in biomedical image
segmentation. In this proposedwork, PSPNet (Pyramid Scene
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TABLE 2. Detailed description of special blocks for different encoders.

Parsing Network) is used to segment gastrointestinal organs
such as the stomach, small bowel, and large bowel in the
gastrointestinal tract, which may assist the radio oncologist
in speeding up cancer treatment.

VI. RESULTS AND DISCUSSION
The proposed model has been evaluated using five encoders:
ResNext 50, Timm_gernet_s, ResNet 34, EfficientNet B1,
and MobileNet V2. These encoders are transfer learning
models that are trained on the imagenet dataset. The encoders
were used for the downsampling in the PSPNet model to
speed up the processing and increase results. The proposed
model was implemented using a batch size of 128, and num-
ber of epochs usedwere 15. The encoders were taken from the
smp library of PyTorch. All the simulations were performed
using PyTorch and the Google Collab platform using Python.
The following sections represent the results of implementing
the PSPNet model with different encoders.

A. RESULTS WITH ResNext 50
In Figure 4, a set of plots illustrates the training and valida-
tion performance of the GI tract organ segmentation model
utilizing the ResNext 50 encoder. Figure 4(a), represent-
ing ‘‘Validation Dice,’’ showcases a smoothly progressing
curve, indicating consistent improvement in segmentation
accuracy. Similarly, in Figure 4(b), ‘‘Validation Jaccard’’
also presents a smooth curve, suggesting a stable and high
level of overlap between the model’s predictions and the
ground truthmasks. Figure 4(c), depicting ‘‘Validation Loss,’’
demonstrates a decreasing trend, with the curve consistently
lowering, signifying practical model training. Importantly,
these curves collectively indicate that the ResNext 50 encoder
contributes to a highly performing model, as evidenced by
achieving the highest values for Dice and Jaccard coefficients

and the lowest value for validation loss, thus demonstrating
the model’s capacity to produce accurate and precise organ
segmentations with minimal fluctuations.

B. RESULTS WITH Timm_Gernet_S
Figure 5 presents a comprehensive view of the training
and validation process for the GI tract organ segmentation
model using the Timm_Gernet_S encoder. In Figure 5(a),
the ‘‘Validation Dice’’ curve illustrates the model’s Segmen-
tation accuracy, measured by the Dice coefficient, shows
fluctuations in performance. Figure 5(b) depicts the ‘‘Vali-
dation Jaccard’’ curve, which assesses the overlap between
predicted and ground truth masks with fluctuations indicat-
ing variations in segmentation quality. Finally, Figure 5(c)
showcases the ‘‘Validation Loss’’ curve, which measures the
overall error during validation, offering insights into how
well the model generalizes to unseen data. These fluctuations
across all three curves suggest that the model’s performance
fluctuates during training and validation, indicating poten-
tial challenges in achieving consistent and precise organ
segmentation, which factors like dataset complexity, hyper-
parameters, or image characteristics could influence.

C. RESULTS WITH ResNet 34
Figure 6 presents a set of curves to illustrate the training
and validation performance of the GI tract organ segmen-
tation model using the ResNet 34 encoder. Figure 6(a),
labeled ‘‘Validation Dice,’’ portrays the model’s segmen-
tation accuracy, measured by the Dice coefficient. Despite
some fluctuations, the curve indicates that the model con-
sistently achieves excellent results for validation, suggesting
strong agreement between its predictions and the actual organ
boundaries. In Figure 6(b), ‘‘Validation Jaccard’’ displays a
metric assessing the overlap between predicted and ground
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FIGURE 4. Plots for ResNext 50 model (a) Validation dice, (b) Validation jaccard, and (c) Validation loss.

FIGURE 5. Plots for Timm_Gernet_S model (a) Validation dice, (b) Validation jaccard, and (c) Validation loss.

truth masks, with fluctuations but overall firm performance.
Figure 6(c), representing ‘‘Validation Loss,’’ tracks the over-
all error during validation, and while it may show some
fluctuations, the model maintains a high level of performance
throughout. These observations collectively indicate that the
ResNet 34 encoder contributes to a robust and accurate
organ segmentationmodel with consistently strong validation
results.

D. RESULTS WITH EfficientNet B1
Figure 7 illustrates the training and validation performance
using the EfficientNet B1 encoder in a specific experimental
setup. In particular, Figure 7(a) portrays the validation dice
coefficient, Figure 7(b) displays the validation Jaccard index,
and Figure 7(c) represents the validation loss. The valida-
tion dice coefficient and Jaccard index typically increase
till epoch four; after that, it has achieved constant values,
which shows that the model has converged to an optimized
state.

The validation loss, shown in Figure 7(c), typically
decreases during training, but its behavior may also exhibit
a plateau, indicating that the model has converged to
a reasonably optimized state. This information is crucial
for understanding the model’s training dynamics and can
guide decisions regarding when to halt training to prevent
overfitting.

E. RESULTS WITH MobileNet V2
Figure 8 shows the training and validation processes employ-
ing the MobileNet V2 encoder. Specifically, in Figure 8(a),
the validation dice coefficient is depicted, while Figure 8(b)
showcases the validation Jaccard index, and Figure 8(c) rep-
resents the validation loss. What is notable from these plots
is the substantial and oscillatory nature of the curves. The
metrics in these figures exhibit frequent fluctuations, with
values rising and falling.

Repeatedly throughout the training process. This pattern
suggests that the model’s performance is not consistently
improving or converging to a stable solution. The oscillations
may indicate challenges in training stability, possibly due
to various factors such as learning rate adjustments, model
architecture, or data quality issues. Addressing these fluctu-
ations and achieving a more stable and steadily improving
training trajectory may require further experimentation and
optimization techniques to enhance the MobileNet V2-based
model’s performance.

F. COMPARISON WITH DIFFERENT ENCODERS
This section presents a comprehensive comparison of various
encoders within the PSPNet model through Figure 9, which
includes four key aspects of model evaluation. In Figure 9(a)
and Figure 9(b), the validation dice and Jaccard metrics are
showcased, revealing that the ResNext 50 encoder achieves
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FIGURE 6. Plots for ResNet 34 model (a) Validation dice, (b) Validation jaccard, and (c) Validation loss.

FIGURE 7. Plots for EfficientNet B1 model (a) Validation dice, (b) Validation jaccard, and (c) Validation loss.

FIGURE 8. Plots for MobileNet V2 model (a) Validation dice, (b) Validation jaccard, and (c) Validation loss.

the highest performance. In contrast, the Timm_Gernet_S
encoder performs less favorably, with the lowest values for
bothmetrics. On the other hand, Figure 9(c) demonstrates that
the ResNext 50 encoder results in the lowest validation loss,
indicating better convergence and model fit. In contrast, the
MobileNet V2 encoder leads to the highest loss values.

Regarding processing efficiency, as shown in Figure 9(d),
the ResNext 50 model consumes the most time, likely due
to its greater complexity and computational demands. At the
same time, the MobileNet V2 encoder is the most compu-
tationally efficient, with the shortest processing time. These

findings provide valuable insights into the trade-offs between
different encoder choices within the PSPNet model, offering
guidance for selecting an encoder based on specific priorities,
whether accuracy, computational efficiency, or other factors,
depending on the application’s requirements. The comparison
concludes that the ResNet 34 outperforms all the models
regarding validation dice, Jaccard, loss, and processing time.

Table 3 comprehensively compares different encoders in
terms of various performance parameters within the studied
context. It is evident from the table that ResNext 50 stands
out as the top performer, achieving impressive values of
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FIGURE 9. Visualization of segmented images with different feature encoding network (a) Ground truth masks, (b) Images predicted
by ResNext 50, (c) Images predicted by Timm_gernet_s, (d) Images predicted by ResNet 34, (e) Images predicted by EfficientNet B1,
and (f) Images predicted by MobileNet V2. Here, the red color shows the large bowel, the green color indicates the small bowel and
the blue shows the stomach.

0.8931 for validation dice, 0.8596 for validation Jaccard, and
0.1294 for validation loss. However, it’s worth noting that this
exceptional performance comes at a cost in processing time,

with a substantial duration of 5 hours and 35 minutes. Fol-
lowing closely behind, the ResNet 34 encoder demonstrates
strong performance with values of 0.8842 for validation dice,
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TABLE 3. Comparison of different encoders in terms of performance parameters.

0.8531 for validation Jaccard, 0.0932 for train loss, and
0.1365 for validation loss. Notably, ResNet 34 achieves this
commendable performance while maintaining a considerably
shorter processing time of 2 hours and 35 minutes. This com-
parison highlights the trade-off between model performance
and computational efficiency, providing valuable insights for
selecting an appropriate encoder.

The PSPNet segmentation model exhibits limitations in
terms of computational complexity, memory usage, and data
requirements. To address these limitations, future research
could focus on optimizing the computational efficiency of
PSPNet, developing strategies to reduce memory, and explor-
ing ways to mitigate data scarcity issues.

G. VISUALIZATION OF SEGMENTED IMAGES
Figure 9 provides a visual representation of the segmented
images obtained from different encoders in the context
of the UW Madison GI tract database scans. Figure 9(a),
Figures 9(b), (c), (d), (e), and (f) depict the predicted
masks generated by various encoders named ResNext 50,
Timm_Gernet_S, ResNet 34, EfficientNet B1, andMobileNet
V2. Ground truth mask serves as a reference, displaying
the actual segmentation of the gastrointestinal tract with red
color representing the large bowel, green indicating the small
bowel, and blue denoting the stomach. Notably, all encoders
exhibit good performance, effectively segmenting the masks
predicted using ResNext 50 and ResNet 34 encoder, shown
in Figure 9(b) and 9(d), respectively, closely resemble the
ground truth masks, indicating high Jaccard index and
dice coefficient in capturing the anatomical structures. The
ResNext 50 takes more processing time as 5 hours 35 min-
utes, and ResNet 34 takes less time 2 hours 35 minutes,
to process the model. This visual comparison underscores
the remarkable performance of the ResNet 34 encoder in this
particular task, providing valuable insights for medical image
analysis and diagnosis.

VII. STATE OF ART COMPARISON
Table 4 compiles a comprehensive overview of image seg-
mentation techniques employed on the UWMadison GI Tract
dataset in 2022, accompanied by their respective outcomes.
These techniques encompass diverse approaches applied to
the medical imaging dataset, intending to delineate structures
within the gastrointestinal (GI) tract accurately.

The methods featured include UNet with EfficientNet B3,
which yielded an exceptionally high Jaccard score of 0.84,

TABLE 4. State of art comparison for UW Madison GI tract dataset
segmentation.

indicating its proficiency in segmentation.Another technique,
SIA UNet, demonstrated a Jaccard score of 0.83, indicat-
ing its ability to perform segmentation satisfactorily. The
CNN Transformer approach achieved a Dice coefficient of
0.79 and a Jaccard index of 0.72, suggesting its competence
in delineating structures in the GI tract images. Conversely,
the UNet + Mask R-CNN technique delivered a Dice score
of 0.51, highlighting its performance at a moderate level.
In contrast, the Residual Network produced an unusually
low Jaccard score of 0.75, indicating room for improvement.
Additionally, the UNet on 2.5D displayed a Dice coeffi-
cient of 0.36 and a Jaccard index of 0.12, suggesting that it
may require enhancements for more accurate segmentation.
The ‘‘Proposed Model,’’ combining PSPNet and ResNet 34,
demonstrated impressive results with a Dice coefficient of
0.8842 and a Jaccard index of 0.8531. Table 4 shows that the
proposed model outperforms the state-of-the-art results for
segmenting small bowel, large bowel, and stomach in the GI
tract using the UW Madison GI tract dataset.

VIII. CONCLUSION
This study addresses the growing global challenge of ris-
ing gastrointestinal (GI) cancer cases by introducing a
deep learning-based PSPNet model equipped with diverse
pre-trained encoders tailored for the precise segmentation of
healthy GI tract organs, encompassing the stomach, small
intestine, and large intestine. Given the potential risks asso-
ciated with radiation therapy in damaging healthy organs
during GI cancer treatment, the primary objective of this
model is to aid radiation oncologists in the swift and accurate
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delineation of these vital organs, ultimately enhancing the
efficacy of therapy administration. Utilizing the UWMadison
GI tract dataset, the outcomes underscore the model’s effec-
tiveness. The results reveal that the proposed PSPNet model
with ResNet 34 as encoder outperforms the other feature
encoding networks with validation dice as 0.8842, valida-
tion Jaccard as 0.8531, and validation loss as 0.1365. The
model also takes the least time to implement, 2 hours and
35 minutes. Other encoders also demonstrate good perfor-
mance, achieving a Dice value of 0.8931 for ResNext 50,
0.8601 for Timm_Gernet_S, 0.8751 for EfficientNet B1, and
0.8569 for MobileNet V2. Regarding Jaccard values, they
attain 0.8596 for ResNext 50, 0.8265 for Timm_Gernet_S,
0.8423 for EfficientNet B1, and 0.8233 for MobileNet V2.
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