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ABSTRACT To solve the problem of industrial control network (ICN) security situation prediction, this
paper proposes a security situation prediction model for ICN based on evidential reasoning (ER) and belief
rule base (BRB). First, this paper analyzes multiple factors influencing the security situation of the ICN,
establishes a framework for security situation assessment, employs the ER algorithm for attribute fusion,
and derives the security situation value of the ICN. Second, using historical data combined with expert
knowledge, a security situation prediction model for ICN based on the BRB is constructed. Additionally,
an extended projection covariance matrix adaptive evolution strategy (EP-CMA-ES) optimization algorithm
is proposed, which is employed to optimize the parameters of the prediction model. The model not only
comprehensively uses qualitative knowledge and quantitative data, but also integrates more uncertain
information, and the reasoning process is interpretable. It also solves the subjectivity problem of expert
knowledge, overcomes the problem of small amount of data caused by the difficulty of collecting industrial
control safety data, and improves the accuracy of model prediction. Finally, prediction experiments were
conducted on industrial datasets, confirming the feasibility and effectiveness of the security situation
prediction model for ICN and the EP-CMA-ES optimization algorithm proposed in this paper.

INDEX TERMS Industrial control network, evidential reasoning, belief rule base, security situation,
projection covariance matrix adaptive evolution strategy.

I. INTRODUCTION
Industrial control systems (ICSs) are commonly utilized in
industrial sectors and critical infrastructure, such as nuclear
power plants, thermal power plants, water treatment facil-
ities, power generation, heavy industries, and distribution
systems. The functions of ICS, such as automatic control,
remote monitoring and optimal adjustment, have greatly
improved the efficiency of industrial production [1]. Due to
the requirements of large-scale industrial production informa-
tization and intelligence, ICS has progressively integrated
technologies such as networking and cloud computing. The
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emergence of ICN has exposed ICS to most attack vectors
using network attacks [2]. However, the capability of ICS to
withstand such sophisticated attacks is significantly lower.
Low security will severely affect production, equipment,
quality, data, and personnel safety and even result in sub-
stantial economic losses, reputational damage, and personal
injuries [3].
In recent years, there has been a surge in network attacks

targeting ICN. For instance, on September 22, 2022, a large-
scale network attack hit the Ukraine region, resulting in
significant damage to multiple electricity systems and power
outages in 40 substations [4]. Similarly, on May 7, 2021,
a hacker attack targeted the Colonial Pipeline, the largest
refined oil pipeline operator in the United States. It caused
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destructive impacts on the energy supply along the U.S. East
Coast. This incident represents the most severe cyberattack
ever experienced by the U.S. energy industry. Moreover,
in 2020, the Kazan power plant in Russia fell victim to a
hacker attack. The attackers used phishing emails to obtain
login credentials of the power plant employees and used
these credentials to infiltrate the control systems, resulting
in equipment damage and a subsequent power outage acci-
dent. In 2018, one of the world’s largest beer manufacturers,
Anheuser-Busch InBev, had one of its factories targeted by
ransomware attacks. It caused production interruptions and
data losses, significantly impacting the company’s supply
chain. Furthermore, the increasing breadth of research on the
reliability and forecasting of industrial and energy systems
[5], [6] underscores the necessity of industrial safety state
prediction and warning.

Traditional IT networks are composed of computers,
routers, various servers, and other network devices. In con-
trast, ICNs consist of different industrial control systems,
including sensors, controllers, actuators and so on, making
their architecture more complex [7]. The enormous scale,
distributed structure, and diverse devices and protocols of
industrial control networks make them highly heterogeneous
and complex. If predicting the security of complex ICNs
based on observable network attack data and corresponding
methodologies [8], a greater multitude of factors need to
be considered. Moreover, these factors often exhibit varying
degrees of uncertainty [9], [10], [11]. The distinctiveness of
industrial control systems and their high-security demands
complicate the collection of security-related data, resulting
in limited availability of data [12], [13]. Hence, the estab-
lishment of a prediction model for industrial control network
security situation not only necessitates the incorporation of
diverse factors influencing network security but also demands
adept handling of various forms of uncertain information.
Furthermore, it is imperative to ensure effective and accurate
prediction of the security situation of ICN while operating
with limited data volumes.

The focus of security situation prediction for ICN lies in
using historical information to establish a model for forecast-
ing the security trends of future network systems. Methods
for industrial control network security situation prediction
can be primarily categorized into four types: those based on
statistical analysis models, those based on qualitative knowl-
edge, those based on quantitative data, and those based on
semiquantitative information.

(1) Methods based on statistical analysis models: This
category of methods requires the construction of accurate
mathematical formulas and extensive computations, but they
may face challenges in achieving precise security situation
prediction for complex network systems. For instance, meth-
ods such as Kalman filters [14], strong tracking filters [15],
and particle filters [16] fall into this category. These meth-
ods can only offer approximate security situation prediction
when they are unable to establish intricate mathematical

models for complex network systems, resulting in less precise
forecasts.

(2) Methods based on qualitative knowledge: This cate-
gory of methods utilizes expert knowledge and qualitative
information to construct models. However, expert knowledge
is subjective leading to the drawback of uncertainty. Addi-
tionally, these models cannot effectively leverage quantitative
information. For example, methods based on Petri nets [17]
and expert systems [18] fall into this category. Due to the
complexity of network systems, an accurate prediction model
requires not only qualitative knowledge but also quantitative
data.

(3) Methods based on quantitative data: This category
of methods utilizes existing quantitative data for analysis
and modelling, employing techniques such as data mining
and machine learning to predict network security situations.
It requires the use of a substantial amount of data to discover
potential patterns and trends. For example, methods based
on BPNN [19], RBF [20], and support vector machines [21]
all fall into this category. However, due to the specificity
of industrial control networks, collecting data for such com-
plex systems is challenging, which can lead to less accurate
results in model training, thus affecting the precision of the
predictions.

(4) Methods based on semi-quantitative information: This
category of methods combines qualitative and quantitative
information, utilizing technologies such as fuzzy logic and
belief rule bases to predict security situations. It can handle
uncertain and fuzzy information, providing more flexible
and comprehensive prediction results. For example, methods
based on hidden Markov models [22], [23], fuzzy neural
networks [24], and LSTM with Bayesian optimization algo-
rithms [25] fall into this category. These methods are capable
of addressing uncertain information by integrating qualitative
and quantitative information for security situation prediction.
With the involvement of expert knowledge during the initial
stages, methods based on semi-quantitative information can
accurately predict network security situations even with small
sample datasets. However, within the intricate structure of
ICNs, there exist various forms of uncertain information, but
the existing methods based on semi-quantitative information
are limited to handling individual information of uncertainty.

In this paper, the evidential reasoning (ER) algorithm [26]
is employed to integrate various factors affecting the security
situation of ICNs and evaluate them. A security situation
prediction model for ICN is established based on belief rule
base (BRB) [27]. Moreover, an extended projection covari-
ance matrix adaptive evolution strategy (P-CMA-ES) [28]
is proposed, and this algorithm is utilized to optimize the
parameters of the prediction model. The employment of the
ER iterative fusion algorithm enables effective utilization of
semi-quantitative information, amalgamating a greater array
of uncertain factors. The modelling process of the BRB is
based on the ER rule representation method, rendering it
interpretable and the model’s output results traceable. This
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FIGURE 1. Topology diagram of the ICN.

overcomes the issue of lower modelling accuracy stemming
from challenges in collecting data from complex industrial
control networks with limited datasets. The application of
the extended projection covariance matrix adaptive evolution
strategy (EP-CMA-ES) addresses subjective aspects of expert
knowledge, thus enhancing the accuracy of the prediction
model.

In section I, the current situations of ICS security situation
prediction are introduced, and the construction of a security
situation prediction model for ICN based on EP-CMA-ES
is proposed. In section II, the problem of security situation
prediction is described. In section III, a detailed introduction
is given to the process of building the model. In section
IV, experiments are conducted on industrial datasets to
demonstrate the effectiveness of the model proposed in

this paper. In section V, a summary of the entire work is
provided.

II. PROBLEM DESCRIPTION
The prediction of ICN security situations is divided into the
following tripartite segments:

(1) Prior to conducting security situation prediction, it is
essential to perform a security situation assessment. This
involves analyzing the factors influencing the ICN security
situation to determine assessment indicators and establish the
evaluation framework. Due to the complexity of ICNs, the
assessment indicators are numerous, diverse in type, and sub-
ject to significant uncertainty. By employing the ER iterative
algorithm, the fusion of multiple uncertain indicators can be
addressed.

VOLUME 11, 2023 135451



Y. Wang et al.: Security Situation Prediction Model for ICN Based on EP-CMA-ES

(2) The prediction of the security status at time t+1 is
conducted based on the security situation values of the ICN
at times t-1 and t. A BRB prediction model is established by
harnessing expert knowledge and system data.

(3) As the uncertainty of expert knowledge may result in
reduced model accuracy, the EP-CMA-ES algorithm is used
to optimize the model parameters and enhance the accuracy
of the prediction model.

A. INDUSTRIL CONTROL NETWORK
The types of components included in different industrial con-
trol networks may vary depending on the process and produc-
tion environment. However, they can generally be categorized
into three groups: computer-type intelligent components,
embedded-type intelligent components, and non-intelligent
components [2]. By integrating the structural model standard
of industrial control networks published by ANSI/ISA-99
[3] and the cloud manufacturing system framework [29],
an Industrial Control Network topology diagram was con-
structed, as shown in Figure 1.

The ICN is divided into 5 layers: Enterprise Network
Layer, Supervisory and Execution Layer, Data Acquisition
Layer, Monitoring Layer, and Physical Process Layer. The
Enterprise Network Layer serves as the office network,
primarily involved in activities such as business planning,
human resources, and logistics management. The Super-
visory and Execution Layer functions as the production
execution network, which is responsible for centralized
production process monitoring and production planning at
the management center level. The Data Acquisition Layer
operates as the data collection network, mainly performing
single or multi-point process data collection or transfor-
mation on control devices. The Monitoring Layer acts as
the control network, primarily responsible for station-level
monitoring of production processes, logic modifications, and
dissemination. Finally, the Physical Process Layer serves
as the field process network, executing various physical
processes.

The ICN is further divided into two parts: the information
network that handles industrial control system management
and decision-making information and the control network
that processes real-time measurement and control informa-
tion in the control field. The information network includes
the Enterprise Network Layer, situated in the upper layers
of the enterprise, dealing with vast, variable, and diverse
information, characterized by high speed and comprehensive-
ness. On the other hand, the control network comprises the
Supervisory and Execution Layer, Data Acquisition Layer,
Monitoring Layer, and Physical Process Layer, situated in
the lower layers of the enterprise, handling real-time, on-site
information with features of strong real-time capability and
robust security.

Due to the connection between the Enterprise Network
Layer and the enterprise-level IT network, it is highly
likely to face security threats from the internet, posing

TABLE 1. Parameter definitions.

risks to sensitive information and business systems within
the enterprise. In contrast, the control network is typically
purpose-designed for industrial control systems, with rel-
atively fixed and specialized architectures and protocols.
Given its involvement in actual physical processes and device
control, the security of the control network is of paramount
importance. However, control networks often use outdated
control protocols and devices, leading to lower security
levels. This vulnerability may render them susceptible to
network attacks.

B. INTEGRATION OF EVALUATION INDICATORS
By progressively integrating the four-level evaluation indica-
tors of the ICN, a model is established to assess the security
state of the ICN. The model construction is represented as
Equation (1). The specific meanings of the parameters in
Equation (1) are presented in Table 1.

ai = ω(ri, di) (i = 1, 2, · · · , n)
aj = ω(ri, di) (j = n+ 1, n+ 2, · · · , n+ m)
I = ω(a1, a2, · · · , an)
C = ω(an+1, an+2, · · · , an+m)
O = ω(I ,C)

(1)

where r and d are fourth-level assessment indicators, a is
a third-level assessment indicator, I and C are second-level
evaluation indicators, and O is a first-level assessment indi-
cator.

C. SECURITY SITUATION PREDICTION
Based on the results of ICN security situation assessment
and expert knowledge, a security situation prediction model
of ICN is established. This model utilizes the values of the
network security situation at times t-1 and t to forecast future
network security status. The prediction outcomes are denoted
by y, and the model’s construction is depicted as shown in
Equation (2).

y = BRB(O(t−1),O(t),η) (2)
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FIGURE 2. Process of ICN security situation prediction.

Among them, BRB (·) represents the non-linear trans-
formation process from the fusion results of assessment
indicators based on BRB to prediction outcomes, while η
denotes the parameter set of BRB.

D. OPTIMIZATION OF THE PREDICTION MODEL
Due to the complexity of real network systems and the influ-
ence of environmental disturbances, the information provided
by experts is uncertain. Therefore, optimization of the pre-
diction model’s parameters is imperative. Building upon the
foundation of the P-CMA-ES, we propose an EP-CMA-ES.
By utilizing this algorithm, the prediction model is optimized
to improve the accuracy of the ICN security situation predic-
tion model.

III. A SECURITY SITUATION PREDICTION MODEL FOR ICN
BASED ON EP-CMA-ES
A. IMPLEMENTATION PROCESS OF ICN SECURITY
SITUATION PREDICTION
Step 1: Analyze the influencing factors of the
ICN security situation, determine evaluation indicators,
and construct a four-level evaluation framework for
the ICN.

Step 2: Following the four-level assessment framework for
Industrial Control Networks, the ER algorithm is employed
to progressively aggregate upwards, yielding the values of
the ICN security situation. The security situation of the ICN
at times t-1 and t are taken as antecedent attributes for the
prediction model based on BRB.

Step 3: Initiate the parameters of the BRB pre-
diction model based on expert knowledge. Then, the
EP-CMA-ES optimization algorithm is employed to
improve the accuracy of the prediction model, resulting
in the ultimate prediction values for the ICN security
situation.

The process of ICN security situation prediction is illus-
trated in Figure 2.

B. IMPLEMENTATION PROCESS ESTABLISHMENT
STABLISHMENT OF THE EVALUATION FRAMEWORK
Based on the characteristics of ICN and considering
real-world security threats, a four-level evaluation framework
for ICN is established. This paper divides the ICN into two
parts: the information network, which handles management
and decision information for industrial control systems, and
the control network, which manages real-time measurement
and control information at the control site. Representative
security indicators are selected as evaluation attributes to
establish the security evaluation framework for the ICN,
taking into account the impact of the security situation and
practical considerations. The four-level evaluation framework
table for ICN is established, as depicted in Table 2.

Based on Table 2, the first-level evaluation indicators
encompass the information network and the control network.
Given that different network types may be susceptible to dis-
tinct threats, information networks may be more vulnerable
to the influence of general network threats such as malicious
software, data leakage, and unauthorized access. Conse-
quently, the subsequent assessment level for information
networks pertains to the various types of attacks experienced
by the information network. However, control networks typi-
cally encompass control andmonitoring devices for industrial
processes, such as sensors, actuators, and programmable
logic controllers (PLCs). These devices are crucial for the
proper functioning of industrial operations. Therefore, it is
essential to establish the next-level assessment indicator for
control networks, focusing on the devices within the control
network that may be vulnerable to attacks. The third-level
assessment indicator for control networks pertains to the
primary attacks experienced by each type of device. Finally,
the final level assessment indicators for both information net-
works and control networks are the severity and frequency of
each attack type. Attack frequency involves quantitative data
and is derived from calculating the number of attacks in the
collected dataset through statistical means. Attack severity is
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TABLE 2. The four-level evaluation framework for ICN.

qualitative knowledge determined by experts based on their
own experience and actual investigations.

C. ER-BASED ICN SECURITY SITUATION ASSESSMENT
Industrial control networks are characterized by their large
scale and complex architecture, encompassing various types
of information, including qualitative knowledge and quanti-
tative data. The ER algorithm can simultaneously integrate
these diverse types of information, particularly when han-
dling uncertain and vague qualitative knowledge. The calcu-
lation process of the ICN security situation assessment value
is illustrated as follows:

Step 1: First, the attribute values and their corresponding
weights in the ICN security situation assessment frame-
work are determined, where {r1, r2, . . . ra, . . . , rx} represents
the x attributes in the four-level assessment framework,
{w1,w2, . . .wa, . . . ,wx} corresponds to the weights of these
underlying attributes, and wx ∈ [0, 1]. The output evaluation
level consists of N levels.

Step 2: Calculate the confidence levels corresponding to
q evaluation levels for each assessment attribute, with the

calculation process as follows:

ρa,q =


Ra,q+1 − U (ra)
Ra,q+1 − Ra,q

(Ra,q ≤ U (ra) ≤ Ra,q+1)

U (ra) − Ra,q
Ra,q+1 − Ra,q
0 (k = 1, · · · ,N ,m ̸= q, q+ 1)

(3)

whereU (ra) represents the value of attribute ra, and Ra,q rep-
resents the reference value of attribute ra in the qth evaluation
level.

Step 3: Convert the confidence to the basic probability
mass. The calculation process is shown as follows:

Qa,q = ωaρa,q (4)

Qa,2 = 1 − ωa

N∑
q=1

ρa,q (5)

Qa,2 = 1 − ωa (6)
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Q̃a,2 = ωa(1 −

N∑
q=1

ρa,q) (7)

where Qa,q represents the basic probability mass for the qth
evaluation level of the ath assessment attribute and Qa,2
represents the basic probability mass for the ath assessment
attribute that is not allocated. Qa,2 represents the insignifi-
cance of the ath assessment attribute, while Q̃a,2 represents
the incompleteness of the pth assessment attribute. Based
on formulas (5) to (7), Qa,2 = Qa,2 + Q̃a,2 can be
obtained.

Step 4: The evaluation indicators are progressively fused
using the ER iterative algorithm.

First, the fusion of attack frequency and severity for the
fourth-level indicators is conducted, resulting in assessment
outcomes for various attack types in the third-level indicators.
Subsequently, the assessment outcomes of different attack
types are further combined to obtain assessment results for
information security and control security in the second-level
indicators. The final value of the ICN security situation is
obtained by merging the two indicators from the second level
using the ER algorithm. The ER algorithm’s iterative fusion
process is as follows:

1) Calculate the combined probability mass

QS(a+1),q = KS(a+1)[QS(a),qQa+1,q

+ QS(a),qQa+1,2 + QS(a),2Qa+1,q] (8)

QS(a),2 = QS(a),2 + Q̃S(a),2 (9)

Q̃S(a+1),θ = KS(a+1)[Q̃S(a),θ Q̃a+1,θ + Q̃S(a),θQa+1,θ

+ QS(a),θ Q̃a+1,θ ] (10)

QS(a+1),θ = KS(a+1)[QS(a),θ + Qa+1,θ ] (11)

In equations (8) to (11), QS(a),q represents the combined
probability mass quality relative to the pth evaluation level
after the fusion of the first p evaluation attributes. It can be
computed using Equation (12):

KS(a+1) =

1 −

N∑
m=1

N∑
q=1,q̸=m

MS(a),mMa+1,m

−1

(12)

2) Calculate the combined belief mass using equations (13)
and (14), as shown below:

ρq =
PS(L),q

1 − P̄S(L),θ
(q = 1, 2, . . . ,N ) (13)

ρ̂2 =
P̃S(L),2

1 − PS(L),2
(14)

where ρ̂q represents the confidence level relative to the eval-
uation result 2q, and ρ̂2 represents the confidence level not
assigned to any evaluation result 2q.

3) Combine all confidence rules using the ER parsing
algorithm to obtain the final confidence distribution result
S(L).

S(L) = {(2q, ρq), q = 1, 2, · · · ,N (15)

Step 5: Calculate the fusion result
Assuming that the utility set of evaluation indicators is

P(θq), the fusion result can be calculated using the utility
formula.

O(t) =

N∑
p=1

P(θq)ρq,S(L) (16)

The final evaluation result is quantified to the range
[1, 0], where a lower evaluation result indicates a
safer ICN.

D. BRB-BASED ICN SECURITY SITUATION PREDICTION
Use the ICN security state at times t-1 and t to predict the
values of the security situation at time t+1.

The prediction model of the ICN security situation based
on BRB can be described as follows:

Rk: If O(t − 1) is Am
1 ∧O(t) is Am

2 ,

Then O(t + 1)is + 1) is {(I,ρ1,m), (II,ρ2,m), (III,ρ3,m),
(IV,ρ4,m), (V,ρ5,m)}

With rule weight θm and attribute weight δ1, δ2
where O(t-1) and O(t) represent the ICN security situation
values at times t-1 and t, respectively. O(t+1) represents the
predicted ICN security situation at time t+1. Am1 and Am2
represent the reference values of the two input attributes for
the kth rule in the model, ρn,m represents the confidence level
of the n-th evaluation grade for themth rule, θm represents the
weight of the kth rule, and δ1, δ2 represents the weights of the
two input attributes.

The BRB method uses the ER parsing algorithm to infer
the ICN security situation prediction model. The detailed
calculation process is as follows:

Step 1: Initialization
Based on expert knowledge, set the initial parame-

ters of the BRB prediction model, including attribute
weights δi, rule weights θm representing the relative impor-
tance of each rule, and the confidence of the model’s
output ρn.m.
Step 2: Calculate the attribute matching degree
The degree of matching between the premise attributes and

the rules is determined by formula (3) when the data of the
premise attributes are available.

Step 3: Calculate the overall matching degree
The overall matching degree of multiple attributes is cal-

culated using Equation (17).

αm =

M∏
i=1

(αim)
δi (17)

Step 4: Calculate the activation weights.
Once the input attribute data is available, it activates the

belief rules within the evaluation model and calculates the
activation weights using Equation (18).

wm =
θmαm∑K
l=1 θlαm

0 ≤ wm ≤ 1,
K∑
m=1

wm = 1 (18)
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Step 5: Combinate Rules
After the activation of the belief rules, the combination of

rules is performed using the ER parsing algorithm, and the
calculation formulas are shown in (19) and (20), at the bottom
of the page.

Step 6: Calculate utility
After obtaining the confidence degree of each evaluation

level, the utility formula is used to calculate the final predic-
tion of the ICN, which is the predicted security status of the
ICN.

O(t + 1) =

N∑
n=1

P(θn)ρn (21)

E. THE EP-CMA-ES ALGORITHM IS EMPLOYED TO
OPTIMIZE THE PREDICTIVE MODEL
Due to the uncertainty of the expert knowledge used in the
ICN security situation prediction model, it is necessary to
optimize the prediction model using optimization algorithms.
Traditional optimization algorithms strictly adhere to the
threshold range of candidate solutions. However, exceptions
may occur when the following two situations arise: (1) The
global optimal solution is located at or near the boundary of
the feasible domain; (2) The feasible domain occupies a very
small proportion of the search space. In both cases, an infeasi-
ble solution that is close to the optimal solution may be more
critical than a feasible solution that is far from the optimal
solution. Therefore, this paper makes an improvement based
on the P-CMA-ES algorithm. According to the degree of
constraint violation of infeasible solutions, the search range
is expanded. Feasible solutions and infeasible solutions con-
taining important information are allowed to enter the next
generation population simultaneously. Then, the projection
operator in P-CMA-ES is used to correct solutions that do not
satisfy the constraints. The EP-CMA-ES algorithm is used to
optimize the parameters of the predictive model to enhance
its accuracy.

The parameters of the prediction model are optimized.
The optimization model and constraints for the ICN security
prediction model are represented as follows in Formula (22).

minMSE(δi, θm, ρn,m)

s.t. 0 ≤ δi ≤ 1, i = 1, . . . ,M

0 ≤ θm ≤ 1,m = 1, . . . ,L

FIGURE 3. The process flow of the EP-CMA-ES algorithm.

0 ≤ ρn.m ≤ 1, n = 1, . . . ,N , k = 1, . . .L∑N

n=1
ρn,m ≤ 1, m = 1, . . .L (22)

In this context,MSE (•) represents the mean squared error
function, which reflects the accuracy of the BRB-based ICN
security prediction model. It is calculated using the following
formula:

MSE(θm, ρn,m, δi) =
1
T

T∑
t=1

(outputestimated − outputactual)2

(23)

where outputactual signifies the factual security status of the
ICN, while outputestimated represents the outcome derived
from the predictive model’s computation utilizing the for-
mula outputestimated =

∑N
n=1 P(θn)ρn. Here, T stands for

the number of training samples. The primary goal in model
optimization is the minimization of the mean squared error
(MSE), and lower MSE values correspond to higher accuracy
of the prediction model. The procedure of the EP-CMA-ES
algorithm is visually depicted in Figure 3.

The step-by-step calculation process is outlined as follows:
Step 1 Initialization

ρn =

ψ

[
M∏
m=1

(wMρn,m + 1 − wm
N∑
j=1
ρj,m) −

M∏
m=1

(1 − wm
N∑
j=1
ρj,m)

]

1 − ψ

[
M∏
m=1

(1 − wm)
] (19)

ψ =

 N∑
n=1

M∏
m=1

(wmρn,m + 1 − wm
N∑
j=1

ρj,m) − (N − 1)
M∏
m=1

(1 − wm
N∑
j=1

ρj,m)

−1

(20)
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Determination of the initial parameter vector �0, which
serves as the initial expectation for the EP-CMA-ES
algorithm. The description of �0 is as follows:

�0
=
{
θ1, . . . , θK , ρ1,1, . . . , ρN ,K , δ1, . . . , δM

}
(24)

Step 2 Sampling
Perform a selection operation to generate the population

using Equation (29).

�t+1
k ∼ mt + stN (0,CM t )k = 1 · · · λ (25)

where�g+1
k is the kth offspring of the g+1 generation,mgmg

is the mean of the t+1 generation, st is the overall dimension
that controls the distribution, called the step size, and the
sampling population follows a normal distribution with a
covariance matrixCM t .

mt + stN (0,CM t ) ∼ N (mt , (st )2CM t ) (26)

Step 3 Expanding the search space
Based on the constraint conditions, the randomly gener-

ated population can be divided into feasible and infeasible
solutions. The degree of constraint violation of infeasible
solutions is sorted, and a new boundary threshold is deter-
mined according to formula (29). Infeasible solutions within
the threshold range are retained, considering them to contain
important information. These infeasible solutions are then
treated as candidate solutions to participate in the subsequent
optimization process.
The detailed process is shown below:
(1) Calculate the constraint violation degree of the infeasi-

ble solutions, denoted by ςk .

ςk,1 = (0 −�k )2 (27)

ςk,2 = (1 −�k )2 (28)

(2) Determine the new boundary threshold values.

r = mediam(sort(ςk )) (29)

Step 4 Projection
Utilizing Equation (30), the projection operation is exe-

cuted to remap the candidate solutions to the feasible region,
ensuring adherence to the constraint
conditions.

�t+1
k (1 + one × (xn− 1) : one × xn)

= �t+1
k (1 + one × (xn− 1) : one × xn)

− ATe × (Ae × ATe )
−1

×�t+1
k (1 + one

× (xn− 1) : one × xn) × Ae (30)

where one is the number of constraint variables in the solu-
tion, xn is the number of equality constraints, and ATe is the
equation parameter vector.
The representation of the hyperplane can be expressed as

follows:

Ae�t
k (1 + one × (xn− 1) : one × xn) = 1 (31)

Step 5 Selection and recombination
Update the next generation mean using Equation (32).

mt+1
=

τ∑
k=1

hk�
t+1
k:λ (32)

Step 6 Update the covariance matrix.
Update the covariance matrix based on the fitness of the

current population. The overarching procedure for updating
the covariance matrix can be delineated as follows:

CM t+1
= (1 − a1 − aτ )CM t

+ a1ept+1(ept+1)T

+ aτ
τ∑

k=1

hk

(
�t+1
k:λ − mt

st

)(
�t+1
k:λ − mt

st

)T
(33)

where a ≤ 1 indicates the learning rate. Normally, the value
a is 1.

The update of the covariance matrix includes two evolu-
tionary paths. The first path is represented by Equation (34):

ept+1
= (1 − aep)ept

+

√√√√aep(2 − aep)

(
τ∑

k=1

h2k

)−1
mt+1

− mt

st
(34)

Then, the estep size is updated through Equation (35):

st+1
= st exp

(
as
ds

( ∥∥ept+1
s

∥∥
E ∥N (0, I )∥

− 1

))
(35)

where ds is the damping coefficient and E ∥N (0, I )∥ is
the mathematical expectation of the normal distribution
∥N (0, I )∥.

The second method of path update is represented by the
following formula:

ept+1
s = (1 − as) epts +

√√√√as (2 − as)

(
τ∑

k=1

h2k

)−1

× CM t− 1
2
mt+1

− mt

sg
(36)

Finally, the two path are combined.
The above steps are repeated until the population reaches

the maximum number of evolutionary generations.

IV. CASE STUDY
To validate the effectiveness of the proposed model in pre-
dicting Industrial Control Network behavior, two different
industrial control datasets were selected. For the information
network component, the TON-IoT [30], [31], [32] dataset
was used, which includes network data collected from an
Industrial Internet of Things (IIoT) test platform, consisting
of telemetry data, operating system data, and network data.
For the control network component, the X-IIoTID Dataset
[33] was utilized, which contains labelled network and host
data. This dataset records the activities of the network and
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FIGURE 4. The value of industrial control network security situation within 120 h.

system, including network traffic, host resources, logs, secu-
rity mechanism alerts, connection protocols, attack strategies,
attack techniques, and attack processes.

A. PROBLEM DESCRIPTION
The attacks in the X-IIoTID dataset are categorized into
attacks targeting historical/real-time databases, asset man-
agement systems, and industrial gateways. Each type of
device experiences three to four types of attacks. Attacks
on historical/real-time databases primarily include scanning
vulnerabilities, general scans, and erroneous data injections.
Asset management systems are targeted with attacks such
as encryption ransomware, ransom denial-of-service, and
resource discovery. The main attacks on industrial gate-
ways consist of Modbus register read brute force attacks,
reverse shell attacks, and MITM attacks. The TON-IoT
dataset includes four types of attacks: injection attacks, DDoS
attacks, backdoor attacks, and password attacks.

Filter, preprocess, and integrate these attack data, select
120 continuous hours of attack data, calculate the attack
frequency per hour, and determine the severity of attacks
based on the attack frequency. A sliding window approach
was used to generate 118 sets of data samples from these
120 hours of data.

B. USING THE ER ITERATIVE ALGORITHM FUSE
ASSESSMENT INDICATORS
Based on the assessment framework in section III-B, the
industrial security situation assessment indicators are gradu-
ally fused using the ER fusion method, obtaining the security
situation values of the ICN for 120 consecutive hours,
as shown in Figure 4. The security situation values at times t-
1 and t are taken as inputs to the prediction model to forecast
the security status of the ICN at time t+1.

C. CONSTRUCTING A BRB-BASED ICN SECURITY
SITUATION PREDICTION MODEL
Using the security situation values at time t-1 and t as inputs
to the prediction model, the security status of the ICN at time

TABLE 3. Reference points and reference values for O(t-1), O(t), and
O(t+1).

t+1 is forecasted. According to the network security basic
situation security index grading released by CNCERT/CC,
the reference points for the two antecedent attributes, namely
the security situation values of the ICN at times t-1 and t,
as well as the predicted result at time t+1, are set as Excellent
(I), Good (II), Moderate (III), Poor (IV), and Critical (V).

The security situation prediction model for ICN based on
BRB can be described as follows:

Rk: If O(t − 1) is Am
1 ∧O(t) is Am

2 ,

Then O(t + 1) is (I,ρ1,m), (II,ρ2,m), (III,ρ3,m),
(IV,ρ4,m),(V,ρ5,m)}

With rule weight θm and attribute weight δ1, δ2
The reference values for the evaluation levels of the two

antecedent attributes O(t-1), O(t), and the predictive result
O(t+1) in the prediction model are provided by experts,
as shown in Table 3.

The initial values of the rule weights and attribute weights
are set to 1, and the initial confidences are provided by
experts. The constructed initial rule-based confidence model
is shown in Table 4.

D. OPTIMIZATION OF THE BRB-BASED ICN SECURITY
SITUATION PREDICTION MODEL
The processed data are used for testing and training. Out of
the 118 sets of sample data, 108 sets are chosen at random
for the training set, while the remaining 10 sets constitute
the testing set. During the training process, the EP-CMA-
ES algorithm is applied to optimize the model’s parameters.
The optimized model rule confidences and rule weights are
shown in Table 5. The testing sets are utilized to compute the
accuracy of the model’s predictions.
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TABLE 4. Initial confidence rule base model.

FIGURE 5. Predicted results of the prediction model.

A comparison of the rule weights and confidence values
in Tables 4 and 5 reveals a significant alteration in the opti-
mized rule weights and confidences. This change can be
attributed to the potential influence of expert subjectivity or
errors, which can result in the establishment of unreasonable
weights and confidences. Utilizing optimization algorithms
to refine model parameters serves to mitigate this underlying
bias.

FIGURE 6. Comparison results before and after model optimization.

The fitting curve between the predicted values of the
ICN security situation prediction model constructed in this
paper and the actual security situation values is shown in
Figure 5.

E. COMPARATIVE EXPERIMENTS
A comparison was conducted between the initial BRB
model and the BRB model refined through utilization of

VOLUME 11, 2023 135459



Y. Wang et al.: Security Situation Prediction Model for ICN Based on EP-CMA-ES

TABLE 5. Optimized confidence rule base model.

FIGURE 7. Comparison of predictive results by different models.

the EP-CMA-ES algorithm. The comparative outcomes are
presented in Figure 6.

According to Figure 6, we can clearly see that compared to
the initial BRB model, the optimized BRB prediction model
predicts industrial control network security situation values
that are closer to the actual values. By assessing the degree
of fit with the curve of actual values, it can be demonstrated

TABLE 6. MSE values of different models.

that employing the EP-CMA-ES algorithm for parameter
optimization of the proposed forecasting model effectively
addresses the issue of reduced assessment accuracy resulting
from uncertainties in expert knowledge.

To prove the superiority of the proposed BRB model pre-
diction method, the backpropagation neural network (BP)
prediction model, random forest prediction model (RF), sup-
port vector machine prediction model (SVM) and radial basis
function (RBF) were selected for comparison. The fitting
curves of the predicted results and the actual prediction results
of the four models are shown in Figure 7.
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By calculating theMean Squared Error (MSE), Root Mean
Squared Error (RMSE), andMean Absolute Percentage Error
(MAPE) between the predicted values of different models and
the actual values, we validate the superiority of the industrial
control network security state forecasting model proposed in
this study compared to other machine learning models. The
averageMSE, RMSE, andMAPE values for each model after
ten rounds of validation are presented in Table 6.

According to Table 6, it is evident that the BRB pre-
diction model, which combines qualitative knowledge and
quantitative data, has a significantly more accurate predic-
tive effect compared to prediction models based solely on
quantitative data. Due to the complexity and specificity of
ICNs, the available sample data is limited, resulting in lower
prediction accuracy for models that rely solely on quantitative
data. The prediction model optimized by the EP-CMA-ES
algorithm has improved accuracy compared to the initial BRB
prediction model. This demonstrates that the optimization
algorithm effectively addresses the impact of uncertainty in
expert knowledge on the predictive model.

V. CONCLUSION AND FUTURE WORKS
Through the analysis of various factors influencing the ICN
security situation, this paper establishes a four-level assess-
ment framework for security situations. The security situation
value for the ICN is acquired through the gradual fusion of
assessment indicators using the ER fusion algorithm. Subse-
quently, a BRB-based ICN safety situation prediction model
is established, and the EP-CMA-ES optimization algorithm
is used to optimize the predictive model. The security situa-
tion of the ICN at time t+1 is predicted using the security
situation values at times t-1 and t. Experiments show that
compared to other machine learning methods, the security
situation prediction model based on ER and BRB achieves
higher accuracy, making it more suitable for complex systems
such as industrial control networks for which it is difficult
to collect security data. However, to further enhance the
accuracy of the prediction model, it may be necessary to
incorporate more historical information as input for the BRB
model. Nevertheless, the number of rules in the BRB model
equals the Cartesian product of the input attribute count and
the number of reference values. When the number of input
attributes increases, it leads to exponential growth in the
number of combination rules, resulting in a combinatorial
explosion and decreased prediction efficiency. Based on the
aforementioned description, future research directions could
be pursued as follows: improving the BRB model by altering
the structure of combined rules to address the issue of rule
explosion when input attributes are increased.
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