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ABSTRACT An image captured by a single camera has a smaller viewing angle than that of the human eye.
One method to expand this viewing angle is a technique known as image stitching, which generates a wider
view from images captured with multiple cameras. Although this technique has found uses in multiple indus-
tries, it is vulnerable to parallax distortion, wherein objects disappear from or repeatedly appear in stitched
images when the parallax between cameras differs significantly. Tominimize parallax distortion, seam-based
and multi-homography-based methods have been proposed. In particular, the seam-based method enables
faster image stitching owing to its intuitive procedure; however, the seam generation matrix may still incur
parallax distortion under certain restrictive circumstances, and a longer stitching time is required when this
method is applied to video sequences. This motivated us to develop the Guided Energy–Depth Map, which
uses the energy function, depth information, and guidance map to minimize parallax distortion from a human
visual perspective and reduce the time required to apply the stitching process to video sequences. Based on
Average Seam Error (ASE) evaluation, the proposed method produces better seams than energy functions in
25 out of 32 experimental datasets, and the improvement rate of ASE evaluation is 15.58%. Also, the Frame
Selection module for video stitching proposed in this paper takes only 7.27% of the time to find a specific
frame for seam regeneration compared to the instance segmentation-based frame selection method.

INDEX TERMS Depth, energy map, image stitching, seam, moving search.

I. INTRODUCTION
Immersive media content, represented by panoramic and
360-degree videos, has recently been implemented for
various applications – such as games, sports, and shopping –
and is expected to spread to specialized fields including edu-
cation, military, medical care, and manufacturing [1]. This
content is characterized by ultra-high-definition video with
a wider field of view than that of humans; however, current
image capture technologies are limited to single conventional
cameras with a narrow field of view. To obtain a wider
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field of view, images can be either captured using a camera
with a wide-angle lens, or generated using image stitch-
ing, a technique that combines images captured by multiple
conventional cameras [2]. However, images captured with
a wide-angle lens generally exhibit radial distortion owing
to the lens curvature. Because the accurate appearance of
objects is important in immersivemedia content, such content
is mainly generated via image stitching.

Image stitching includes the processes of keypoint extrac-
tion and matching, homography estimation overlap region
calculation, warping, and synthesis [2]. Although image
stitching mitigates the issue of radial distortion, the exis-
tence of a large parallax between cameras may incur parallax
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distortion, wherein objects disappear or overlap in the
stitched image [3].

The multi-homography- and seam-based image stitching
methods are representative approaches designed to minimize
the parallax distortion in stitched images [4]. The multi-
homography-based method reduces the parallax distortion
by dividing an image into multiple patches, estimating the
homography for each segmented patch, and minimizing the
differences between patches by warping [5]. However, this
approach is vulnerable to local distortion, which requires a
highly complex correction procedure [4].

In contrast, the Seam-based Image Stitching (SIS) method
constructs a Seam Generation Matrix (SGM) using a visual
cognitive energy function in the overlapping regions of two
input images, and synthesizes along the seam with minimal
accumulation of SGM [6]. Although SIS is highly depen-
dent on accurate homography, the use of seams in image
stitching has the advantage of a fast stitching because it
is a simple structure that synthesizes two warped images
along the seam. In addition, because a large weight could
be assigned to the object region of the SGM, a seam is
generated to avoid an object, which prevents parallax distor-
tion from occurring in the object region. However, in image
stitching based on seam generation matrix, correct seam
generation may be limited depending on the position of the
seam that is initially generated, performance of the object
detector, and placement of objects, which may cause parallax
distortion [3].

As described above, image-stitching methods based on
both multi-homography and seam may distort the stitched
image. Although methods based on multi-homography are
difficult to implement in practice due to local distortion, the
limitations of the method based on seam can be overcome
by defining the proper SGM. This encouraged us to pro-
pose an image stitching method that can overcome parallax
distortion by constructing a seam generation matrix, which
combines depth information, predicted using a deep learning
network, and visual cognitive energy functions. In addition,
we propose a method to apply video stitching by exploiting
the efficiency of seam-based image.

Section II examines the limitations of seam-based
image stitching, and Section III describes the proposed
method. We present an analysis of our experimental
results in Section IV, and provide concluding remarks in
Section V.

II. BACKGROUND
In general, Seam-based Image Stitching (SIS) comprises
the following modules, as illustrated in Figure 1: Key-
point Extraction, KeypointMatching, Homography,Warping,
Composition, ObjectWeight, and Blending [7]. The Keypoint
Extraction module extracts robust keypoints regardless of
the image size, rotation, and brightness of the various input
images. The Keypoint Matching module removes outliers
from the extracted keypoints using RANSAC [8] andmatches

keypoints corresponding to the same location to identify
overlapped regions. In the Warping module, the overlapping
regions are warped to the same plane through homogra-
phy, which is estimated using the matched keypoints. The
Composition module of the SIS method synthesizes images
using a seam, which is generated along points, producing
a minimum difference between overlap regions to gener-
ate a naturally stitched image. However, when a seam is
generated in the object region, distortions such as the dupli-
cation or disappearance of objects may occur. Thus, the
Object Weight module detects the object area and assigns a
large weight value to that area to prevent seam generation.
In addition, the difference in the brightness or luminance
between the images to be stitched is compensated for in
the Blendingmodule. Moreover, Seam-based Video Stitching
(SVS) is realized by applying SIS to every frame of a video
sequence.

FIGURE 1. Pipeline of seam-based image stitching.

The Seam Generation Matrix (SGM) of SIS could be
composed of a pixel intensity [9], a visual perception energy
function [10], [11], and an object weight [3], [7], [12], which
is used to prevent parallax distortion caused by the seam
generated in the object region. For example, larger weights
can be assigned to the corresponding edges of the background
and object in the SGM, as well as to the inner regions of
the object in the overlapped regions. This prevents a seam
from being generated in these regions because it is generated
along the path where the cumulative sum of the SGM is
minimal [13].
However, conventional SIS has difficulties not only gener-

ating accurate edges of the background and objects, including
the inner regions of the objects, but also assigning appro-
priately large weights in the SGM. Additionally, it does not
consider the case in which the minimum path for a seam is
not generated owing to the characteristics of the input images,
such as when an object extends horizontally across an image.
The following sections providemore details on the limitations
of conventional SIS.
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A. LIMITATIONS OF CONVENTIONAL SEAM GENERATION
MATRIX IN SEAM-BASED IMAGE STITCHING
Section II-A presents an analysis of the limitations of the
conventional SGM used in the SIS. As previously explained,
an SGM could be composed of a visual perception energy
function [10], where the visual cognitive energy function
in (1) is defined as the sum of the magnitudes of the change of
the horizontal and vertical pixels. Thus, the visual perception
energy function in an image is set to be larger in the outline
because of the larger pixel change, and smaller in the inner
region of the object because of the smaller pixel change. For
example, an input image and its visual cognitive energy func-
tion are shown in Figure 2(a) and (b), respectively. As shown
in area (A) of Figure 2(b), the inner region of the object is
dark because the weight value for this region is smaller, which
means that a seam could be generated in the inner region of
the object, resulting in parallax distortion.

E (x, y) =

∣∣∣∣ ∂

∂X
I (x, y)

∣∣∣∣ +

∣∣∣∣ ∂

∂Y
I (x, y)

∣∣∣∣ (1)

FIGURE 2. Visual cognitive energy function.

As the visual cognitive energy function is simply the
magnitude of the pixel change, it may be difficult to set
an appropriate weight value for the region where the seam
should not be generated. For example, the yellow area (B)
in Figure 2(b) is an object region; therefore, a higher weight
value should be set, and a white line should appear. However,
a smaller weight value was set and the area appears dark,
as the pixel values are similar between the background and
object. Consequently, it is difficult to mitigate the parallax
distortion that occurs in SGM-based image stitching using
only the energy function based on visual perception.

To overcome this limitation, other SGMconstructionmeth-
ods have been proposed for detecting objects and setting
higher weight values in the inner regions of objects [3], [7].
Various object detection methods – including those that
define areas with dense edges as object regions, as well as
deep-learning-based object detection and instance segmen-
tation methods – have also been proposed [14], [15]. For
example, the result of detecting the objects in Figure 2(a)
using the density of the edge-based object detection method
and setting the weight value in the inner regions of the objects
is shown in Figure 3.

FIGURE 3. Object segmentation.

The weighted regions shown in Figure 3 are similar to
the object regions in Figure 2(a) but are not accurate. These
incorrectly detected object regions can cause parallax distor-
tion in the stitched image because of the seams generated in
the incorrect object regions. This problem can be overcome
by using object detection [16], [17] or instance segmenta-
tion [18], [19] based on deep learning with high detection
accuracy.

In addition, to overcome parallax distortion, it is necessary
to define themagnitude of the weight to be set after accurately

FIGURE 4. Object-priority-based weights.
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detecting the inner region of the object. It is possible to
simply assign the same weight value in all the inner regions
of objects, which can cause parallax distortion in any object
region, regardless of human consumption. In other words,
it would be preferable not to cause parallax distortion in
object regions that are more sensitive to human consumption
than in any other object region. This can be obtained by
setting different weight magnitudes for the object regions
depending on human consumption sensitivity. For example,
as shown in Figure 4, the priority of the detected objects
through instance segmentation is set in advance according to
the object type, and the weight value can be set differently
according to this priority [3]. This method can induce parallax
distortion in less sensitive objects. However, this method
is limited because undefined objects in the deep learning
network are not detected. Therefore, it is necessary to set
individual weight values for all the objects to reduce the
parallax distortion that occurs in a stitched image.

B. LIMITATION IN SEAM FINDER OF SEAM-BASED IMAGE
STITCHING
Section II-B explains the limitations of the Seam Finder
in SIS. As described above, Seam Finder generates seams
along a path with the minimum cumulative sum in an SGM.
As shown in Figure 5, Seam Finder is generally classified
into three different models: three-pixel, five-pixel, and seven-
pixel models, according to the strategy it uses to search the
minimum path. For example, when a seam is generated in
the vertical direction, the three-pixel model considers only the
three elements shown as green pixels in Figure 5 (a) at the top
of the current seam node as the next seam node. In addition,
the five-pixel model considers not only the three elements at
the top of the current node, but also the elements to the left
and right of the current node as the next seam node, as shown
in Figure 5 (b). Finally, the seven-pixel model considers all
elements except the previous node as the next seam node,
as shown in Figure 5 (c).

FIGURE 5. Seam finder: (a) three-pixel model (b) five-pixel model
(c) seven-pixel model.

Thus, the larger the number of elements considered as the
next seam node in Seam Finder, the less likely a parallax
distortion is to occur. As an example of a visualization of
SGM shown in Figure 6 (a), where the area indicated in blue
represents the region of an object with largeweight values and
the line indicated in red represents the seam generated thus
far, it is impossible to generate a seam that avoids the object
region with a three-pixel model; thus, parallax distortion may

FIGURE 6. Examples of seam finder limitations.

occur. On the other hand, A five- or seven-pixel model for
generating seams that do not pass through the object region
may be more suitable for finding the next seam node.

In the situation shown in Figure 6 (b), a seam that avoids
the object region could only be generated by the seven-pixel
model because the next seam node should be selected in
the element at the bottom of the current seam node. As the
number of elements considered as the next seam node
increases, a seam is generated to avoid the object region and
the probability of parallax distortion is reduced. Thus, the
most appropriate Seam Finder model may be the seven-pixel
model.

However, the seven-pixel model has a higher seam genera-
tion complexity than the three- and five-pixel models because
it requires exception handling to avoid infinite processing and
repetitions of the seam generation trial and a regression pro-
cess at the current node to determine theminimum cumulative
sum path in all possible paths. This increased complexity gets
rid of the efficiency of SIS.

Furthermore, parallax distortion may occur even in the
seven-pixel model. For example, as shown in Figure 7,
when the generated seam is surrounded by the object region,
it inevitably passes through that region. At this time, it may
be more appropriate to induce parallax distortion to occur at
the point where the parallax distortion is minimal in terms
of the human visual perspective, rather than to find a seam
with higher-complexity Dynamic Programming, such as the
seven-pixel model [11].

FIGURE 7. Limitation of seam generation with seven-pixel model.

Owing to the limitations described in Section II-A
and II-B, it was found that the conventional SIS method
can cause parallax distortion. In order to mitigate this dis-
tortion when constructing the SGM, all internal regions of
objects must be assigned different weights, and their outline
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FIGURE 8. Structure of image/video stitching system based on guided energy-depth map.

information must also be accurately considered. In addition,
it is necessary to define a specific rule for inducing parallax
distortion at a point where parallax distortion is minimal
from a human visual perspective when parallax distortion is
inevitable. This led us to propose a seam generation method
based on a Guided Energy-Depth (GED) map that enhances
our previous method based on an energy-depth map [20],
enables weights to be set for both the interior and con-
tour of an object, and induces parallax distortion at a point
where the parallax distortion is minimum from the human
perspective. Additionally, the proposed Seam-based Video
Stitching (SVS) method based on a GED map was applied
to video sequences to improve the video stitching procedures
described in Section III.

III. PROPOSED SEAM GENERATION METHOD BASED ON
GUIDED ENERGY-DEPTH MAP
As described in the previous section, conventional Seam-based
Image Stitching (SIS) consists of Keypoint Extraction, Key-
point Matching, Homography, Warping, Composition, and
Blending modules. In the Composition module, the Seam
Generation Matrix (SGM) is constructed with visual cog-
nitive energy functions in warped overlapping regions, and
images are synthesized along the minimal cumulative path
of the SGM. However, it was verified in Section II that
parallax distortion may occur in stitched images because
conventional SGM does not properly set weights for the
outline or inner region of objects, and the magnitude of
the weights is set without considering parallax. To address
these issues, we developed an SGM configuration method
that assigns proper weights for the outline and inner regions
of objects by considering parallax distortion. Furthermore,
we enhanced the efficiency of seam-based video stitching

by selectively determining whether the Composition module
should be executed for each frame.

As shown in Figure 8, the proposed method introduces
a Guided Energy-Depth (GED) map to the Composition
module, and includes a new Frame Selection (FS) module
in addition to the six conventional modules. The Guided
Energy–depth Map-based Composition (Guided EMC) mod-
ule proposed in this study encompasses the Energy Map
Generation, Depth Estimation, Depth Map Generation,
Energy-Depth Map Generation, Guidance Map Generation,
and Guided Energy-Depth Generation submodules, as shown
in Figure 8 (a). The FS module, which supports efficient
video stitching, is composed of the Depth Mask, Motion
Map Generation, and Frame Check submodules, as shown
in Figure 8 (b). Detailed descriptions of all submodules are
provided in Sections III-A and III-B.

A. GUIDED ENERGY-DEPTH MAP COMPOSITION
MODULE
The Guided EMC module constructs an SGM to assign
weight values to the outline and inner regions of objects.
When parallax distortion is inevitable, the model confines
this distortion to a point that minimizes it from a human
perspective. The submodules comprising the Guided EMC
module are depicted in Figure 9.

The Energy Map Generation, Depth Estimation, Depth
Map Generation, and Energy−Depth Map Generation sub-
modules use visual cognitive energy functions and depth
information to set weights for the outline and inner regions of
objects to generate a seam that minimizes parallax distortion.
First, the Energy Map Generation submodule generates an
energy map using (1) in overlapping regions. This visual
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FIGURE 9. Structure of guided energy-depth map composition module.

cognitive energy function is defined as the summation of the
change in the magnitude of the horizontal and vertical pixels
in the image, providing the outline information of objects.
Weights for the inner regions of objects are set according
depth information by the Depth Estimation, Depth Map Gen-
eration, and Energy–Depth Map Generation submodules.

The Depth Estimation submodule is a procedure for gen-
erating depth information that uses the distance difference
between the same points from at least two images [21],
as shown in Figure 10, or estimates depth information using
a deep learning-based depth information estimator [22], [23].
The use of depth information for image stitching has also
been proposed in [29] and [30]. To reduce parallax dis-
tortion, [29] estimated optimal homography, whereas [30]
constructed an SGM using depth information. However,
since [29] and [30] used the depth-difference between input
images, the depth information could be set to a small in an
area where the depth is similar. Thus, we used the Depth Esti-
mation submodule, which uses the sum of depth information,
rather than its difference.

FIGURE 10. Parallax according to distance.

Before calculating the sum of depth information, the depth
information is N-bit quantized in the subsequent Depth Map
Generation submodule, where a larger quantization value is
assigned to a region with a closer distance, and a smaller one
is assigned to a region with a farther distance. For example,
255 was set in the closest region and 0 in the farthest region
when the depth information was quantized to 8-bits. This
quantized depth information is divided into k levels as in (2)
and thus, the depth map (Dk) is composed of values from
0 to k−1. For example, when quantized depth information
(Q) with 8-bits are divided into five levels, the depth map
(Dk) is set such that the range 0−51 is set to 0, 52−102 to 1,
103−153 to 2, 154−204 to 3, and 205−255 to 4.

Dk = floor(k ∗
Q
2N

) (2)

Based on information from the Energy Map Generation
and Depth Map Generation submodules, the Energy–Depth
MapGeneration submodule constructs the energy–depth map
for generating a seam in the far region to minimize parallax
distortion by using the characteristic that the farther distance
from the camera to the object decreases parallax, as shown
in Figure 10. This energy–depth map is constructed via (3)
and (4), where E and Emax represent the energy map and its
maximum value, respectively, and k and Dk in (4) represent
the number of divisions of the depth map and level values
assigned to the depth map, respectively. As expressed in (4),
an energy−depth map (ED) is defined as the summation
of the visual cognitive energy function and the maximum
energy value proportional to the depth levels. As an example,
the energy, depth, and energy–depth maps generated from
Figure 11(a) as input images are shown in (b).

Emax = Max(E) (3)

ED = E + Emax ∗ (Dk + 1) (4)

FIGURE 11. Examples of energy, depth, and energy-depth maps: (a) input
images (b) energy map, depth map and energy-depth map.
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FIGURE 12. Comparison of image stitching results using the energy and energy-depth maps: (a) seam generated from
energy map (b) stitching result from energy map (c) seam generated from energy-depth map (d) stitching result from
energy-depth map.

Examples of image stitching results obtained using the
energy map [10] and previous energy−depth map [20] are
shown in Figure 12 along with their corresponding seams.
As shown in the region demarcated by the red rectangle in
Figure 12(b), a parallax distortion was incurred by a seam
generated in the close region. In contrast, the seam generated
by the energy−depth map, along with its image stitching
result, appear to be more natural, as the seam was generated
in an area with minimal parallax distortion.

FIGURE 13. Results of seam generation and image stitching from
energy-depth map: (a) generated seam from energy-depth map
(b) generated seam and stitching result from energy-depth map.

However, the seam generated using the energy−depthmap,
indicated by the blue box in Figure 12(c), is located in the
middle of the far object region displayed as a black region
rather than a boundary between the far and near object
regions. When the stitching process is conducted, the seam
passes through the building, as shown in the blue rectangular
region of Figure 13, leading to parallax distortion. When

the stitching process is conducted based on this generated
seam, it passes through the buildings, as shown in the blue
rectangular region Figure 13, which could cause parallax
distortion. This is a limitation of applying depth information
to the energy depth map ED in (4) when it varies significantly
at a boundary.

FIGURE 14. Limitations of energy-depth map.

For example, as shown in Figure 14(a) and (b), the value
of ED can be changed from lower to higher or vice versa
when the energy map (E) in (4) is set to zero. Regard-
less of the positive or negative differentiation of ED it can
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generate incorrect seams because the Seam Finder explained
in Section II-A considers two pixels in the vertical direction.
Even positive differentiation ED, such as in Figure 14(b), can
produce more noticeable stitching errors because the wrong
seams are located near the object region. Thus, it is necessary
to generate a seam along the boundary, as shown by the red
arrow in Figure 14(c), to overcome the parallax distortion that
may occur at the boundary, where the ED of the energy–depth
map varies greatly.

To overcome this limitation that arises at the boundary
where ED varies, a guidance map generated by the Guid-
ance Map Generation submodule in Figure 9 is proposed
for extracting the location representing the boundary of the
depth map to generate a seam along the boundary of the
energy–depth map, as shown in Figure 14(c). As indicated
in (5), the guidance map (Gm (x, y)) is a binary matrix of the
Dkvalue of the depth map, which varies along the horizontal
and vertical directions. As an example, the guidance map of
Figure 15 takes the value 0 in the same energy–depth map
region and one value in the region where the energy–depth
map is changed, which is displayed as a red line in Figure 15.

Gm (x, y) = 1 − δ(|Dk (x, y) − Dk (x + 1, y)|

+ |Dk (x, y) − Dk (x, y+ 1)|) (5)

FIGURE 15. Guidance map.

Based on the energy depth and guidance map, a Guide
Energy–Depth (GED) map is proposed for more precise
seam generation. The GED map uses the energy–depth map
(ED(x, y)) to set weights for both the outlier and inner regions
of objects and the background, respectively, and generates a
seam at points where parallax distortion is minimal from a
human perspective. Because the use of only the energy-depth
map (ED(x, y)) could cause parallax distortion at a bound-
ary with varying ED as described above, the GED map is
defined in (6) to reduce the maximum energy (Emax) in the
energy–depth map, where the value of the guidance map
(Gm (x, y)) is 1.

GED (x, y) = ED(x, y) − Emax ∗ Gm (x, y) (6)

The seams generated by the energy–depth map and GED
map are depicted in Figure 16(a) and (b), respectively, where
the seam generated by the GED map appears to be more
precise in the region enclosed within the red rectangle. Thus,

FIGURE 16. Comparison of generated seams generated using the
(a) energy-depth map (b) guided-energy-depth map.

the Guided EMCmodule generates proper seams by using the
GED map.

B. FRAME SELECTION MODULE FOR VIDEO STITCHING
For Seam-based Video Stitching (SVS), two methods may
potentially be used to apply a Seam-based Image Stitching
(SIS) algorithm to video sequences: using the respective
seams generated from every frame of a video sequence [24],
[25], or using a single seam generated from the first frame for
an entire sequence [26]. Although the first method can pro-
ducemore precise stitching results, it is highly time-intensive.
In contrast, the secondmethod reduces the processing burden.
However, since the seam location is fixed, parallax distortion
may occur when objects are moving in the remaining frames
of the video sequence. As a compromise between accuracy
and efficiency, methods have been designed to select certain
video frames for seam regeneration [27], [28].

For example, [27] proposed the selection of new video
frames for seam generation by comparing the preserved seam
with the locations of moving objects. However, this approach
has a limitation wherein background information must be
obtained in advance for the detection of moving objects.
Furthermore, because this method does not update the pre-
defined background information in subsequent frames, the
actual background may be misclassified as a moving object.
For example, when a stopped vehicle is defined as a back-
ground and subsequently moves, the region that previously

133236 VOLUME 11, 2023



S. Rhee et al.: Seam Generation Matrix Based on a Guided Energy-Depth Map

encapsulated the vehicle might be classified as a moving
object.

On the other hand, the method proposed in [28] selects
video frames that require new seam generation by detect-
ing moving objects through deep learning-based instance
segmentation such as Mask R-CNN [18]. Although deep
learning-based object detection or instance segmentation
could reduce processing time and guarantee higher detection
accuracy, they cannot detect objects that were not defined dur-
ing model training. Furthermore, it may be time-consuming
in that deep learning-based object detection or instance seg-
mentation algorithm has to be applied to all video frames.

Tomitigate these limitations, this study proposes the Frame
Selection (FS) module, which selects video frames for new
seam generation through an efficient and generalizable pro-
cess. As shown in Figure 17, the proposed FSmodule consists
of the Depth Mask, Motion Map Generation, and Frame-
Check submodules.

FIGURE 17. Overview of frame selection module.

The FS module uses depth information based on paral-
lax characteristics to select specific video frames for seam
regeneration, similar to the Guided EMC module. The Depth
Mask submodule initializes and updates depth information as
a depth mask (M ) to determine whether a new seam should be
generated from the current frame. As shown in (7), the initial
depth mask (M0) is initialized as the first depth map (Dk0)
generated in the first video frame. In addition, the depth mask
is updated differently depending on whether a new seammust
be generated. This selective procedure is expressed by (8),
where the depth mask (Mi) is maintained as the previous
depth mask (Mi−1) when Seami = Seami−1, and updated
with the newly generated depth map (Dk i) when Seami ̸=

Seami−1.

M0 = Dk0 (7)

Mi =

{
Dk i, if Seami ̸= Seami−1

Mi−1, Otherwise
(8)

where, Seami represents a seam generated from the ith frame.

FIGURE 18. Motion extraction from input video frames.

The FSmodule accelerates video stitching by usingmotion
map (MOTB) in place of object detection to select frames for
new seam generation. As shown as Figure 18, the Motion
Map Generation submodule extracts motion (MOTN ) from
the previous (fN−1) and current (fN ) frames according to (9).

FIGURE 19. Motion map generation process: (a) motion extraction
(b) erosion and dilation (c) binarization.

The MOTN shown in Figure 19(a) indicates the distance
the object has traveled as well as noise caused by cam-
era shaking and changes in illumination of the capturing
location. To remove this noise in the motion, it is con-
verted to the refined motion (MOTR) through erosion and
dilation processes, as shown in Figure 19(b). Finally, the
MOT R is converted to the motion map (MOTB) as shown in
Figure 19(c) through binarization based on the threshold (θth)
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FIGURE 20. Motion map window search (a) and depth mask side search (b).

using (9).

MOTN (x, y) = |fN (x, y) − fN−1 (x, y)| (9)

MOT B (x, y) =

{
0, if MOTR(x, y) < θth

1,Otherwise
(10)

To determine whether a new seam should be generated in
the current video frame, the previous seam, motion map, and
depth mask are used as the reference point, error, and error
threshold, respectively, for a window search in the Frame
Check submodule. The error (err) is defined as the sum of the
MOT B divided by the square of the window size (W) within
the window block (WB) at the reference point, as shown in
(11). In accordance with (12), the depth-based error threshold
(θdepth) is defined as one minus the sum of the values on the
left (MOT BL) and right (MOT BR) divided by 2k at the refer-
ence point in the depth mask, where k corresponds to the k-th
level in the depth map and depth mask. As an example, the
orange points in Figure 20 indicate the previous seam, while
the red point indicates the reference point for the window
search, where err is set to 0.52 when the summation of the
motion map is 13 within a window of size 5. Furthermore,
θdepth is set to 0.385 when the values ofMOT BL ,MOT BR, and
k are 12, 4, and 13, respectively, as shown in Figure 20(b).
Finally, to determine whether a new seam should be gener-
ated from the current video frame, the magnitude of err is
compared with α · θdepth as expressed in (13). At this stage,
α is an insensitivity value of the depth-based error threshold.
As an example, a new seam is generated in Figure 20 because
the err value of 0.52 exceeds that of θdepth when α is 1.

err (x, y)=
1
W 2

∑
u,v

MOT B (u, v){x, y ∈ Seam, u, v ∈ WB}

(11)

θdepth (x, y) = 1 −
ML (x, y) +MR (x, y)

2k
{x, y|x, y ∈ Seam}

(12)

Decision =

{
1, if err (x, y) > α · θdepth (x, y)
0, Otherwise

(13)

In the following Section IV, we assess the proposed
method in terms of efficiency and performance.

IV. EXPERIMENTS
All experiments were conducted on a PC platform running
Microsoft Windows 10 and Python 3.7 with OpenCV 4.7.0,
an Intel i9-12900K processor with 64 GB memory, and an
NVIDIA GeForce RTX 4090 GPU. The following subsec-
tions present experimental results obtained for the Guided
Energy–depth Map-based Composition (Guided EMC) and
Frame Selection (FS) modules.

A. RESULTS OF GUIDED ENERGY−DEPTH MAP BASED
COMPOSITION MODULE
In Section III-A, we propose a Guided EMC module to
minimize parallax distortion in human recognition systems
by inducing seam generation in smaller parallax regions using
depth information. In this Section IV-A, the stitched images
produced from the proposed method were compared with
those obtained from an energy function. To ensure an accurate
comparison, the same seam generation process – consisting
of keypoint extraction, matching, homography, warping, and
the seam finder – was applied for both the energy function
and Guided EMC module. Also, to compare performance
with minimal intervention of the seam finder, all seams were
generated by the three-pixel seam finder [31]. Furthermore,
the bending process was not applied, allowing the parallax
distortion in the stitched images to be closely distinguished.
The Guided Energy-Depth (GED) map was generated using
the deep learning-based depth prediction model MiDaS [23].
In addition, two types of test images representing smaller
and larger parallax effects were used for the comparative
experiments, as shown in Figure 21(a) and (b). To improve
visualization, we enhanced brightness in the overlapping
regions, as shown in Figure 21.

To quantitatively evaluate the accuracy of seams gener-
ated through each method, we adopted the seam evaluation
method used for seam optimization-based image stitching [4].
As an evaluation metric, the Average Seam Error (ASE) is
obtained by accumulating the pixel differences of two input
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FIGURE 21. Overlapping regions with different parallax (a) overlap.
region with smaller parallax (b) overlap region with larger parallax.

FIGURE 22. Seam generation and image stitching results of energy
function and GED map with little parallax distortion: (a) seam generation
results (b) image stitching result with energy function, ASE: 0.1055
(c) image stitching result with GED map, ASE: 0.1026.

images along each seam as expressed in (14).

ASE =
1
N

∑
|IL (x, y) − IR (x, y)| {x, y|x, y ∈ Seam}

(14)

The seams generated using the energy function and GED
map in an image with a smaller parallax error in Figure 21(a)
are shown in Figure 22. The red seam generated by the energy
function passed through a vehicle region. In contrast, the blue
seam generated by the GED map passed through a vehicle at
a relatively greater distance from the camera. And, the ASE

FIGURE 23. Seam generation and image stitching results of energy
function and GED map for greater parallax distortion: (a) seam generation
results (b) image stitching result with energy function, ASE: 0.5315
(c) image stitching result with GED map, ASE: 0.5303.

measures of the seams generated by the energy function and
GED map were 0.1055 and 0.1026, respectively, indicating a
lower degree of error in the latter.

A situation with greater parallax distortion is presented in
Figure 23. The seam generated by the energy function can
be seen to incur greater visible distortion in Figure 23(b),
whereas that generated with the GED map produced undis-
torted object in Figure 23(c). The ASE measures of the
seams generated by the energy function and GED map were
0.5315 and 0.5303, respectively, demonstrating the superior
accuracy of the latter.

To precisely verify the performance of the GED map,
an additional image stitching test was performed on an image
with a greater parallax, as shown in Figure 24. As seen in
the region enclosed in the red box, the seam obtained from
the energy function resulted in parallax distortion, whereas
that obtained from the proposed GED map did not. In the
quantitative evaluation, the ASE values measured for the
seams generated by the energy function and GED map were
0.8236 and 0.7974, respectively. Therefore, the seam gener-
ated through the proposed method was more accurate than
that generated using the energy function.

Another experiment was conducted on test images that
exhibited even more extensive distortion. Unlike images used
in the prior experiments, which were taken in parallel to the
left and right sides of the device, these images were taken
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FIGURE 24. Seam generation and image stitching results of energy
function and GED map for greater parallax distortion: (a) seam generation
results (b) image stitching result with energy function, ASE: 0.8236
(c) image stitching result with GED map, ASE: 0.7974.

with cameras located at the front and rear of the device. The
images used for this experiment are presented in Figure 25.
For example, one of the input images depicts the presence
of a wall at the bottom, which does not appear in the other
input image. This large difference between the two images
is therefore highly problematic when attempting to minimize
parallax distortion in the stitching process. The results in the
Figure 25 indicate that the image obtained with the seam
generated by the energy function exhibited visible parallax
distortion in regions corresponding to the lower wall and
building, whereas that obtained with the seam generated
using the GED map did not exhibit clear parallax distortion.
The ASE of the seam generated by the energy function was
0.5315, whereas that of the seam generated by the GED map
was 0.5303, again demonstrating the higher accuracy of the
latter.

To verify the general performance of the Guided EMC
module, additional experiments were conducted using the
SEAGULL public dataset [32]. Figures 26-29 present exper-
imental results for images corresponding to ID 25, 31, 67,
and 71, respectively, in the SEAGULL dataset. As seen
in Figure 26, the stitched images generated by the energy
function exhibited parallax distortion in the vehicle, whereas
those generated by the GED map exhibited minimal parallax
distortion. Similar results were obtained for the other three
images, as shown in Figures 27-29.

FIGURE 25. Seam generation and image stitching results of energy
function and guided energy-depth map for extreme parallax distortion:
(a) seam generation results (b) image stitching result with energy
function, ASE: 0.0928 (c) image stitching result with guided energy-depth
map, ASE: 0.0862.

Table 1 presents the results of a quantitative evaluation
in terms of ASE on 28 images from the SEAGUL dataset,
demonstrating that the proposed GED map achieved superior
accuracy in 75% of the cases.

As demonstrated throughout the experiments, the Guided
EMCmodule produces more precise stitching results by min-
imizing parallax distortionwith respect to human recognition.
Through the ASE evaluation, we confirmed that the proposed
method produced more accurate seams than the energy func-
tion in 25 of the 32 experimental cases, with an average
improvement of 15.58%.

B. RESULTS OF THE FRAME SELECTION MODULE FOR
VIDEO STITCHING
We conducted additional experiments to assess the efficiency
of the Fame Selection (FS) module, which is deployed
when applying the Guided EMCModule to video sequences.
As described previously, simple implementations of image
stitching of video sequences can involve stitching the entire
video sequence based on a single seam generated from the
first frame, or generating seams for each individual frame.
These two methods were applied to the test video sequence
Woman, shown in Figure 30, where a woman walks from left
to right and from right to left 14 times, with the configuration
in Table 2.
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FIGURE 26. Seam generation and image stitching results of energy function and GED map for ID 25 of SEAGULL dataset: (a) seam generation results
(b) image stitching result with energy function (c) image stitching result with GED map.

FIGURE 27. Seam generation and image stitching results of energy function and GED map for ID 31 of SEAGULL dataset: (a) seam generation results
(b) image stitching result with energy function (c) image stitching result with GED map.

FIGURE 28. Seam generation and image stitching results of energy function and GED map for ID 67 of SEAGULL dataset: (a) seam generation results
(b) image stitching result with energy function (c) image stitching result with GED map.

First, a single seam generated in the first video frame was
used to stitch all subsequent video frames. The woman passed
through the seam 14 times in the video, resulting in a parallax

distortion of 13.02 seconds over 780 frames, as shown in
Figure 31. Thus, stitching on the basis of a single seam was
confirmed to result in a parallax distortion.
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FIGURE 29. Seam generation and image stitching results of energy function and GED map for ID 71 in SEAGULL dataset: (a) seam generation results
(b) image stitching result with energy function (c) image stitching result with GED map.

TABLE 1. Results of average seam error evaluation on seagull dataset.

FIGURE 30. Nth frames in video sample (a) left frame (b) right frame.

Although the other aforementioned approach, wherein a
new seam is generated for every video frame, might eliminate
the parallax distortion seen in Figure 31, it incurs a higher
computational cost along with a new type of parallax distor-
tion. As shown in Figure 32, the Regions of Interest (ROIs)
of the Nth and N+1th stitched frames abruptly changed owing
to the lack of seam consistency, resulting in a unique type of
parallax distortion that occurs between frames.

To maintain seam consistency, new seams must be gener-
ated only in specific frames selected from the video sequence.
As explained previously, Herrmann et al. [28] selected

TABLE 2. Configuration of video dataset woman.

specific frames using an instance segmentation method;
however, this approach has the limitation of considerably
extending computational time. In contrast, the proposed FS
module achieved consistent seam generation while main-
taining computational efficiency. A comparative experiment
between the method proposed in [28] and the FS module was
conducted on the test video sequences denoted as Woman,
People, and Skating, with details presented in Table 2,
Table 3, and Figure 33.
The results of an experiment to measure the computational

time consumed by both methods with the Woman sequence
are listed in Table 4. The sequence in question comprised
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FIGURE 31. Parallax distortion during video stitching based on a single
seam generated from the first frame.

FIGURE 32. Parallax distortion between frames when using a unique
seam for each frame.

FIGURE 33. Nth frames of the video datasets (a) Woman (b) People
(c) Skating.

10,028 frames. To process this sequence, the method pro-
posed in [28] required 0.2215s per frame for searching with
Yolact [19], resulting in a total search time of 2,221.6394s.
In contrast, the FS Module of the proposed method required
0.0092s per frame; thus, the total search time was 92.2269s.
However, the proposed method also generates a new depth
mask with MiDaS [23] for every selected frame, which takes
0.1332s per frame. Nonetheless, the total time required for
video content stitching by the proposed method was still only
139.3928s. Because the number of selected frames depends
on the position of the newly generated seam, it does not
represent the detection accuracy of each method.

TABLE 3. Configuration of video datasets people and skating.

TABLE 4. Results of computational time experiment on woman sequence.

Table 5 lists results obtained in the computational exper-
iment on the People sequence. Although this sequence
comprises less frames than theWoman sequence, it includes
scenes showing many moving people, which require more
frequent seam regeneration. The method proposed in [28]
required 0.1827s per frame for searching, for a total time of
854.9568s. In contrast, the proposed method required 0091s
per frame for searching and an additional 0.1352s per selected
frame for depth mask generation, for a total time of 99.5403s.
These results further confirm the superior efficiency of the
proposed method in terms of computational time.

The results of the experiment with the Skating video
sequence are listed in Table 6. The method proposed in [28]
required 0.6916s per frame for searching, for a total time
of 1,532.7112s. Because Yolact [19] detected a variety of
objects for this sequence, only the ‘person’ class was set to
be detected in the experiment. However, some objects were
not detected owing to the low detection confidence [19].
In contrast, the proposed method required 0.0334s per frame
for searching, and an additional 0.2266s per selected frame
for depth mask generation, for a total time of 179.1887s.
Thus, the proposed method achieved more accurate and faster
video stitching results irrespective of video content, as it uses
a motion map to select frames for new seam generation.

To summarize, the experimental results presented in
Section IV-A confirm that the proposed image-stitching
method reduces parallax distortion using the GED map,
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TABLE 5. Results of computational time experiment on people sequence.

TABLE 6. Results of computational time experiment on skating sequence.

whereas the results presented in Section IV-B confirm that
the proposed method yields faster and more accurate perfor-
mance when applied to video data.

V. CONCLUSION
In this study, we developed theGuided Energy−Depth (GED)
map-based image and video stitching system and obtained
experimental results to verify its superior performance and
efficiency. The system incorporates a Guided Energy−depth
Map Composition (Guided EMC)module and a Frame Selec-
tion (FS) module for image and video stitching, respectively.

To perform image stitching, the Guided EMCmodule con-
structs an energy−depth map using a visual cognitive energy
function and depth information to ensure minimal parallax
distortion. This is achieved by adding a guidance map to

the energy−depth map to generate a more appropriate seam,
enabling theGuided EMCModule to set weights proportional
to the depth information for the inner and borderline regions
of objects. Consequently, parallax distortion is not only sub-
jectively minimized in terms of the human visual perspective,
but also quantitatively minimized as demonstrated in our
experiments.

To extend the proposedmodel for video stitching, we intro-
duced the FSmodule that uses a depthmap to efficiently stitch
video frames. To select a specific frame for seam regener-
ation, the FS module defines a motion map using residual
information from the current and previous video frames,
and then sets different decision thresholds according to the
depth information. The FS module does not apply a deep
learning-based algorithm to every frame, instead only select-
ing frames that do not meet the condition in the Frame Check
submodule. Consequently, the proposed method required
only 7.2769% of the time burden incurred by the conventional
method [28] to stitch video sequences. Thus, the proposed
image and video stitching system is expected to provide more
accurate and efficient stitching results for various panoramic
image and video services.

However, it may be desirable to obtain more accurate depth
information to further minimize parallax distortion. This
information may be represented by the absolute or relative
depth values for distinguishing multiple objects in images,
which may represent a subsequent technical challenge for
future research.
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