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ABSTRACT Due to thewidespread use ofmobile intelligent terminal devices,Mobile Crowd Sensing (MCS)
applications have gained significant research attention. However, ensuring users privacy remains a critical
challenge, as it can hinder users’ willingness to participate actively in tasks. To address the limitations of
existing differential privacy protection methods, this paper proposes a novel privacy protection approach
based on Artificial Immune Computing (AICppm). Specifically, private information is concealed within
a masking carrier, and data scrambling is avoided. The proposed method involves two main steps: first,
a carrier preprocessing approach based on a high-pass filter bank is designed to identify candidate positions
for perturbation. Then, a carrier steganography algorithm based on multi-objective optimization is used,
transforming the perturbation position into an antibody using the artificial immune algorithm. By iteratively
searching for antibodies with higher fitness, the optimal perturbation of the offspring population is identified
using the improved Strength Pareto Evolution Algorithm (SPEA2). The experimental results demonstrate
that the proposed algorithm can withstand the attacks of malicious steganalysis tools, preserving the integrity
of the sensing data and enabling real-time processing of private information.

INDEX TERMS Mobile crowd sensing, privacy-preserving, edge computing, artificial immune computing,
sensing data.

I. INTRODUCTION
Currently, the MCS task collects a significant amount of
sensitive data, particularly the user’s identity and location
information, putting the user’s privacy at risk of being
leaked. The method of protecting data through differential
privacy by scrambling data with noise is currently widely
used. This method hides sensitive information by distort-
ing the perception data collected from users. However,
it has several drawbacks, including high time and space
complexity, computational overhead, and the possibility
of information loss and data distortion due to noise
addition [1]. In reality, only a small percentage of the
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sensing data contains private information. Therefore, it is
possible to extract this private information and transmit
it covertly to protect the user’s sensitive data. To achieve
this, we propose using data steganography technology
to conceal the user’s private information in multimedia
carriers during transmission, thus preventing attackers from
accessing it.

Given that MCS imposes stringent requirements on real-
time performance and computing resources [2], mobile edge
computing is employed to enable data steganography. Mobile
devices are limited in terms of computing resources, and
cannot handle complex applications and large volumes of
data. By employing mobile edge computing, the complex
computing processing can be offloaded to the edge server
of the mobile terminal, which is closer to the data source

134074

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0003-3943-3244
https://orcid.org/0000-0001-6191-5827
https://orcid.org/0000-0002-8781-4722
https://orcid.org/0000-0001-8966-1451
https://orcid.org/0000-0003-4007-7224


H. Long et al.: Privacy-Preserving Method Based on Artificial Immune Computing in MCS

and users, thereby facilitating the deployment of complex
applications on the mobile terminal. Mobile edge computing
enables the identification of redundant locations in the mul-
timedia carrier that are not noticeable to human perception
systems [3], through low-latency, low-bandwidth, and high-
performance computing. These locations on the mobile edge
server can be used for embedding sensitive user information,
which effectively mitigates the communication delays and
memory resource imbalances that data steganography can
cause [4].

Once data steganography is assigned to an edge server,
it becomes challenging to guarantee the data transmission
time. This is especially true when imperceptibility, capacity,
and security (defined in this article as privacy entropy) are
essential indicators for data steganography. To address this
challenge, we have analyzed and modeled the transmission
time, imperceptibility, capacity, and privacy entropy collec-
tively as a multi-objective optimization problem. To solve
this problem, we use the artificial immune algorithm
based on the principle of natural defense. This algorithm
offers several advantages such as anti-noise, unsupervised
learning, memory, self-organization, and other evolutionary
learning methods. Therefore, in this article, we propose to
use the artificial immune algorithm to handle the multi-
objective optimization problem of data steganography. The
implementation module diagram of AICppm is shown in
Figure 1.

FIGURE 1. AICppm module diagram.

To optimize conflicting goals and achieve privacy protec-
tion for perception data in MCS, a privacy protection method
called AICppm based on artificial immune calculation is
proposed. This method embeds user’s private information in
masked multimedia carriers, such as videos, audios, images,
web pages, and text files, while ensuring the quality of the
carrier. The proposed method has several key steps. Firstly,
a carrier preprocessing method is proposed based on high-
pass filter bank. This method uses multi-directional and non-
directional high-pass filter bank to preprocess the masked
carrier and aggregates the filter residuals to form candidate
positions for disturbance. The aggregated residuals corre-
spond to noise and texture regions that are difficult to model.
Secondly, a carrier steganography algorithm based on multi-
objective optimization is proposed. This algorithm defines a
multi-objective optimization problem by taking embedding
capacity and task migration probability as constraints and

minimizing imperceptibility and task average transmission
time while maximizing privacy entropy. Finally, the artificial
immune algorithm is used to search for antibodies with higher
adaptability through feature extraction and adaptive evolution
operator. SPEA2 is used to solve the optimal perturbation of
the offspring population. The proposed algorithm is imple-
mented on a mobile edge server to meet the real-time and
bandwidth requirements of MCS. Experimental results show
that the proposed algorithm can resist attacks of malicious
attackers’ steganalysis tools, avoid the scrambling of per-
ception data, and realize the real-time processing of private
information. Compared with similar methods, it performs
better in terms of imperceptibility, average transmission time,
and privacy security. We have made significant contribu-
tions in this research project, which can be summarized
as follows:

• For the first time, we have applied the artificial immune
algorithm to the MCS network, utilizing its feature extraction
capabilities and adaptive evolution operator to search for
antibodies with higher adaptability. We use SPEA2 to solve
the optimal perturbation of the progeny population, achieving
hidden protection of private information.

• We introduce the mobile edge server to search for the
disturbance location of the masked carrier, addressing the
problem of insufficient bandwidth and real-time performance
of mobile networks and smart devices.

• We have theoretically and experimentally verified and
analyzed that the proposed method can resist the attacks of
malicious attackers’ steganalysis tools, while avoiding the
scrambling of the sensing data and enabling the real-time
processing of private information.

The rest of this paper is organized as follows: Section II
presents related works, Section III introduces the sys-
tem model and analyzes the relevant problems of the
proposed method, Section IV describes the proposed
privacy-preserving method based on artificial immune
computing in MCS, Section V evaluates the method’s
performance through extensive experiments, and finally,
Section VI concludes the paper and presents future
work.

II. RELATED WORK
MCS has garnered significant research interest in various
applications such as personalized recommendations, intel-
ligent transportation, environmental monitoring, and health
care. With just the utilization of smartphones, physical
world sensing becomes achievable through MCS. Within
smartphones, diverse sensors are already integrated, such as
accelerometers, ambient temperature and humidity sensors,
Global Positioning System (GPS), cameras, etc. By employ-
ing Bluetooth, cellular networks, or Wi-Fi, smartphones can
establish connections with other devices or networks. As a
result, users can readily employ their smartphones anytime,
anywhere, to perceive, gather, process, and disseminate
ambient data. Ang et al. [5] conducted a comprehensive
investigation of this new paradigm of MCS Internet of
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Things (IoT) from four different perspectives: (1) The
architecture of MCS IoT; (2) Trust, privacy, and security in
MCS IoT for the masses; (3) Considerations for resources,
sharing, storage, and energy in crowdsourced IoT for the
masses; (4) Applications of crowd-sourced IoT for the
masses. De et al. [6] designed a MCS-based physical
distance monitoring model leveraging federated learning for
pandemic. They proposed an edge-based MCS strategy for
physical distance monitoring and taking initiative to alert
people. Dimitriou et al. [7] has designed an MCS framework
that enables users to submit data in a privacy-preserving
manner and receive Bitcoin payments. It ensures the fairness
of transactions in a completely trustless manner, eliminating
the need for trust in third parties through reliance on the
blockchain in contrast to traditional fair transaction protocols.
Sun et al. [8] applied MCS to smart agriculture, extensively
evaluated agricultural mobile crowd sensing, and provided
insights for agricultural data collection solutions. In MCS
applications, privacy concerns are the main obstacles to their
development, and how to protect users’ privacy information
is the main focus of this article.

In 2018, prominent internet companies such as Apple,
Google, and Facebook experienced privacy breaches, which
has led to users becoming increasingly sensitive and aware
of the importance of protecting their personal information.
As a result, there has been a growing interest in privacy
protection research, which is a critical component of the
entire MCS network. Effective user privacy protection is also
essential for attracting users to participate in perception tasks.
While traditional wireless sensor networks have various
technologies to protect user privacy, they are no longer
suitable for the MCS network due to issues related to exe-
cution efficiency and computational complexity. Currently,
the differential privacy method is the most widely used
privacy protection method in the MCS system. This method
involves adding random noise to the perception data before
uploading it, which effectively disrupts the data and prevents
malicious attackers from reconstructing it. Xiong et al. [9].
proposed a differential privacy protection algorithm for loca-
tion data publishing applications that uses privacy location
clustering and shrinking to hide participants’ real location
and frequency of visiting a certain location. Jin et al. [10].
developed a differential privacy protection method for data
fusion that generates highly accurate aggregation results
while maintaining user privacy. Fan et al. [11]. proposed a
real-time differential multidimensional time series privacy
protection framework to protect the privacy of different
users. Meanwhile, Daniele et al. [12]. developed a privacy
protection method for information scrambling based on a
differential privacy method combined with a pre-filtering
process to protect user privacy. Chen et al. [13]. proposed
a data privacy protection method based on dynamic group
management in a mobile-aware dynamic environment and
introduced a data aggregation integrity verification protocol
to verify the correctness of the results. However, scrambling
the entire perception data can cause distortion of the data

and require more computing and storage overhead, as the
privacy information contained in the perception data itself is
minimal. This article primarily addresses the issues arising
from data perturbation in differential privacy protection
methods, concealing users’ privacy information within a
masking carrier, thereby avoiding data perturbation and
recovery.

Currently, an increasing number of researchers are recog-
nizing the importance of protecting users’ private information
through the concealment of private data in hidden carriers.
In one method proposed in the literature [14], an image
steganography approach that uses the particle swarm opti-
mization (PSO) algorithm has been developed to enhance
the embedding capacity and data security. This method
partitions the overlay image and the steganographic image
into four parts and utilizes the particle swarm algorithm to
efficiently calculate the fitness function dependent on the
cost matrix. However, this method’s complexity is relatively
high as it depends on the speed of particles. Another image
steganography approach, as proposed in [15], combines the
strengths of visual saliency and SDS-based steganography
technology and uses genetic algorithms to determine the opti-
mal balance between pixel saliency and embedding capacity
to reduce embedding distortion and increase embedding
capacity. Nonetheless, the fixed crossover and mutation
process in genetic algorithms can lead to degradation during
the iterative search process of the population. To address the
need for increased embedding capacity while maintaining
steganographic image security, Joshi et al. [16] utilize DCT
and its wavelet (DCTW) to embed in the image at an
appropriate position without causing low-energy transfor-
mation regions through genetic algorithms. However, this
approach’s computational efficiency is limited. In contrast,
artificial immune systems (AIS) have more applications in
the fields of network intrusion detection, network diagnosis,
and privacy protection due to their adaptive learning,
memory, and recognition pattern characteristics. Li et al. [17]
propose a new distributed intrusion detection method based
on immune mobile agents, which utilizes the intelligence
and mobility of mobile agents to address the issues of
poor real-time performance and single point of failure in
distributed intrusion detection systems. Currently, research
institutions and university project teams worldwide have
conducted investigations on security and privacy protection
systems using various algorithms, models, and system
designs based on immune function, immune system, immune
theory, and immune agents. The AIS optimization process
searches for solutions across the entire search space to avoid
premature convergence of local minima, making artificial
immune algorithms more robust than genetic algorithms and
particle swarm algorithms. This article employs the artificial
immune algorithm to search for the optimal perturbation
position of the covert carrier and enhances the algorithm’s
computational efficiency and real-time performance through
edge computing. The summary of related work is given below
in Table 1.
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TABLE 1. Summary of related work.

III. SYSTEM MODEL AND PROBLEM DEFINITION
A. CORRELATION THEORY
In the implementation process of the existing algorithm, one
performance index is prioritized at the expense of others.
Consequently, the objective that requires optimization in the
algorithm can be regarded as a multi-objective optimization
problem. To address this issue, evolutionary multi-objective
optimization can be used to balance all objectives and
control the complexity of the algorithm with conditional
constraints. In this paper, we propose to use the artificial
immune algorithm to achieve evolutionary multi-objective
optimization and search the disturbed location. The antibody
population is employed to explore the solution space of
the problem, where each antibody represents a coding
solution and is assigned a fitness function value based on its
performance. The higher the fitness, the better the antibody.
The AIS involves various processes, such as selection,
cloning, and mutation. The mutation operator is crucial as it
modifies the antibody. Figure 2 presents the module diagram
of AIS, and the implementation steps are described below
[18]. To begin the process of generating antibodies for the
hidden image block, we must first initialize several key
parameters. These parameters include the population size F ,
which refers to the set of antibodies that will be used in
each generation. Additionally, wemust determine the number
of antibodies that will be selected for cloning operations,
which is referred to as the select quantity σ . Other important
parameters to consider include the crossover rate Erate, which
determines the size of the offspring population, the clone rate
Crate, which is used to obtain the number of antibody clones,
and the mutation rate Mrate, which represents the probability
of a certain feature mutation.

After initializing these parameters, wemove on to step two,
which involves randomly generating the initial population of
antibodies and then calculating their fitness function after
secretly embedding the hidden image block.

Step three is the selection process, where we choose
antibodies based on the selection rate, clone them, and obtain
the total number of clones produced by the antibodies using

FIGURE 2. AIS immune operation module diagram.

the following formula.

SUMclone = round(Crate × F ×
F − σ + 1

F
). (1)

Moving on to step four, we begin the process of mutating
the cloned antibodies. Each clone is mutated by changing the
value of some bits, allowing us to explore nearby possible
solutions. The number of bits to mutate is calculated using
formula 2, where � represents the normalization of the
antibody’s fitness.

SUMmutation = exp(−|Mrate × �|). (2)

Finally, in step five, we establish the algorithm’s ending
condition. Specifically, we continue the algorithm until
the difference between the average fitness of the current
population and that of the final population is less than a
specified ending parameter.

B. SYSTEM MODEL
To achieve AICppm in an MCS network environment,
a mobile edge server with high computing power is
employed to search for the optimal disturbance. This search
is completed using a framework consisting of a mobile
client and an edge server. In AICppm, images are used as
carriers for concealing sensitive information, such as the
user’s identity, location, and equipment, in the perception
data for transmission. We represent the original image and
steganographic image with n channels and m elements
separately as X = (xki,j)

n
w×h ∈ {0, · · · , 2m−1

} and Y =

(yki,j)
n
w×h ∈ {0, · · · , 2m−1

}, where each element of each
channel is a pixel value of m in the finite set {0, · · · , 2m−1

}.
The converted binary secret information with a length of d is
represented as S = {0, 1}d , where sl represents the secret
information at the l position. In the process of embedding
private information, e(X ) = (eki,j)

n
w×h ∈ {0, 1} represents the

embedded position of the original image X . A value of 1 in
eki,j represents the embedding of 1-bit secret information at
the position of the embedded image k channel (i, j), while a
value of 0 indicates that there is no secret embedding in the
corresponding position. Formula 3 expresses the embedding
process of 1-bit secret information.

yki,j =


xki,j − 1, eki,j = 1 ∧ sl ̸= xki,j ∧ xki,j ≡ 1(mod2)

xki,j + 1, eki,j = 1 ∧ sl ̸= xki,j ∧ xki,j ≡ 0(mod2)

xki,j, otherwise.

(3)
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Among them, yki,j is the pixels generated by the stegano-
graphic image Y , xki,j is the pixels of the original image X ,
eki,j is a certain position of disturbing e, and sl is the l-bit of
the secret information.

In image steganography, the embedding process needs
to ensure the quality of the image, so that changes are
imperceptible to the human visual system. For digital
images, various methods are used to analyze the statistical
characteristics of the image and evaluate the distortion
between the original and steganographic images, such as
mean, standard deviation, average gradient, information
fidelity criteria, visual information fidelity, peak signal-to-
noise ratio, mean square error, and structural similarity index
(SSIM). However, mean, standard deviation, and average
gradient are not suitable for evaluating the difference between
the two images, and although the information fidelity
criterion and visual information fidelity have theoretical
support, they cannot reflect the structural information of
the image. Based on experimental results presented in
[19], SSIM S(X ,Y ) is a more suitable evaluation metric
as it takes into account human visual characteristics and
reflects the impact of modifications on the perception of
the image.

S(X ,Y ) =
2(µ(X )W×W µ(Y )W×W + θ1)(σ(X ,Y )W×W + θ2)

(µ2
(X )W×W

+ µ2
(Y )W×W

+ θ1)
(θ2(X )W×W

+ θ2(Y )W×W
+ θ2)

,

(4)

µ(X )W×W =
1

n×W 2

W∑
i=1

W 2∑
j=1

n∑
k=1

xki,j, (5)

µ(Y )W×W =
1

n×W 2

W∑
i=1

W 2∑
j=1

n∑
k=1

yki,j, (6)

σ(X )W×W =

√√√√√ 1
n× (W − 1)2

W∑
i=1

W 2∑
j=1

n∑
k=1

(xki,j − µ(X )W×W )2,

(7)

σ(Y )W×W =

√√√√√ 1
n× (W − 1)2

W∑
i=1

W 2∑
j=1

n∑
k=1

(yki,j − µ(Y )W×W )2,

(8)

σ(X ,Y )W×W =
1

n× (W − 1)2

W∑
i=1

W 2∑
j=1

n∑
k=1

(xki,j − µ(X )W×W )

× (yki,j − µ(Y )W×W ). (9)

Among them, n represents the number of image channels,
while 0 < ϕ1, ϕ2 ≤ 1, θ1 = (2mϕ1)2 and θ2 = (2mϕ2)2

are constants that divide the stable weak denominator. The
maximum value of the image element is represented by 2m.
The structural similarity index of W × W image blocks is
calculated separately, and the average value of the structural

similarity indexes of all image blocks constitutes the global
structural similarity index between the original image and
the steganographic image. In this calculation, µ(X )W×W and
µ(Y )W×W represent the average value of the image elements
in the corresponding block, while σ(X )W×W and σ(Y )W×W

represent the standard deviation of the elements in the
corresponding block. The covariance of the elements in the
corresponding block is represented by σ(X ,Y )W×W .

The structural similarity index S(X ,Y ) ∈ [0, 1], where the
smaller the value, the less likely the human perception system
can detect image changes between X and Y . We define the
structural similarity index as ameasure of the imperceptibility
of image steganography. If S(X ,Y ) = 1, then X and Y are
exactly the same. If S(X ,Y ) = 0, thenX andY are completely
different. To ensure the imperceptibility of the image, the
structural similarity index S(X ,Y ) should be maximized and
approach 1.

C. PRIVACY ENTROPY ANALYSIS
To ensure the protection of user privacy information, it is
essential to consider both the security of image steganography
and task transmission. The privacy entropy is a quantitative
measure used to assess the security of both these aspects.
A higher privacy entropy indicates increased security of the
user’s private information. In [20], the security of image
steganography is defined based on hypothesis testing and
information entropy, and is measured using cross entropy
and KL looseness. Cross entropy H (X ,Y ) = −

∑
XlogY

measures the amount of information generated by Y simu-
lating X , while KL looseness DKL(X ||Y ) = H (X ,Y )−H (X )
represents the amount of information lost in the process of Y
simulating X , and can be used to measure the impact of each
modified image element on security. Similarly, the security
of task transmission refers to the security of transmitting the
result of finding the disturbance location from the edge server
to the mobile terminal. Assuming that the image element v is
an independent and identically distributed random value, v ∈

G,G = {0, · · · , 2m−1
}, KL looseness DKL(X ||Y ) measures

the security definition under passive attack, as shown in
formula 10.

DKL(Px ||Py) =

|G|∑
k=1

Px(v) log
Px(v)
Py(v)

. (10)

Among them, Px(v) and Py(v) represent the probability of
occurrence of v in X and Y , respectively.

In the AICppm method, the corresponding relationship
between the task set Tn,m and the task migration probability
Ln,m migrated to the edge server can be expressed as:(

Tn,m
Ln,m

)
=

(
T1,1, · · · ,Ti,j
L1,1, · · · ,Li,j

)
, i ∈ [1, n], j ∈ [1,m]. (11)

The task transmission security is calculated by the
following formula:

H = −
1
n

n∑
i=1

m∑
j=1

Li,j log2 Li,j. (12)
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Finally, the privacy entropy U is expressed as:

U = 1 − DKL(Px ||Py) + H

= 1 −

|G|∑
k=1

Px(v) log
Px(v)
Py(v)

+ (−
1
n

n∑
i=1

m∑
j=1

Li,j log2 Li,j).

(13)

According to the statistical security theory of stegano-
graphic images, the difference between the original image
X and the steganographic image Y can be measured by
DKL(Px ||Py). The smaller the value of DKL(Px ||Py), the
higher the security under passive attack. To improve the
security of image steganography, our optimization goal is
to minimize DKL(Px ||Py) and approach 0, which can be
expressed as maximizing 1 − DKL(Px ||Py). Additionally,
the security of task transmission can be improved by
decomposing the task intomore detailed and randomized sub-
tasks. The specific privacy entropy can be realized through
algorithm 1.

Algorithm 1 Privacy Entropy Evaluation Algorithm
Input: Px(v), Py(v), Tn,m, Ln,m
Output: U
1: DKL(Px ||Py) is calculated by the formula 10
2: for i from 1 to n do
3: for j from 1 to m do
4: 5 = Li,j log2 Li,j
5: H+ = −5

6: end for
7: end for
8: H = H/n
9: U = 1 − DKL(Px ||Py) + H

10: return U

D. TRANSMISSION TIME ANALYSIS
To find the optimal disturbance position and deliver the
result to the mobile terminal, we need to migrate the task set
Tn,m to different edge servers, which can be time-consuming.
The time required for task migration transmission is given by
formula 14.

tn,m = 2 ·
1

Vn,m
|Tn,m|(astart − aend ). (14)

Among them, Vn,m represents the transfer rate of the
migration, astart and aend denote the start and end positions
of the edge server, respectively.

Finally, according to the task migration probability and
transmission time, the average transmission time of Tn,m is
obtained.

Q =
1
n

n∑
i=1

m∑
j=1

Ln,mtn,m. (15)

To improve user privacy protection, we refine the pertur-
bation search task into several parts. Algorithm 2 takes the

task migration probability Ln,m and the migration rate Vn,m as
input and calculates the migration time for each task element.
Finally, we obtain the average transmission time of tasks.

Algorithm 2 Average Transmission Time Calculation
Input: Vn,m, Ln,m
Output: Q
1: for i from 1 to n do
2: for j from 1 to m do
3: ti,j = 2 ·

1
Vi,j

|Ti,j|(astart − aend )
4: Q+ = Li,jti,j
5: end for
6: end for
7: Q = Q/n
8: return Q

E. OBJECTIVE FUNCTION AND CONSTRAINTS
This paper aims to optimize the image steganography
task to achieve user privacy protection by minimizing the
average transmission time, maximizing the imperceptibility,
and privacy entropy, while taking into account the edge
server mobility and image embedding capacity as constraints
in a multi-objective optimization problem. Based on the
formulas 4, 13, and 15, AICppm is defined as a solution to
this problem. 16.

min Q

max S(X ,Y ),U

s.t.
n∑
i=1

m∑
j=1

Li,j = 1

n∑
k=1

eki,j ≤ q. (16)

The optimal embedding position can be found by solving
in formula 16, where the average transmission time Q is
the smallest, and the structural similarity index S(X ,Y ) and
privacy entropy U are the largest. The constraint ensures that
the task is completely migrated, and the capacity of the image
to embed private information is limited, i.e., the number of
bits allowed to be embedded in image elements is limited.

IV. PRIVACY PROTECTION METHOD BASED ON
ARTIFICIAL IMMUNE CALCULATION
AICppm is a complex evolutionary multi-objective opti-
mization problem that involves multiple indicators such as
imperceptibility, average transfer time of migration, and
privacy entropy. In this paper, artificial immune theory is
utilized to achieve evolutionary multi-objective optimization.
The process of AICppm begins with preprocessing the image
through the high-pass filter bank, and then searching for
the disturbance location based on the artificial immune
theory. The optimization of the global probability search
is achieved by simulating natural phenomena or processes,
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allowing the disturbance to possess self-organization, self-
learning, and dynamic balance characteristics. However, the
optimal disturbance generated by the artificial immune theory
requires complex artificial immune operations, genetic oper-
ations, and population iterations. These operations increase
the complexity and computational overhead of AICppm
and are not suitable for the MCS network environment
with limited mobile terminal performance. To address this
issue, a mobile edge server with high computing power is
introduced to find the optimal disturbance. This approach
reduces the computational burden on the mobile terminal,
which only needs to embed private information according
to the disturbance position. The perception server then
extracts information according to the reverse process of
image steganography.

A. PREPROCESSING
Secret embedding in the noise/texture area is an effective
method for ensuring the concealment and security of
data steganography. The complexity of the pixel statistical
characteristics of the noise/texture area has a greater tolerance
for changes caused by the embedding of secret information.
Since the noise/texture area is located in the high-frequency
area of the image, it can be filtered through the constructed
high-pass filter bank, and the filter residuals can be aggre-
gated to enhance the noise/texture area and suppress the
entity/content area. A high-pass filter bank [21] is constructed
to achieve this, and the filter residual x ′

i,j is used to replace the
image element xi,j.

x ′
i,j = Ri,j ⊗ Zk − α · xi,j. (17)

Here,Ri,j is the neighborhood of xi,j, and its size is determined
by the filter core. Zk is the kth high-pass filter core of the high-
pass filter bank, and α represents the residual order of the kth
high-pass filter kernel. A convolution operation is performed
with the filter kernel and image pixels, and the neighborhood
is used to predict the value of the central element xi,j.
The difference between the predicted value and the central
element value is used to suppress the image content, making
the image noise area more apparent. In this paper, multi-
directional and non-directional high-pass filter banks are used
to preprocess the overlay image to maximize the retention
of noise/texture information in different directions. Then,
the filter residuals are aggregated to increase the embedding
capacity of steganography.

B. INITIALIZE POPULATION
In the theory of artificial immunity, the objective function and
its constraints, as defined in formula 16, are referred to as the
antigen, while the solution of the objective function, namely
perturbation e(X ), is considered to be the antibody against
the antigen. To process the data in the solution space and fit
the artificial immune system, e(X ) is serialized into a three-
dimensional decision space w× h× n, effectively converting
the disturbance into a binary code. This serialization method
allows any format of private data to be embedded in the

original image, such as sound or digital information in other
formats.

8 = ByteArray((eki,j)
n
w×h) = {0, 1}λ, λ = w× h× n. (18)

Among them, the serialized perturbation 8 is considered as
the candidate solution in the artificial immune system. If we
assume that each pixel in the perturbation has a binary code
of m bits, then the total number of bits in 8 is w× h× n×m.
Each bit in 8 can take a value from the character set {0, 1}.
The fitness function associated with the disturbance sequence
8 is defined as follows:

f (8) =
S(X ,Y ) + U

Q
. (19)

The corresponding relationship between the disturbance
population F = {81, 82, · · · , 8N } and the fitness function
is shown as follows:(

81, 82, · · · , 8N

f1(8), f2(8), · · · , fN (8)

)
. (20)

In AIS, the immune vaccine corresponds to the characteris-
tic information of the solution to the problem to be solved, and
its selection plays a crucial role in determining the execution
efficiency and convergence speed of AIS. In AICppm,
the extraction of disturbance features corresponds to the
extraction of vaccine in artificial immune theory. In this
regard, the disturbance pattern, rules, and dimensions are
defined based on the pattern theorem and disturbance
serialization. These definitions are then used to identify the
constraints that the disturbance must satisfy.
Definition 1: Disturbance mode A = {a1, a2, · · · , aλ|ai ∈

{0, ∗}, 1 ≤ i ≤ λ, λ = w × h × n} corresponds to
the serialized disturbance 8, where 0 corresponds to the
covered smooth area, these positions cannot be modified,
and * Corresponding to the noise/texture area of the original
image, these positions may be embedded with secrets.
Definition 2: o(A) is the rule of the disturbance pattern A,

which represents the number of fixed bits in the pattern, that
is, the number of zeros.
Definition 3: ω(A) is the dimension of the disturbance

pattern A and ω(A) = 2λ−o(A) represents the number of
disturbances that the patternA can describe.

Disturbance feature extraction based on the pattern the-
orem involves estimating the pattern that the disturbance
can match, and each disturbance is considered as a sample
generated by matching the pattern. The following constraints
need to be satisfied for disturbance feature extraction based
on the pattern theorem:

8 = ByteArray((eki,j)
n
w×h) ⇒ A

|F | ≤ ω(A)
||8|| ≤ q.

(21)

Here, 8 ⇒ A represents that the disturbed bit sequence
8 should satisfy the pattern A, |F | ≤ ω(A) represents
the relationship between the disturbed population and the
dimension of the disturbance pattern A, and ||8|| ≤ q means
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that the number of bits of the disturbance sequence should be
less than or equal to the original image embedding capacity.

The perturbation feature corresponds to the basic infor-
mation that the solution of the fitness function needs to
satisfy. In order to ensure that each perturbation has a
higher fitness and greater probability, AICppm restricts the
element sites according to the formula 21, and initializes the
population with the characteristic information. Initializing
the population according to the characteristic information
can promote the iterative evolution of the population and
accelerate the algorithm’s convergence to the global optimal
solution. Evolutionary operations are performed based on
the initialization of the disturbed population to prevent
population degradation. Crossover and mutation operations
can ensure the diversity of the population, while selection
operations can improve the fitness of the population.

C. CROSS OPERATION
The crossover operation expands the global search space
of the algorithm. The next generation of antibodies is
generated by crossover. The two parent perturbations are
recombined according to the crossover probability Erate to
form a new offspring perturbation. The crossover operation
is a key component that enhances the exploration of the
algorithm’s search space. This is achieved by generating the
next generation of antibodies through recombination of two
parent perturbations based on the crossover probability Erate.
Specifically, Erate is dynamically adjusted during the early
stages of evolution to prevent premature convergence of the
population.

Erate =

Emaxrate −
I

Imax
(Emaxrate − Eminrate), fq > fF

Emaxrate , fq ≤ fF .

(22)

Among them, Emaxrate and Eminrate represent the upper and lower
bounds for the crossover probability, respectively. I and
Imax denote the current iteration number and the maximum
allowed iteration number. fq and fF represent the average
fitness values of the parent and the populationF , respectively.
During the early stages of evolution, individuals with varying
fitness levels are subjected to different crossover proba-
bilities, and the crossover probability Erate is dynamically
adjusted to prevent premature convergence of the population.

D. MUTATION OPERATION
The mutation operation enhances the local search capability
of the algorithm by introducing variation in the offspring.
It is accomplished by generating a new offspring perturbation
from the parent perturbation using the mutation operation,
which is governed by a mutation probabilityMrate.

Mrate =

Mmin
rate +

I
Imax

(Mmax
rate −Mmin

rate), fq > fF

Mmin
rate, fq ≤ fF .

(23)

Among them, Mmax
rate and Mmin

rate are used to represent the
maximum and minimummutation probabilities, respectively.
As the number of iterations increases, the mutation proba-
bility Mrate gradually increases. This approach ensures that
the algorithm performs a global search in the initial stages
of evolution, followed by a local search in the later stages.
Specifically, AICppm applies site mutation operations to
the population to generate new subgroups and introduce
disturbance.

E. SELECT OPERATION
The next iteration population in AIS is formed through a
process of high selection probability Crate, based on the
principle of survival of the fittest. The disturbance bits
are represented in the 0, 1 character set, and the similarity
between two disturbances can be measured using two-
dimensional entropy. The two-dimensional entropy of the ith
disturbance in the perturbed population F can be calculated
using formula 24.

2F (i)=−

|F |∑
j=1

|8i=1
j |

|F |
log2

|8i=1
j |

|F |
−

|F |∑
j=1

|8i=0
j |

|F |
log2

|8i=0
j |

|F |
,

(24)

where |F | represents the number of antibody populations,
|8i=1

j | represents the number of disturbances with bit i
being 1, |8i=0

j | represents the number of disturbances where
the bit i is 0. If the value of the i-th bit of all disturbances
is the same, then 2F (i) = 0. The bit similarity of the two
disturbances8j1 and8j2 can be expressed by the formula 25.

3(8j1 , 8j2 ) =
1

1 +
1
λ

∑λ
i=1 22(i)

, (25)

where λ = w × h × n, 3(8j1 , 8j2 ) ∈ (0, 1]. The greater bit
similarity means that the two disturbances are more similar,
and the bit similarity of the two disturbances is greater than
the similarity coefficient τ ∈ (0.75, 1] [22], then the two
disturbances are considered to be approximately equal.

The selection probability Crate of the disturbance 8i is
defined by the formula 26.

C8i
rate = ε · Rfit + (1 − ε) · exp(−D8i ), (26)

where ε is the adjustment factor, Rfit =
f (8i)∑|F |

i=1 f (8i)
represents

fitness rate, D8i =
|83>τ

i |

|F |
represents concentration rate,

|83>τ
i | is the number of disturbances that 8i is approxi-

mately equal to other disturbances in the population.
The greater the adaptability of the disturbance and the

closer to the optimal solution, the greater the probability of
selection of the disturbance. The greater the concentration of
disturbance, the more similar the disturbance, which is not
conducive to the diversity of the population, and the smaller
the selection probability of disturbance. By selecting the
probability, the disturbance with high adaptability is selected,
and the disturbance with high concentration is suppressed,
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thereby promoting and suppressing the population F . This
selection operation improves the shortcoming of genetic
algorithm which is easy to converge prematurely [23], and
accelerates the evolution of the population to the optimal
disturbance.

F. OPTIMAL DISTURBANCE BASED ON SPEA2

(S(X ,Y )8β > S(X ,Y )8α ) ∧ (Q8β < Q8α ) ∧ (U8β > U8α ).

(27)

SPEA2 [24] has a strong ability to search for optimal
results in multi-objective problems due to its improved
strength. In fact, it can obtain the optimal solution of an
evolutionary multi-objective optimization problem in the last
generation of the population. This optimal solution can then
be used to embed the user’s private information. Specifically,
for any disturbance 8α ∈ F calculated by formula 27,
there exists a disturbance 8β ≻ 8α , meaning that 8β is
more dominant than 8α . We refer to 8β as the optimal
solution for the disturbance. By calculating the optimal
perturbation sequence using formula 27, we can determine
the perturbation population number needed to embed private
information capacity for the sensing task.

The AICppm algorithm involves a multi-step process to
optimize a given objective function with constraints. The
first step is to preprocess the masking vector. Next, the
algorithm defines the antigen as the objective function and its
constraints, while the antibody is the solution to the objective
function. The characteristic information of the solution to be
solved serves as the immune vaccine of the algorithm. Once
the population is initialized, the algorithm performs immune
operations, which include crossover, mutation, and selection.
These operations ensure the diversity of the population,
expand the global search space, and improve the local search
ability of the algorithm. The selection operation improves
the fitness of the individual and helps avoid premature
degradation of the group. The algorithm is implemented using
the code shown in algorithm 3.

V. EXPERIMENTAL RESULTS AND ANALYSIS
In this experiment, a simulation experiment server, the
ThinkPad X1 Carbon, was used with the following specific
configuration: Intel i7-10710U (maximum core frequency:
4.7GHz), memory 16GB, and solid-state drive 1T. The
standard image database used in this paper was BOSSbase
1.01, which is a dataset containing 10,000 pictures acquired
by 7 digital cameras. All pictures were processed into a
size of 512 × 512, and 500 pictures were selected as a
hidden picture for the experiment. Three algorithms, MO-GA
[25], S-UNIWARD [26], and MiPOD [27], were selected as
comparison methods to analyze the experimental results in
detail. These approaches also utilize noise pixels to adaptively
embed secret data, sharing similarities with our proposed
approach. The difference lies in the way each approach
identifies the locations for embedding secret data.

Algorithm 3 AICppm Implementation Algorithm
Input: Initialize population F , Erate, Mrate, Crate
Output: The optimally disturbed new population Fnew
1: //Cross operation
2: 0 = F , generate random number κ1 ∈ (0, 1)
3: while |0| ≥ 2 && κ1 > Erate do
4: Select ∀8i, 8j ∈ F, 0 = 0 − {8i, 8j}

5: Randomly select bits κ2, 1 ≤ κ2 ≤ w× h× n
6: Generate cross position κ3 = ⌊κ2/m⌋ × m
7: Obtain the minimum value of the non-zero string

after the individual 8i, 8j intersection κ3
8: t = min(||8κ3

i ||!0, ||8
κ3
i ||!0)

9: Exchange the t non-zero string of individual 8i, 8j
after the intersection κ3 to generate a new individual
8′
i, 8

′
j

10: F = 0 ∪ {8′
i, 8

′
j}

11: Update random number κ1 ∈ (0, 1)
12: end while
13: //Mutation operation
14: 0 = F
15: Update random number κ1 ∈ (0, 1)
16: while |0| ≥ 1 && κ1 > Mrate do
17: Select ∀8i ∈ F, 0 = 0 − {8i}

18: Replace 8i with the filtered residua 8′
i

19: Randomly select the bits of (8′
i)κ2 , (8′

i)κ3 =

0 and (8′
i)κ4 = 1 corresponding to the * value in the

disturbance pattern A
20: if (8′

i)κ2 == 0 then
21: (8′

i)κ2 = 1, (8′
i)κ4 = 0

22: else
23: (8′

i)κ2 = 0, (8′
i)κ3 = 1

24: end if
25: F = 0 ∪ {8′

i}

26: Update random numberκ1 ∈ (0, 1)
27: end while
28: //Get the optimal disturbance
29: Fnew = ∅

30: for i from 1 to |F | do
31: for j from 1 to |F | do
32: The i-th and j-th disturbances 8i, 8j in F
33: if (S(X ,Y )8i > S(X ,Y )8j )&&(Q8i <

Q8j )&&(U8i > U8j ) then
34: Fnew = Fnew + 8i
35: end if
36: end for
37: end for
38: return Fnew

First, a comparison was made between the time and space
complexities of four different approaches. Our approach
consists of three steps, with an overall time complexity of
O(n2) and a space complexity ofO(n). TheMO-GA approach
has a time complexity ofO(n2+n) and a space complexity of
O(n). Both the S-UNIWARD and MiPOD approaches have a
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time complexity of O(n2) and a space complexity of O(n),
similar to each other. Based on the above analysis, it can
be seen that MO-GA has the highest time complexity, while
the other three approaches are all better than MO-GA in
terms of time complexity. The space complexity is the same
for all four algorithms. Then, the experiment compared the
load balancing, imperceptibility, privacy entropy, and average
embedding time of the four methods. To evaluate security,
SPA [28] was used as a steganalysis tool to analyze the
ability of the four algorithms to resist the steganalysis of
malicious attackers. Finally, the multi-objective optimization
problem of algorithm evolution was analyzed, and the three
conditional relations of the objective function were analyzed.
The migration task was completed by simulating the edge
server using virtual machine technology VM . The task was
assigned to the nearest VM for completion. When the limit of
the computing resource of theVM was reached, the remaining
tasks were transferred to other VM until all tasks were
executed. The experiment was completed using MATLAB
programming, and all experimental results were averaged
after at least 1000 rounds.

A. PARAMETER SETTINGS
The larger the population size N , the more iterations I , the
closer the solution is to the optimal solution, and the better
the diversity. However, a larger value of N and I also results
in a greater computational cost for the algorithm. To strike
a balance between solution quality and computational effi-
ciency, the paper presents the results of multiple experiments
with fixed I = 600 and varying N ∈ {25, 50, 75, 100, 125}.
In order to ensure the validity of the experiment and promote
population diversity, several basic parameters used in the
evaluation are listed in Table 2.

TABLE 2. Parameter settings.

The size of the offspring population in the experiment
is controlled by the crossover probability and mutation
probability, which determine the number of population
crossover and mutation as shown in the table. By adjusting
these probabilities, individuals with higher fitness can be
favored for the next generation while eliminating those with
lower fitness. Fine-tuning these probabilities based on the
experimental environment can improve the results of the
experiment.

For the experiment, we selected four types of high-
pass filter check images in different directions, namely
ZLaplacian, ZSobel , ZKirsch, and ZNelderCMead to preprocess the

images in the image library {X1, · · · ,X500}. We obtained
candidate positions using formula 17, and then iteratively
searched for the optimal privacy embedding position in each
candidate position. We used four comparison algorithms to
embed the same privacy information into each hidden image,
generating corresponding steganographic images. Figure 3
shows the comparison library of the original image and the
steganographic image produced by our method. The first
column displays the original image, themiddle column shows
the preprocessed image, and the third column displays the
generated steganographic image.

FIGURE 3. AICppm image comparison library.

B. LOAD BALANCING
Load balancing refers to the distribution of computing
resources across edge servers. In the experiment, the
computing power of edge servers depends on the scale
of VM . The task of finding the location of disturbances
is represented as Tn,m = {T1, · · · ,TN }, where N is the
number of disturbances. VM = {VM1, · · · ,VMAE } denotes
a collection of edge servers. The average load balancing
variance of edge servers in the network is calculated using
formula 28.

LB =
1
AE

M∑
i=1

LBi, (28)

where AE represents the number of edge servers required
to process the task set, M denotes the number of virtual
machines, and LBi is the load balancing variance of the ith
edge server, which is calculated as ( 1

AE

∑M
i=1 AEi − AEi)2.

Here, AEi signifies the number of edge servers needed to
process the ith task. A lower average load balancing variance
indicates a better-balanced resource allocation among the
edge servers, leading to higher resource utilization.

To compare the performance of load balancing methods,
Figure 4 depicts the average load balancing variances of
the Tn,m task set for four different approaches. Among
these, AICppm outperforms the other three methods, which
fail to adequately address the load balancing issues of
edge servers despite using them to solve population-
related iterative problems. Our proposed method, on the
other hand, ensures balanced resource usage among virtual
machines and dynamically optimizes their load balancing.
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By allocating tasks in real-time based on VM occupancy
in the network, our approach guarantees optimal network
performance.

FIGURE 4. Comparison of load balancing variance of four algorithms.

C. QUALITY ASSESSMENT
Mean square error (MSE), peak signal-to-noise ratio (PSNR),
and structural similarity index (SSIM) are commonly used
to evaluate the degree of image distortion. In this study,
we use these three indicators to evaluate the quality of
steganographic images. The results presented in Table 3
show the average values of 500 sample pairs, and summarize
the comparison results of the four algorithms on MSE,
PSNR, and SSIM. According to the results in Table 3,
AICppm outperforms the comparison algorithms in all three
indicators of MSE, PSNR, and SSIM, especially in SSIM.
This is because AICppm uses SSIM as one of the population
evolution goals to select the best disturbing position, which
ensures that our proposed method has the least impact on
image quality.

TABLE 3. Comparison of MSE, PSNR and SSIM averages.

D. PERFORMANCE COMPARISON OF PRIVACY ENTROPY
Privacy entropy is a crucial metric for quantifying privacy.
Figure 5 compares four different methods for measuring
privacy entropy. As the scale of the task increases, AICppm
demonstrates more pronounced advantages in safeguarding
user privacy and outperforms the other methods. AICppm
is the best-performing method overall, owing to its minimal
looseness value among the four methods, which results in the
smallest difference between the original and steganographic
images. Furthermore, the AICppm method’s task decompo-
sition is more intricate and random, leading to better task
security during transmission.

FIGURE 5. Comparison of privacy entropy of four algorithms.

E. AVERAGE TRANSMISSION TIME
In many scenarios where MCS perception tasks are involved,
users need to transmit perception data in real-time. Thus,
the average transmission time of the task plays a critical
role in determining the user’s enthusiasm to perform the
perception task. As illustrated in Figure 6, the average
transmission time increases as the task set size increases.
AICppm leverages the iterative progress of the artificial
immune system, and the transformation is conducted on the
mobile edge server, making the privacy embedding on the
mobile terminal highly efficient. Furthermore, the algorithm
considers both global and local searches, enabling it to swiftly
and efficiently locate the optimal solution. In cases where
the embedded user’s privacy information capacity is less than
0.1M, AICppm can achieve a low-latency of millisecond-
level average transmission time. As shown in Figure 6,
AICppm has a faster transmission time, which meets the real-
time requirements of the MCS network environment.

FIGURE 6. Comparison of average transmission time of four algorithms.

F. ANTI-STEGANALYSIS PERFORMANCE EVALUATION
Malicious attackers can use steganalysis tools to obtain
secret information from steganographic images. Therefore,
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evaluating the performance of the four methods against
steganalysis is a crucial indicator of algorithm security. In the
four methods of the steganographic image library, SPA is
utilized for steganalysis, and the detection error rate PERROR
is employed to assess the algorithm’s performance against
steganalysis.

PERROR =
POF + PFD

2
. (29)

Among them, PFD represents the false detection rate of
the attacker, indicating the ratio of the number of original
images detected as steganographic images to the total number
of steganographic images. POF is the missed detection
rate, representing the ratio of the number of undetected
steganographic images to the total number of steganographic
images. Figure 7 compares PERROR of different algorithms
with a population size of 125. As illustrated in Figure 7,
the algorithm proposed in this paper is robust against SPA
steganalysis tools, and the less secret the steganographic
image is embedded, the more robust the algorithm’s anti-SPA
ability becomes.

FIGURE 7. Four algorithms PERROR comparison.

G. MULTI-OBJECTIVE OPTIMIZATION RELATIONSHIP
ANALYSIS
Figure 8 illustrates the relationship between imperceptibility,
average transmission time, and privacy entropy, where the
population size is 125, the migration rate is 1, and the
original image capacity is restricted to 0.05M. The AICppm
method is employed to search for the optimal disturbance
position to maintain the balance between the three objectives.
As depicted in Figure 8, the optimal values for the three
objectives are achieved when the privacy entropy is 78.9, the
transmission time is 0.96s, and the imperceptibility is 0.9999.

Additionally, it can be observed that high privacy entropy and
imperceptibility imply that the task is split intomoremodules,
which requires a longer transmission time.

FIGURE 8. Evolutionary multi-objective optimization diagram.

VI. CONCLUSION
In this paper, we have proposed a novel privacy protection
method called AICppm, which is an evolutionary multi-
objective optimization algorithm based on the artificial
immune system. AICppm takes into account the migration
probability and embedding capacity of edge servers and
defines a multi-objective optimization problem by minimiz-
ing the average transmission time, maximizing impercep-
tibility, and privacy entropy. This approach enables covert
transmission of private information in the MCS network
using image steganography technology. The mobile edge
server searches for the optimal disturbance position of the
carrier image, while the mobile terminal embeds the private
information in real-time according to the steganography
position. As a result, users’ privacy information is effec-
tively protected, and the algorithm effectively optimizes the
concealment of steganographic images, better resists attacks
from malicious attackers’ steganalysis tools, and can achieve
real-time processing of perception tasks. Future work can
extend the AICppm algorithm to a general steganography
method, allowing the use of other multimedia formats such
as video and audio as hidden carriers. Such extensions can
further enhance the security of the MCS network and make it
more resilient against cyber-attacks.
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