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ABSTRACT Iris Recognition (IR) is one of the market’s most reliable and accurate biometric systems.
Today, it is challenging to build NearInfraRed (NIR) capturing devices under the premise of hardware
price reduction. Commercial NIR sensors are protected from modification. The process of building a new
device is not trivial because it is required to start from scratch with the process of capturing images with
quality, calibrating operational distances, and building lightweight software such as eyes/iris detectors
and segmentation sub-systems. In light of such challenges, this work aims to develop and implement iris
recognition software in an embedding system and calibrate NIR in a contactless binocular setup. We evaluate
and contrast speed versus performance obtained with two embedded computers and infrared cameras.
Further, a lightweight segmenter sub-system called ‘‘Unet_xxs’’ is proposed, which can be used for iris
semantic segmentation under restricted memory resources. The evaluations reveal that Unet_xxs reduces
the number of parameters by 77% and duplicates the speed of state-of-the-art segmentation models with an
EER drop smaller than 1% in Iris Recognition with 8.06 frame per second (fps) and Intersection Over Union
(IOU) of 0.8382.

INDEX TERMS Embedding systems, iris sensor, NIR camera, hardware.

I. INTRODUCTION
Iris Recognition (IR) literature has several well-documented
and evaluated approaches on how to process iris images,
extract the iris code, and perform comparisons [1], [2],
[3], [4], [5], [6], [7]. Some of the proposed approaches
used classical methods of image processing, such as Gabor
Wavelets, [1], [2], [3], Localized Binary Patterns (LBP)
[4], or Binarized Statistical Image Features (BSIF) [5].
In contrast, others used Convolutional Neural Networks
(CNN) for segmentation and/or encoding [7], [8], [9], [10],
[11]. However, only a few previous works aimed to describe
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how to build a binocular iris imaging device efficiently
from scratch at both hardware and software levels. As we
mentioned before, today, we can use iris-captured devices
not only for identification. Instead, new approaches have
been proposed using a capture device as a screener filter
for an occupational test to measure the worker’s level
of alert. Moreover, a binocular device can be used as a
Fitness for Duty system from Near Infrared (NIR) iris
images.

The availability of Raspberry-PI and Jetson-Nano
increased the number of devices developed due to low
prices and fast adoption compared to regular binocular
NIR capture devices. It is essential to highlight that all
hardware components in this work were developed according
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to the availability in our region (Latin America) during the
pandemic season.

When an eye detection and segmentation subsystem are
deployed on a hardware platform, it requires sufficient
amounts of memory to store its parameters (weights and
biases), and intermediate computational results exchanged
between its deployments. This is not a trivial task.

In this work, an iris recognition system has been developed
from scratch considering the increase of computational
power, utilising semantic segmentation, and designing a
binocular capture device that makes use of the information of
both eyes. The computational power is efficiently allocated
by using and comparing two modern embedded boards,
the Raspberry-Pi-4B and the Jetson-Nano. Additionally,
we developed a low-weight semantic segmentation network
that can work on those boards with fast inference times.
Finally, the proposed device arrangement can capture a
face image from which both eyes are extracted with good
resolution for IR. Therefore, the proposed device could also
be used for face recognition as a complementary function.

The contributions of this work are the following:
• IR Hardware Design: the main elements needed to build
a NIR iris imaging device with available components are
described.

• A comparison between Raspberry-Pi and Jetson-Nano is
reported.

• IR Pipeline: an end-to-end IR pipeline is implemented,
which acquires information about the two eyes in a face
image.

• Iris Segmentation Network: a lightweight iris semantic
segmentation network is proposed, which finds eyes and
segments the iris.

• Efficiency: The proposed architecture of UNet_xxs
reduces the parameter number by 77% with respect
to State of the art (CCNet). This makes UNet_xxs
faster and easier to implement than previous works [11].
Additionally, joining available hardware and software
components into a single cohesive system with a
practical use case is another innovative point.

• SystemCalibration and Evaluation: the optimal distance
to the camera is calibrated; additionally, the speed and
performance of the proposed system are evaluated.

This paper is organised as follows: related work is
described in Section II. The method is outlined in Section III.
The databases and data-preprocessing are introduced in
section IV, and the experiments and results are presented in
section VI. Finally, conclusions are presented in section VIII.

II. RELATED WORKS
A. IRIS RECOGNITION HARDWARE
A small number of research works have detailed how to
build IR capture devices from the hardware perspective.
Early works focused on the implementation of IR systems
on Digital Signal Processors (DSP) as well as Field
Programmable Gate Arrays (FPGA) [12]. Those systems
were attractive because they exploited parallel processing to

reduce computational time. However, they are expensive in
comparison to single-board computers.

Hentati et al. [13] implemented Osiris [3] on an FPGA
device, reducing processing time and power consumption.
Further on that, Avey et al. [14] reduced processing time by
using a FPGAs. Processing time was reduced by a factor of
22 and 486 when compared with x86 and ARMv7 processors,
respectively.

Grabowski and Napieralski [12] studied hardware effi-
ciency for complex IR algorithms and remote camera sensors
using Digital Signal Processors and FPGAs. Ma et al. [15]
implemented IR Quasi-cyclic low-density parity-check (QC-
LDPC) error correction with FPGA. Also, Grabowsky et al.
[16] proposed an iris-on-the-move recognition system which
does not require special cooperation with the user during
biometric sample acquisition. This specialised architecture
is mainly composed of Digital Signal Processors (DSP)
and Field-Programmable Gate Arrays (FPGA). The main
components include a Xilinx Spartan 3AN FPGA and four
digital signal processors: two of which are fixed-point (CPU0
and CPU1) and two of which are floating-point (FPU0 and
FPU1). The board is inserted into one of the PCI 32-bit slots
on the ML510 platform.

Chou et al. [17] proposed a Non-orthogonal Iris recog-
nition system based on four spectral (red, green, blue and
Near-InfraRed) images. They proposed a circle rectification
method to reduce the off-axis iris distortion. The images are
captured at different off-axis angles using a Canon VF 75-
mm lens and a Sony HVL-IRH2 camera. All the metrics
are estimated on a PC running Windows XP with an Intel
Core 2 Duo 4400 processor and 1 GB RAM.

Single-board computers such as Raspberry-Pi offer a
small form-factor platform for IR systems. Cruz et al. [18]
implemented Daugman’s equations on a Raspberry-Pi-2B.

Kunik et al. [19] used the Raspberry-Pi-3B to implement
Iris Recognition algorithms. Their method was based on
USIT and OpenCV. Boutros et al. [20], [21] implemented
IR on Head-Mounted Displays and proposed EyeMMS for
segmentation with good results. Zhang et al. [22] created the
CASIA-Iris-Mobile-V1.0 database to test IR performance
on mobile devices. They also presented a feature fusion
mechanism to increase IR performance.

Bastias et al. [23] reported a similar device, but for the
purpose of 3D iris scanning. They used a Raspberry-Pi-3B+

with an infrared 8Mpx camera and NIR LEDs. The setup was
mounted on a proposed Virtual Reality (VR) headset.

Fang et al. [24] proposed an end-to-end open-source
system for IR with Presentation Attack Detection. They
described how to build an iris capture device using general-
purpose electronic components for less than 75 USD. Their
system utilises a Raspberry-Pi-3B+, an infrared 5Mpx
camera, a NIR optical filter, two NIR LEDs, and control
circuits mounted on a breadboard. Fang et al. also produced
a complete IR solution with Presentation attack detection
(PAD) that runs on the restricted computational power of the
Raspberry-Pi-3B+.
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In the other hand, there have also been some implemen-
tations on smartphones. Raja et al. [25], and Tapia et al. [26]
utilised an iPhone 5S and a Nokia Lumia 1020 as the capture
device using Visible Spectrum (VS) imaging and super-
resolution. The smartphone also produced segmentation
inference and recognition.

Benalcazar et al. [27], [28] proposed an iris imaging device
using VS images, which was used for IR in 3D [29], [30].
This device was based on a frame similar to Bastias’s VR
goggles; however, it was built on opaque black acrylic to
suppress undesired reflections. The acquisition device was a
Samsung S6 Smartphone with a macro lens, capturing close-
range images of the iris at 16Mpx resolution.

Efficient iris recognition in Head-mounted embedded
displays has also been proposed. Fadi et al. [20], [21]
developed iris and periocular biometrics for head-mounted
displays, including segmentation, recognition, and synthetic
data generation focusing on Augmented Reality (AR) and
Virtual Reality (VR) applications.

B. IRIS SEMANTIC SEGMENTATION
Recent works in IR use deep learning to segment and localise
the pupil and the iris in a periocular image [11], [31], [32],
[33]. The Criss-Cross AttentionNetwork (CCNet), developed
byMishra et al. [33], is an iris semantic segmentation network
based on U-Net [32]. This lightweight network was trained
by Fang et al. [24] to predict a binary mask of the iris from
NIR images. They utilised theHough transform to localise the
pupil and the iris from the binary mask. CCNet was explored
and re-trained by Tapia et al. [11] to work with highly dilated
images under the influence of alcohol. They also developed
two faster localisation algorithms that had better performance
than the Hough transform: Least Means Squares (LMS) and
Mixed [11].

Tapia et al. also developed DenseNet10 [11], a reduced
version of DenseNet101 [34] that can semantically segment
the pupil, the iris, the sclera, and the background.1 This
network obtained greater performance than CCNet on alcohol
images at the expense of doubling the number of parameters.
The centre of mass was used to localise the ellipses of
the pupil and the iris. A performance comparison of these
methods in terms of eye detection, iris segmentation and iris
recognition is presented in Section VI.
CCNet and DenseNet10 are the main networks used

in this work. However, there is abundant literature on
semantic segmentation networks. For instance, Wu and
Zhao [35] developed a segmentation network based on
U-Net with good performance. Sip-SegNet [36] employs
Convolutional Neural Networks along with adaptive fuzzy
filtering techniques to segment the pupil iris and the
sclera. Wang et al. [37] proposed a lightweight network
for iris semantic segmentation. Osorio et al. [38], [39]
developed amulti-class segmentation network for VS images.

1https://github.com/Choapinus/DenseNet10

Li et al. [40] developed a segmentation network that works in
uncooperative scenarios.

III. METHODS
A. DEVICE DESIGN
The Raspberry PI 4 and the Jetson-Nano are the most
representative platforms for embedded systems available in
the market. There are several single-board computers in
the market with similar features and price ranges; however,
the Raspberry-PI-4 and the Jetson-Nano are the most
representative and easier to acquire.2 The two boards also
allow testing the performance difference for one system with
and without CUDA cores.

The proposed iris-capturing device is designed to be
portable, light and contactless, acquire NIR images of both
irises, show relevant information to the user, and perform
IR on its own. According to previous statements, the device
is composed of the following modules: Processing unit,
Cooling system, Capture Device, Illumination Printed Circuit
Board (PCB), Display module, Power supply, and Case. All
the modules are interconnected, as illustrated in the block
diagram of Figure 1.

The processing unit is in charge of commanding the rest
of the modules and running the IR software. We compare
the Raspberry-Pi-4B and Nvidia’s Jetson-Nano for the
processing unit. Both boards are readily available, have
a small form factor, and permit the control of peripheral
devices.

The Raspberry-Pi-4B is based on a quad-core ARM-A72
64-bit CPU that runs at 1.5GHz. The model used in this work
has 8GB of RAM and no CUDA-compatible GPU.

On the other hand, The Jetson-Nano is based on a quad-
core ARM-A57 64-bit CPU that runs at 1.43GHz. It has
4GB of RAM and a 128-core Maxwell CUDA-compatible
GPU. Therefore, the Raspberry-Pi has a better CPU and
RAM, but the Jetson-Nano has a GPU that can run neural
networks. We will analyse the trade-offs of each in terms of
computational performance in Section VI.

The cooling system is different for the two choices of the
processing unit. For the Raspberry-Pi-4, passive heatsinks
were installed on the main chips, and a fan was installed in
the case. The fan blows cool air to the heatsinks, and hot
air exits through holes at the sides of the case. The fan is
turned on and off automatically from the OS through the
General Purpose Input Output (GPIO) pins and a current
amplification transistor. On the other hand, a single heatsink,
installed by default, cools the main components of the Jetson-
Nano. A 4-pin fan was installed to cool the heatsink, and it is
controlled by the OS with Pulse Width Modulation (PWM).
Both options effectively reduce the excess heat from the
device and prolong the lifespan of the device.

The display module is a seven-inch touchscreen for
the operator’s interaction with the capture system. While
capturing the image from the eyes, a mirror supports the

2During the COVID-19 pandemic under logistic restrictions.
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FIGURE 1. Block diagram of the hardware modules.

FIGURE 2. Image of the assembled device.

biometric attendant, showing the actions so they can centre
the eyes of the capture subject inside the frame. The display is
also used to provide information to the capture subject when
the capture process has started and ended. Finally, it shows a
welcome screen if the biometric attendant was identified or
instructions to follow if otherwise. Touch information can be
used to start the capture process or wake up the device if it is
inactive for a long time.

Finally, the case holds all components together and
facilitates cooling. A simple squared design was fabricated
on laser-cut black acrylic. All the modules are secured to the
acrylic frame by means of 3D-printed parts, nuts and screws.
The bottom part of the device has a universal nut that can be
mounted on tripods of any size. An image of the assembled
device can be seen in Figure 2. It also illustrates that the
camera input is a Face Region of Interest (ROI) with two eyes.

The setup of the capture device and illumination PCB was
based on [24]. For the capture device, we compare the 5Mpx
NoIR camera module v1 and the 8Mpx NoIR camera module
v2 for Raspberry-Pi, as shown in Figure 3. The illumination
PCB has two NIR LEDs to illuminate the eyes and two VL
LEDs that give feedback to the user. The four LEDs are
controlled by the GPIO pins of the processing unit by means

FIGURE 3. NoIR camera modules for the raspberry-pi.

of transistor-based current amplification. This enhances the
brightness of the LEDs while avoiding drawing too much
current from the GPIO.

The main differences with devices presented so far in the
literature are the following: (i) It was designed and fabricated
as custom PCB for the transistors that control the LEDs
instead of using a breadboard; (ii) since PAD is not an
objective for this work, both NIR LEDs are turned on and
off at the same time instead of individually; (iii) we did not
use a NIR optical filter since preliminary tests showed that the
filter’s image quality drops at night; and (iv) It was captured a
face image and extract both eyes instead of capturing a single
eye in close proximity.

B. SEMANTIC SEGMENTATION NETWORK
It was developed as a reduced version of U-Net [32],
which is called UNet_xxs, for the purpose of iris semantic
segmentation under limited computational power. Iteratively,
we removed layers from CCNet’s version of U-Net [24], [33]
trained and tested performance until a small network with
acceptable performance was obtained. Table 1 shows how
reducing the input size, the number of layers, and kernel sizes
produced architectures with fewer and fewer parameters. The
parameter reduction process was stopped when the fps was
3.3 times larger than CCNet, but IOUwas still above 0.8. This
preliminary test was conducted with the 2,132 test images
[11].

We trained CCNet and UNet_xxs on two tasks using the
dataset from [11]. In the first task, the networks have to
find the two eyes from the face-ROI image, as illustrated in
Figure 6a. This is used to crop the two periocular images
of the left and right eyes. The second task is to find the
iris region in a periocular image, as depicted in Figure 6b.
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TABLE 1. CCNet parameter reduction.

The two tasks were trained separately and handled by two
independent models both using the UNet_xxs architecture.
The architecture of UNet_xxs is illustrated in Figure 4.

The segmentation and localisation pipeline is shown in
Figure 5. It illustrates how the input Face ROI image
(Figure 5a) is processed to find, crop, segment and localise the
left and right irises. The output segmentation masks, as well
as the localisation coordinates, are essential for IR.

First, a segmentation network (CCNet or UNet_xxs) is
used to find the eyes. The network takes the Face ROI image
(Figure 5a) and produces a segmentation mask where two
big circles indicate the position of the eyes, as highlighted in
red in Figure 5b. Then the distance d between the centroids
of both circles are computed. Next, the bounding boxes of
each eye are found (Figure 5c). These are rectangles placed
at the centre of each circle with width 0.44 × d and height
0.33× d . This box size was determined empirically based on
component and display sizes. After that; the bounding boxes
are used to crop each eye and obtain the periocular images
(Figure 5d).
Then, the segmentation networks take the periocular

images as inputs and return the segmentation masks
(Figure 5e), where the iris region is highlighted in white.
Finally, the circles of the two pupils and irises are found
(Figure 5f) using the LMS and themixed algorithms proposed
by Tapia et al. [11]. The results are the (x, y, r) triplets of each
circle, where (x, y) are the coordinates of the circle’s centre
and r is the radius.

C. IRIS RECOGNITION
For IR, we used the method of Czajka et al. [5], implemented
on the Raspberry-Pi by Fang et al. [24]. This method takes a
periocular iris image, and the localisation (x, y, r) coordinates
to produce a polar-coordinate normalised iris image, also
known as rubber sheet [1], [41]. The rubber sheet has a
size of 1 × 64 × 512. A rubber sheet of the segmentation
mask is also generated. Then, the BSIF-based ICA filters [5]
are applied to encode the iris rubber sheet. The ICA filters
are 7 filters of 15 × 15 and are available on open source
by [24]. Finally, two encoded irises are compared using the
Modified Hamming Distance, as described in Section V-A.
The masks omit information from non-usable areas such as
the pupils, eye leads and eyelashes from the comparison score
computation.

IV. DATASETS
A. SEGMENTATION DATASETS
Both segmentation networks (CCNet and UNet_xxs) were
trained for two separate tasks: finding eyes and segmenting

the iris. To solve the first task using semantic segmentation,
we used the face ROI images of [11], face images from the
FRCG dataset, as well as our own captured images using
the Raspberry-Pi. The ground-truth (GT) masks of each face
and face ROI image were created by placing two big circles
on each eye, as seen in Figure 6a. For this purpose, the
pupil centres were marked on each image, and the pupil-
to-pupil distance d was measured. Then, two circles with
radius 0.2 × d were placed at the pupil centres of each
image. Additionally, we trained the network to produce the
circles even though the eyes were closed, so we placed images
of closed eyes in the training set. Finally, the network was
trained to leave the image in black if no eyes were present on
the input image. To accomplish this goal, we added natural
images as backgrounds in the training set.

Figure 7 shows the number of images used for each source,
a sample image and its GT segmentation mask. The number
of images in Figure 7 accounts for offline data augmentations
of rotation that were performed on each image. The total
number of images was 37,645, and it was divided into 30,116
for training, 3,764 for validation and 3,765 for testing.

On the second task, the networks were trained to segment
the iris region in a periocular image. Tapia et al.’s dataset
[11] had GT of semantic segmentation for the pupil, the
iris and the sclera. In this work, we isolated the iris label
to train the networks only on the iris region. Additionally,
we segmented the captured Raspberry-Pi images using the
pre-trained DensNet10 [11] and used the outputs of that
network as the ground truth masks.

Similarly to the first task, we trained the iris segmentation
network to output a black image when no iris was present in
the input image. For this purpose, we placed natural images,
closed eyes and face close-ups in the dataset.

Figure 8 illustrates the number of images, an example
and the corresponding segmentation mask per source. The
number of images considers offline data augmentation of
random rotations placed on all the sources. The total number
of images is 58,599 and was divided into 44,748 images for
training, 7,990 for validation and 5,861 for testing.

It is worth pointing out the fact that the first network can
find and crop closed eyes while the second is not able to do so.
This, in turn, helps count the number of times a person blinks
as well as measure the blinking frequency when the networks
perform continuous predictions on image sequences.

B. IRIS RECOGNITION DATASETS
The dataset of Tapia et al.’s [11] has a great number of
face ROI images and iris images with segmentation ground
truth, so it is ideal for training segmentation networks.
However, it is not a good dataset for iris recognition since
it has image sequences of around 75 frames per subject,
and subjects might appear on alcohol and non-alcohol sets
with different IDs since images were captured with different
sensors. Therefore, we chose to use different datasets for
IR tests.
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FIGURE 4. Architecture of UNet_xxs network.

FIGURE 5. Iris segmentation and localisation pipeline.

FIGURE 6. Illustration of the two trained tasks. Top: input image. Bottom:
segmentation mask.

For fast and iterative IR tests, we used the dataset of
Benalcazar et al. [27]. It has 96 subjects, and 5 NIR images
of the right eye of each subject were captured, for a total of
480 images. Therefore, there are 960 mated and 114,000 no-
mated comparisons in the dataset. The average image width
is 388.4px, and the aspect ratio is 4:3.

For a final IR benchmark evaluation, we used the Notre
Dame LG4000 dataset [42]. From the original dataset,
we removed low-quality images and images with a pre-
dominant nose in the frame. The remainder of the 10,959
images were classified between the Left and Right eyes.
We have different IDs on the left and right images of
the same individual since the irises are different. In total,

FIGURE 7. Find eyes dataset.

there were 811 IDs, which were partitioned in a person-
disjoint manner, as 487 for training, 162 for testing, and
162 for validation. The partition corresponds to 6,663 train
images, 2,090 test images and 2,203 validation images. The
test set has 19,029 mated comparisons and 105,470 non-
mated comparisons. We named this partitioned dataset as
ND-LG400-LR and made the partition lists available on
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FIGURE 8. Segmentation dataset.

GitHub3. Additionally, we generated the segmentation GT
by segmenting the 10,959 images with DenseNet10 and
correcting mistakes by hand.

V. METRICS
A. MODIFIED HAMMING DISTANCE
For comparing two binary iris codes, one of the most used
metrics is the Modified Hamming Distance (HD). The two
encoded irises (codeA and codeB) and the rubber sheets of the
segmentation masks (maskA andmaskB) are used to compute
the HD [1], as described in (1). The smaller theHD value, the
more similar the two irises are.

HD =
||(codeA⊗ codeB) ∩ maskA ∩ maskB||

||maskA ∩ maskB||
(1)

B. D-PRIME SCORE
The d ′ score evaluates how separated the mated and non-
mated comparison distributions are. It is computed score
using equation (2) stemming from Daugman [1], in which
µ1 and µ2 are the means of the mated and non-mated
score distributions respectively, and σ1 and σ2 are the
corresponding standard deviations. The greater the (d ′) value,
the greater the separation between the two distributions.

d ′
=

|µ1 − µ2|√
0.5 × (σ 2

1 + σ 2
2 )

(2)

3Upon acceptance

C. EQUAL ERROR RATE
The Equal Error Rate (EER) in a biometric test is the
operating point at which the False Match Rate (FMR) and
the False Non-Match Rate (FNMR) are equal. The smaller
the EER value is, the lower the overall classification error
of the system.

D. SIGNAL TO NOISE RATIO
The Signal to Noise Ratio (SNR) is the ratio between a
signal’s amplitude and the noise’s standard deviation. In this
work, we are interested in evaluating the SNR of iris images
under different conditions. Therefore, we compute the SNR
using (3), where the amplitude of the signal is the difference
between the mean intensity values of the iris and the sclera,
and the noise is considered as the standard deviation of the
sclera. That is because the sclera is normally white; thus, any
random variation of intensity from one pixel to the next is due
to camera noise artefacts.

SNR =
A
σ

=
|µiris − µsclera|

σsclera
(3)

E. INTERSECTION OVER UNION
The bitwise Intersection over Union (IoU) [11] metric is used
to evaluate semantic segmentation accuracy. It compares the
ground truth and predicted segmentation masks (MA andMB)
by means of (4). This equation counts the number of bits that
are high in a logical AND operation and divides it by the
number of logical ones in the logical OR operation between
the two masks.

IoU =

∑
(MA ∧MB)∑

(MA ∨MB) + ϵ
(4)

The range of values of the IoU is between 0 and 1, where
1 is a perfect match. A small positive value ϵ is added to the
denominator to avoid division by zero.

VI. EXPERIMENTS AND RESULTS
Experiments 1, 2, 3 and 4 aim to resolve a crucial aspect in
the fabrication of an iris imaging device, which is finding
the optimal distance between the camera and the subject
in terms of image resolution, SNR and available iris area.
Since the v1 and v2 camera modules used in this work
cannot automatically regulate the focal distance, the focus
must be manually adjusted upon assembly. Therefore, the
most crucial factor to find is the optimal distance between
the subject and the camera at which to fix the focal
plane.

Experiments 5, 6 and 7 evaluate the performance of the
proposed segmentation network and pipeline in terms of
accuracy and speed.

Finally, Experiment 8 evaluates the overall IR performance
on the ND-LG400-LR dataset. It is important to highlight that
all the software on both platforms, the Raspberry-Pi and the
Jetson Nano, were implemented using Python 3.8, PyTorch
1.7 and OpenCV 4.5.
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A. EXPERIMENT 1: IR PERFORMANCE VS IMAGE
RESOLUTION
First, we explore the minimum resolution at which IR still
has a reasonable performance. For this purpose, we use the
dataset of [27], which is composed of 480 NIR images of the
right eyes of 96 subjects. In this test, we varied the image
width of each image from 388.4 px down to 25 px in 11 steps
and measured the mean iris radius on each step. For each
resolution, we also performed IR tests using the method of
[5] and scored the EER, as well as the d ′ value.
Figure 9 and Figure 10 show the relationship between the

iris radius and the IR metrics. The elbow in Figure 9 occurs
at an iris radius of 9.2px; however, EER stabilises at 46.9px.
On Figure 10, the d ′ also presents less rate of growth over
45px of iris radius.

FIGURE 9. EER in IR decreases when iris radius increases.

FIGURE 10. In IR tests, d ′ increases with iris radius.

Figure 11 shows inmore detail the IR tests at three different
resolutions when the iris radius is 120.4 px, 46.9 px, and
9.8 px. It can be seen that there is muchmore overlap at 9.2 px
(Figure 11b) compared to the maximum resolution 120.4px
(Figure 11a); that is why d ′ diminishes from 6.26 to 2.02. The
Detection Error Trade-off (DET) curves in Figure 11c reveal
the system behaviour for the three resolutions. It shows the
expected result that errors decrement with higher resolutions;
however, at an iris radius of 46.9 px, the EER increases only
by 1% with respect to the maximum resolution.

Therefore, we take the value of 45px as the minimum iris
radius for an acceptable IR recognition performance.

B. EXPERIMENT 2: IRIS RADIUS VS DISTANCE TO CAMERA
Now that a minimum iris radius of 45px has been established,
we must correlate the iris radius with the distance to the
camera. For this test, we captured four face images on the
device at distances of 10, 15, 20, 25, 30, 40, 50, 60 and

70 cm from the camera. Then, the iris radii on the eight eyes
contained in the four frames are manually measured, and the
mean iris radius is scored for each distance value.We repeated
this test three times with the following combination of
cameras and processors: Raspberry-Pi with 5Mpx camera
v1, Raspberry-Pi with 8Mpx camera v2, and Jetson-Nano
with 8Mpx camera v2. The OpenCV [43] libraries used
in the Raspberry-Pi program can only acquire images
of 1,920 × 1,080 px from the cameras; however, the Jetson-
Nano was able to read images of 3,264 × 1,848 px using
GStreamer.

Figure 12 shows the relationship between the iris radius
and the distance to the camera for each device. A red dashed
linemarks the 45pxminimum iris radius found in the previous
test. The Raspberry-Pi with the camera v1 has a similar curve
to that of the Jetson-Nano with the camera v2 module. The
intersection with the 45 px line occurs at 30cm and 35cm
from the camera, respectively. Therefore, to work with an
iris radius over 45 px, the distance to the camera must not
exceed 35 cm.

According to Figure 12, the Raspberry-Pi gets a lower
resolution with the camera v2 module than using the camera
v1 module at the same distance to the camera. That is
because the camera v1 module possesses a magnification
lens, as shown in Figure 3a. However, the Jetson-Nano
is capable of getting even better iris resolutions than the
Raspberry-Pi with the camera v1 module for the same
distances as the camera without the magnification lens.
The Jetson-Nano does it at the expense of working with
higher-resolution images. Thus, we decided to use the
camera v1 module exclusively with the Raspberry-Pi, and
the camera v2 module with the Jetson-Nano in further
tests.

C. EXPERIMENT 3: SIGNAL TO NOISE RATIO
In this experiment, we analyse the SNR at increasing
distances from the camera. For this test, we used the camera
v2 module with the Jetson-Nano. One image of the subject
was taken at 10, 15, 20, 25, 30, 40, 50, 60 and 70cm from the
camera, and the iris and the sclera of both eyes were manually
segmented on each image. SNR was computed using (3) for
each distance value.

In total, two capture sessions were taken, one dur-
ing the day and one at night. This test can be seen
in Figure 13.
In general, SNR diminishes when the distance to the

camera increases both at day and night. However, SNR values
are much greater during the day than at night. This means
that at night the incident NIR light is not enough, and the
camera has to compensate for the gain, exposure and contrast
at the expense of adding extra noise. Figure 14 illustrates
how at night, there is much more camera noise present in the
image. According to the day curve in Figure 13, over 40 cm
of distance, the SNR starts to drop more rapidly. Therefore,
according to this test, the maximum distance with good SNR
is 40 cm.
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FIGURE 11. IR tests at different resolutions.

FIGURE 12. In IR tests, d’ increases with iris radius.

FIGURE 13. Signal to noise ratio at several camera distances.

D. EXPERIMENT 4: AVAILABLE IRIS AREA REGARDING
SUBJECT’S GAZE
An important aspect to take into account is that the
users might not look straight into the camera but instead,
be distracted by the screen. Despite the camera and the
screen being physically close, the subjects’ gaze is different
when looking at the camera than at the screen, as illustrated
in Figure 15. When looking at the camera, more iris
surface is present in the image, whereas when the subject
directs their gaze downwards, eye leads and eyelashes
obstruct the iris. We conducted the following experiment to
quantify the amount of available iris surface. For the distances
to the camera of 10, 15, 20, 25, 30, 40 and 50cm, an imagewas
captured when the subject looked directly at the camera and
another when looking at the screen. Then, the iris diameter

FIGURE 14. Two Face ROI images at 60cm from the camera. Top: captured
during the day. Bottom: captured at night.

along the x and y axis was measured for each eye (see
Figure 15), and the mean ratio ofDy/Dx between the left and
the right eye was scored for each frame. This ratio represents
how much of the iris was occluded due to eye leads and
eyelashes in the y axis with respect to the x axis, where the
iris is never occluded. The results of this test are shown in
Figure 17. When looking at the camera, the ratio settles at
around 0.9 for distances over 25 cm. However, when looking
at the screen, the ratio stabilises slightly below 0.8 from a
distance of 30 cm. At a distance between 20 and 25 cm,
the ratio is around 0.75, which might also be acceptable.
Therefore, according to this test, the optimal distance to the
camera is above 25 cm.

E. ANALYSIS OF EXPERIMENTS 1 THROUGH 4
In summary, the above experiments produced three different
intervals to optimise different parameters. For good IR
performance, the distance to the camera must not exceed
35cm. To get an acceptable SNR, the distance must be below
40cm. To obtain less eye lead and eyelash obstructions due to
the subject’s gaze, the distance to the camera has to be above
25cm. Figure 17 illustrates those intervals. The intersection
of the three produces the optimal distance to the camera that
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FIGURE 15. Gaze analysis at 15cm from the camera. Top: looking at the
screen. Bottom: looking at the camera.

FIGURE 16. Eye aperture when looking at the camera or the screen for
different distances to the camera.

satisfies the three criteria, and it is the interval between 25 and
35cm. Thus, we calibrated the focal plane of the v1 and v2
camera modules at 30cm. This is an important aspect of the
hardware design that is usually overlooked when dealing with
IR software.

FIGURE 17. Intervals of optimal distance to the camera according to our
experiments.

F. EXPERIMENT 5: EYE-FINDING ACCURACY AND SPEED
In this experiment, both segmentation accuracy and the
processing speed are evaluated for the first task, which
consists of finding eyes in face-ROI images. Each method
takes as input an 800×480 image and scales it to the nominal
resolution in which it operates. The fps measurement takes
into account the resizing process.

We compared the IoU performance, Eye-tiny-yolo, and
two tracking algorithms available in OpenCV [43], namely
Channel and Spatial Reliability Tracking (CSRT) [44] and
Kernelized Correlation Filter (KCF) [45], [46]. It was
reported the mean IoU value in the test set ± is the standard
deviation. It also measured the average inference speed
in frames per second (fps) on two computers (PC1 and
PC2), a Raspberry-Pi-4B (RasPi) and a Jetson-Nano (Jetson).
PC1 has a Ryzen3 prossesor, 16 GB of RAM, and no
GPU. PC2 has a Ryzen5 Processor, 16 GB of RAM and
a 12 GB GPU. The input image size in this experiment was
800 × 480 pixels.
Table 2 shows the results of this experiment, as well as

the input resolutions and the number of parameters used by
each method. Because CSRT and KCF are image-processing-
based methods, instead of CNN, they do not have trainable
parameters. KCF obtained the fastest fps in platforms without
a GPU; however, they require additional information about
the eye’s position in the first frame to start tracking.

In terms of IoU, Eye-tinny-yolo obtained by far the best
performance, with 0.986; however, it does so at the expense
of using 8 million parameters. CCNet achieved a mean IoU of
0.801 with 112,514 parameters. The mean IoU performance
of the proposed UNet_xxs was 0.772, which is close to that
of CCNet but using only 28,146 parameters. A 77.2% of
the accurately recognised area still produces acceptable eye
crops, where the entirety of the iris is inside the cropped
image.

In terms of speed, UNet_xxs is by far the fastest network
in all systems and the fastest method for systems with
GPU. On the Jetson-Nano, CCNet doubles the speed of Eye-
tiny-yolo, and UNet_xxs doubles that of CCNet. On the
Raspberry-Pi, on the other hand, Eye-tiny-yolo is faster than
CCNet; however, UNet_xxs is almost twice as fast as Eye-
tiny-yolo.

Finally, the OpenCV algorithm KCF surpassed the speed
of UNet_xxs on systems without a GPU. However, the fact
that the captured subject (or biometric attendant) would have
to click on the position of their eyes on the first frame makes
it impractical on an end-to-end IR system.

G. EXPERIMENT 6: IRIS SEGMENTATION ACCURACY AND
SPEED
We repeated Experiment 5 for the second task, which is
iris segmentation. Speed (in fps) was evaluated using the
same systems described in Experiment 5. The IoU metric
was computed on the test set using DenseNet10, CCNet and
the proposed UNet_xxs. The image size on the test set was
640 × 480 px.
Table 3 shows the input resolution, number of parameters

and the results of this experiment. DenseNet10 produced
the best IoU of 0.946, using 210,732 parameters. UNet_xxs
obtained an IoU of 0.871, which is high considering that it
only used 28,146 parameters to achieve it. Concerning speed,
DenseNet10 was far slower than the other two, obtaining
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TABLE 2. Evaluation of the eye finding task in terms of IoU accuracy and speed.

TABLE 3. CCNET parameters in terms of IoU accuracy and speed.

TABLE 4. Pupil and Iris localisation evaluation.

TABLE 5. Iris recognition on ND-LG4000-LR.

speeds below 1 fps in some cases. On the other hand,
CCNet and UNet_xxs were far quicker, with speeds of several
fps. On the Jetson-Nano, CCNet obtained 12.65 fps, while
UNet_xxs achieved 38.47. The latter is fast enough for
IR frame-by-frame in real-time. Due to their lightweight,
CCNet and UNet_xxs obtained hundreds of fps on a GPU
machine. Finally, on the Raspberry-Pi, UNet_xxs can operate
at 3.52 fps, which would produce IR results in a fraction of a
second.

H. EXPERIMENT 7: EVALUATION OF PUPIL AND IRIS
LOCALISATION
Once the iris surface has been segmented, the circles that best
fit the pupil and iris must be computed. This is essential to
obtain the Iris Code [1]. In this experiment, we measured the
estimation error when predicting the pupil and iris circles.
For the position of the centre of the circles, we measure the
error in terms of the Euclidean Distance. On the other hand,
we use the Absolute Distance for errors in the estimation of
the radius. For predictions of DenseNet10, we used the centre
of mass as the localisation algorithm, whereas for CCNet
and UNet_xxs, we used the localisation mixed algorithm of
Tapia et al. [11]. The latter uses LMS when the iris is not
occluded by eye leads and Hough when it is occluded [11].

Table 4 shows the results of this experiment. DenseNet10’s
segmentation accuracy undoubtedly helped this method to
achieve the best localisation performance with sub-pixel
errors. CCNet had the most errors in the 2 px range, except
for the iris centre, which was estimated with an average error
of 3.83 px.

Finally, UNet_xxs produced high estimation errors
because the errors are compounded from the segmentation
prediction. Those errors are between 4 and 5 px in most cases.
However, given that the image size is 640 × 480 px, a 5 px
error is 1% of the image height, which, in this context, can be
considered a small error.

I. ANALYSIS OF EXPERIMENTS 5, 6 AND 7
Experiments 5, 6 and 7 evaluated the proposed network’s
speed and accuracy against other state-of-the-art methods.
In terms of speed, the proposed UNet_xxs was the fastest
network in both tasks. This is especially true on the Jetson-
Nano, which could crop eye images at 16.18 fps and segment
them at 38.47 fps. With respect to performance, on the
other hand, UNet_xxs did not perform as well as the other
networks. Therefore, for an IR application, we recommend
using UNet_xxs for the first task only and DenseNet10
or CCNet for the second task. In this way, the speed of
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UNet_xxs would allow capturing several frames in real-
time, cropping the eyes and choosing only the best quality
images in terms of sharpness (ISO/IEC 29794-6) for the next
process. The second task’s speed is not as significant since a
single prediction for each eye has to be performed. Therefore,
DenseNet10 or CCNet would be better suited to yield results
with good accuracy for iris segmentation and localisation.

J. EXPERIMENT 8: IRIS RECOGNITION PERFORMANCE
For a final benchmark evaluation of IR performance,
we trained DenseNet10, CCNet and UNet_xxs on ND-
LG4000-LR and performed IR tests using the ICA filters of
Czajka et al. [5]. This test can reveal how the segmentation
errors propagate and affect IR performance.

The DET curves shown in Figure 18 indicate that
DenseNet10 has the best overall performance since its
DET curve is lower than the others. CCNet has better
performance than UNet_xxs for FAR smaller than 15%.
However, UNet_xxs has better performance than CCNet for
FAR greater than 15%.

FIGURE 18. DET curves on ND-LG4000-LR dataset.

Table 5 shows the d ′ and EER of the three networks and
the FNMR at three operating points. As in previous tests,
DenseNet10 has the best performance. However, the EER of
UNet_xxs is 2.56%, which is acceptable for real operations.
If a 10% of False Match is permitted in the system, the three
networks would have less than a 1% of False Rejections Rate.
On the other hand, when the system allows only a 1%of FMR,
UNet_xxs doubles the FNMR of CCNet at 4.35%, which is
not as desirable. This corroborates that there is a trade-off
between speed and performance when using UNet_xxs.

Finally, note that the EER and FNMR values reported in
this work, even for the worst case, are smaller than those
reported by Fang et al. [24] on a different partition on the
Notre Dame dataset. In that work, CCNet obtained an EER
of 4.39%. This indicates that UNet_xxs has competitive
performance and can be used in a real-world scenario.

VII. DISCUSSION AND COMPARISONS
This work proposed building NIR hardware from scratch and
adapting the algorithms with the methods available in the
state of the art to be portable and included in an embedded
device. While our method proposes improvements on both
hardware and software levels, most papers focus only on one
development aspect, such as using a powerful FPGA. Our
method shows that it is feasible to create a low-cost iris sensor
using different platforms such as Raspberry PI, Jetson Nano
and a laptop with CPU and GPU. Throughout the paper,
we show that it is not a trivial task, and it is necessary to
look for the trade-off between power, speed and efficiency.
The proposed segmentation network, UNet_xxs, reduces the
number of parameters compared to existing models such as
CCNet and DenseNet10. Tables 2, 3, 4, 5, compares the
performance, speed, parameters and accuracy of the four
methods. Further, the calibration process, distance, focus and
resolution are explored and explained. The proposed method
focuses on a non-contact solution, unlike methods that need
to be in direct contact with the head of the subject. To the best
of our knowledge, our method is the only one to implement
IR and measure the performance of the Jetson Nano board.
Finally, we give a detailed analysis of design criteria and
power, which is not provided by other works. A primary
limitation and future work of our proposal is to study and
improve the synchronisations of NIR light with the camera
using different activations such as cross-light and others.

VIII. CONCLUSION
This work comprehensively analysed the technical aspects
of implementing a NIR iris imaging embedded device.
The proposed device is lightweight and portable, extracts
information from the two eyes, works with NIR illumination,
and uses inexpensive single-board computers. We thought-
fully described the factors that affect sensor calibration (iris
resolution, SNR and subject’s gaze) and how to obtain the
best trade-off. The optimal distance to fix the focal plane for
the implemented device was 30 ± 5 cm.
The necessary processes needed for an end-to-end

IR pipeline were also described. The proposed network
UNet_xxs was designed as a lightweight solution for
cropping eyes in a face-ROI image and then segmenting
the valid iris area in those images. This network achieved
the fastest speed among other CNNs for both tasks and
reasonable levels of performance. However, due to their
greater accuracy, we recommend using UNet_xxs for finding
eyes only and DenseNet10 or CCNet for iris segmentation.

Moreover, for IR, we used the ICA BSIF filters imple-
mented on Raspberry Pi by Fang et al. This method
normalises and encodes the iris with great performance. For
instance, we obtained an EER of 2.56%, 1.79% and 0.50%
when segmenting with UNet_xxs, CCNet and DenseNet10,
respectively. Those values are smaller than previous state-of-
the-art works.

The described device and methodology make it possible
to assemble an NIR imaging device using readily available
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components. This expands the availability of iris devices at
a low cost, which could spark new iris biometrics research
in labs with limited resources. Future improvements to the
proposed system include adding a PAD stage and using CNN-
based iris encoding and IR.
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