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ABSTRACT State estimation plays a central role in ensuring the secure operation of the smart grid. However,
deliberately designed false data injection attacks (FDIAs) can pass by conventional detections to manipulate
the process of state estimation by injecting malicious data into measurements. Ultimately, FDIAs make the
result of state estimation deviate from secure value and affect the security and stable operation of the power
system. In this paper, we consider the different distribution characteristics between normal measurements
and false measurements and build a Gaussian mixture model (GMM). Particularly, we focus on achieving
joint detection and localization of FDIAs. To tackle these challenges, a model-based algorithm named Joint
Maximum a Posteriori -MaximumLikelihood (JMAP-ML) is proposed to estimate the individual parameters
of GMMand achieve joint detection and localization of FDIAswith high accuracy. Different testing scenarios
in the IEEE-14-bus and IEEE-30-bus power systems are simulated to show the performance of the proposed
algorithm on parameters estimation, FDIAs detection and localization. Numerical examples demonstrate the
proposed algorithm achieves satisfactory results in detecting and localizing FDIAs compared to the other
algorithms.

INDEX TERMS False data injection attacks, JMAP-ML, detection, localization, smart grid.

I. INTRODUCTION
Smart grid is a modern power system that uses advanced
information and communication technologies to monitor,
control and optimize the operation of the power system.
While traditional power systems are mainly based on cen-
tralized energy generation and one-way energy transmission
mode, the smart grid realizes digitalization, automation
and intelligence of power systems by introducing advanced
communication, sensing and control technologies [1], [2],
[3]. However, the relations of modules in the smart grid
cause it to be vulnerable to any intentional cyber-attacks [4].

The associate editor coordinating the review of this manuscript and

approving it for publication was Payman Dehghanian .

If it is compromised by an adversary, the accident will
cause significant damage, including prolonged power outages
and electrical equipment damage [5], [6]. For example, the
massive power outage in the northeastern United States
in 2003 showed that even small failures in parts of the
grid could end up costing billions of dollars [7]. A syn-
chronized and coordinated cyber attack compromised three
Ukrainian regional electric power distribution companies
on 23 Dec.2015 which resulted in a significant effect on
the lives of people of Ivano-Frankivsk, almost 1.4 million
individuals lost electrical energy for 3 to 6 hours [8].

The cyber-physical system (CPS) mainly contains energy
management system (EMS), supervisory control and data
acquisition (SCADA) system, demand side management
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system, etc. False Data Injection Attack (FDIA) is regarded
as a means of attacking the integrity of state estimation data.
The common attack strategies are shown in Figure 1: firstly,
maliciously destroying the samples collected in the remote
terminal units of the system; secondly, maliciously attacking
the communication network; thirdly, attacking the SCADA
system. The attacker can carefully design the attack vectors
and inject false data through the above attack methods to
damage the core equipment in the system, and ultimately
interfere with the normal operation of the CPS [9], [10], [11].

FIGURE 1. Schematic of false data injection attack in Smart Grid.

Liu et al. [12] first proposed the concept of grid false
data injection attack and pointed out that the target of grid
false data injection attack is the power system data, which
poses a great threat to the state estimation link in the energy
management system of the power system. Guo et al. [13]
proposed an optimized attack strategy that can manipulate
the estimation results without being detected. By exploring
the impact of such an attack on the state estimation system,
they analyze the vulnerabilities in the system and highlight
the importance of developing robust defense mechanisms to
counter malicious attacks. The FDIA in the power system
is artificially orchestrated and highly covert, and can bypass
the existing BDD mechanism such as the largest normalized
residual (LNR) test and the Chi-square test [14], [15], [16] to
destroy core equipment in the power CPS, leading to large-
scale blackouts. Therefore, many researchers have worked on
detecting false data injection attacks to secure the security of
the smart grid.

This paper proposes the joint maximum a posteriori-
maximum likelihood (JMAP-ML) detection algorithm which
belongs to model-based detection. For model-based detection
algorithms, the process of detection is relatively independent
of each other. Additionally, in contrast to data-driven
detection algorithms, it requires neither training data nor
storing the training samples. Because the offset is intro-
duced to the measurements after FDIAs, it brings about
the differences in the model feature parameters between
normal measurements and false measurements. Based on
it, a Gaussian mixture model is built to approximate the
error distribution. Hence, we use the JMAP-ML algorithm to

estimate model parameters and eliminate the measurements
affected by FDIAs. Finally, we can achieve the detection and
localization of FDIAs. The main contributions of this paper
are summarized as follows:

• Considering the joint detection and localization of
the FDIAs problem, the paper proposes a JMAP-ML
algorithm and achieves simultaneous detection and
localization of FDIAs by modeling the hybrid measure-
ments as a mixed Gaussian noise.

• Utilizing the proposed algorithm’s iterative closed-form
solution, we jointly localize the FDIAs and estimate
the unknown parameters in the Gaussian mixture model
with low computational complexity and high accuracy.

• Conducting numerical simulations on IEEE-14-bus
and IEEE-30-bus test cases to verify the algorithm’s
performance, the results demonstrate that the proposed
algorithm has a better performance in detecting and
localizing the FDIAs than the other algorithms.

The rest of this paper is organized as follows. Section II
introduces the related works about detection methods against
FDIAs. Section III presents the model of the system
framework and FDIAs. In Section IV, a Gaussian mixture
model is used to approximate the distribution of the mea-
surement errors. Section V presents the parameter estimation
based on the JMAP-ML algorithm. Section VI presents the
convergence and complexity analysis. Section VII provides
simulation analysis. Finally, we conclude this paper in
Section VIII.

II. RELATED WORKS
To achieve the goal of FDIAs detection in smart grid,
many detection methods have been proposed by the
researchers. Generally, they can be divided into two cate-
gories. One is model-based detection, the other is data-driven
detection [16].

A. MODEL-BASED DETECTION
Nowadays, with the increasing degree of interconnection
of power systems in smart grids, the simple use of the
weighted least squares approach is no longer applicable
and many variants have emerged, such as distributed state
estimation [17], [18]. Ho et al. [19] proposed a great
likelihood estimation-based network attack detection method
that exploits the near chordal sparsity (NCS) of power grids to
build an efficient framework for solving the associated great
likelihood estimation problem, and then decomposes this
detection method into several local ML estimation problems,
which will ensure privacy and reduce the complexity of
the potential problem. Chen et al. [20] propose a kernel
density estimation-based method for FDIA detection. Based
on historical records, this method can estimate the probability
densities of measurements and control commands and give
their confidence intervals at the significance level. Then, if a
measurement (or a control command) fails its hypothesis test,
it is replaced by the correspondingML estimate. Shi et al. [21]
proposed an efficient prediction-based FDIA detection and
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localization scheme, which represents the state vectors of the
smart grid as a multivariate time series and predicts them
by intentionally exploiting the temporal and spatial corre-
lation of the states through a vector autoregressive process
(VAR). The consistency between predicted measurements
and observations is utilized to detect and localize false data.
Jorjani et al. [22] proposed FDIA detection method based
on graph theory analysis. First, probability distributions of
changes in the estimated state variables and measured values
are used to detect outliers in the current state estimation
results. Then, neighboring points in the identified outliers are
found by constructing a graph. If there is sufficient evidence
that the identified outliers are neighboring and related to each
other, then the attack is detected and localized.

B. DATA-DRIVEN DETECTION
Unlike systemmodel-based detection algorithms, data-driven
detection algorithms are model-free. Therefore, the detection
process of FDIAs does not involve system parameters and
models, and it relies on a large amount of historical data
from the smart grid as a way to speculate on future data [17].
Yu et al. [23] proposed a detection method based on wavelet
transform and deep neural network for real-time detection
of false data injection attacks. They first utilize wavelet
transform for feature extraction of the data and then use RNN
approach for FDIA detection. Zhang et al. [24] proposed a
detection method based on semi-supervised deep learning,
they used labeled and unlabeled data to achieve detection
and classification of false data injection attacks. The method
was able to automatically learn feature representations and
perform the discrimination of false data injection attacks by
deep neural networks. Aboelwafa et al. [25] performed FDIA
detection using a deep neural network Autoencoder, which
provides nonlinear compression (encoding) and expansion
(decoding) of input samples. The detection scheme is based
on the error between the decoded samples and the input of
the network, and an anomaly is considered to exist when
the error exceeds a certain level. Li et al. [26] proposed
a distributed host-based collaborative detection method.
Specifically, a majority voting algorithm based on a merging
rule is used to collaboratively detect erroneous measurements
inserted by damaged phase measurement units.

III. SYSTEM MODEL
The steady state of a power system is a basic requirement
for power system operation, and it is essential for the quality
and sustainability of power supply. Although the relationship
between state variables and measurements in an actual power
system is nonlinear, due to simplicity and robustness, a linear
equation can be used based on the direct current (DC)
model [15], [27], [28]. The following three assumptions
are made to transform the nonlinear function into a linear
function. First, when the power CPS operates normally, the
bus voltage amplitudes are in the neighborhood of the rated
voltage, i.e., Vi = 1; Second, for the UHV network, it is set
to be a lossless circuit by neglecting the conductance; Third,

in cyber-physical system, the phase difference between the
buses of any two branches is not significant, i.e., θij = 0.
An approximation can be obtained to get sin θij = 0,
cos θij = 1.

The relationships between physical measurements and
state variables are following:

Pi =

∑
j∈T

Bij
(
θi − θj

)
(1)

Qi = 0 (2)

Pij = −Bij
(
θi − θj

)
(3)

Qij = 0 (4)

where Pi and Qi represent the active and reactive power
injection of bus i, respectively;Pij andQij denote active power
flow and reactive power flow from bus i to bus j, respectively;
Bij denotes the susceptance of the line between from bus i to
bus j; θij denotes phase angle difference of the line voltage
between from bus i to bus j; T denotes the set of adjacent
buses of bus i.

We consider a power system withM measurements and F
state variables. The relationships between measurements and
state variables are following:

yk = Hxk︸︷︷︸
=zk

+ek (5)

where yk ∈ RM×1 is the vector of original measurements;
zk ∈ RM×1 is noise-free measurement vectors; xk ∈ RF×1

represents the vector of state variables; ek ∈ RM×1 is the
measurement error vector and satisfies a Gaussian white
distribution with zero mean and error covariance matrix R,
i.e., R = diag(61, . . . , 6M );H ∈ RM×F is the measurement
Jacobian matrix. The attacker aims to inject malicious data
into the measurements that are collected by SCADA in the
way shown in Figure 1, the measurement model under FDIAs
can be expressed as:

yak = Hxk︸︷︷︸
=zk

+ek + ak (6)

where ak ∈ RM×1, ak = [a1, a2, · · · , aM ]T . When the meter
i ∈ [1,M ] is not under attack, we have ai = 0; otherwise
ai ̸= 0 holds.
The presence of bad data is inevitably reflected in

the objective function J(x̂) and leads to J(x̂) deviating
significantly from its normal value; therefore, the general
approach to detecting bad data boils down to some kind of
hypothetical on the random variable J(x̂). Weighted least
squares is widely used to detect bad data, and the objective
function J(x̂) is expressed as:

J(x̂) = (yk −Hx̂k )TR−1(yk −Hx̂k ) (7)

According to the minimum objective function J(x̂), the
state variables can be expressed as:

x̂k = (HTR−1H)−1HTR−1yk (8)
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thereby, we can obtain the estimated measurement vector

ŷk = Hx̂k = H(HTR−1H)−1HTR−1yk (9)

After getting the measurement vector and the estimated
measurement vector, the formula of residual is expressed as:

rk = yk − ŷk = (I −H(HTR−1H)−1HTR−1)yk (10)

We can perform hypothesis testing to detect the bad data,
the principle is that comparing the objective function J(x̂)
value of the WLS with the threshold value of the chi-square
test [29], [30]. Specifically, the formula is expressed as:{

H0 : J(x̂) > χ2
(M−F),p, Bad data,Reject H0

H1 : J(x̂) ≤ χ2
(M−F),p, No bad data,Accept H0

(11)

where H0 is on behalf of the original hypothesis, i.e.,
there exists no bad data; H1 is on behalf of the alternative
hypothesis, i.e., there exists bad data. p and M − F is the
confidence level and the freedom of χ2

(M−F),p.
When attackers start to launch an FDIA, the form of the

estimated state variables x̂ak which is different from normal
state variables can be expressed as:

x̂ak = (HTR−1H)−1HTR−1(zk + ak) = x̂k + ck (12)

where ck ∈ RF×1 represents the introduced error to original
state variables xk . The measurement residual under the
attacks then can be expressed as follows:

rak = zak −Hx̂ak = zk + ak −H(x̂k + ck)

= zk −Hx̂k + (ak −Hck) (13)

Hence, if ak satisfies the condition ak = Hck, i.e., rak =

rk, it means that the false measurements can bypass the
measurement residual-based bad data detector. It is necessary
for the attackers to obtain the Jacobian matrixH and have the
ability to modify some meters. In a word, after the attackers
obtain the Jacobian matrix H , they could inject any bias into
the state estimation xk. And they do not trigger the alarm of
the bad data detector in the control center.

IV. MIXTURE MODEL FOR MEASUREMENTS
We assume N measurements of M measurements in the
measurement vector y are continuously attacked. That is
to say that N components in the attack vector a are not
zero. The corresponding error samples come from two parts:
one is the sample of N false measurements, and the other
is the sample of M − N normal measurements. In the
subsequent measurements acquisition process, we identify
whether the normal measurements are replaced with false
measurements or not by the K (K ≥ 1) measurement vectors.
To facilitate the analysis, the actual obtained component of
the ith measurement of the kth measurement vector yk can be
expressed as:

yi,k = zi,k + ei,k (14)

where ei,k follows a Gaussian distribution, it can be divided
into two cases: normal measurements errors distribution is

expressed as pe(1)(e; µ1, σ
2
1 ), conversely false measurements

errors distribution is expressed as pe(2)(e; µ2, σ
2
2 ).

For better understanding, a vector form which represents
the measurement model is expressed as follows:

Y = Z+ E (15)

where

Y =
[
y1,1, . . . , y1,K , . . . , yM ,1, . . . , yM ,K

]T (16)

Z =
[
z1,1, . . . , z1,K , . . . , zM ,1, . . . , zM ,K

]T (17)

E =
[
e1,1, . . . , e1,K , . . . , eM ,1, . . . , eM ,K

]T (18)

Column vectors Y , Z and E are all of dimension MK × 1.
In this paper, we simplify the problem by using a Gaussian

mixture model to represent the measurement errors.

p(e; θ ) =

2∑
l=1

αlp(l)e (e; µl, σ
2
l ) (19)

where αl is an unknown parameter that represents the ratio
of the components. It is assumed that N of M measurements
are under attack. And α1 = (M − N )/M ,α2 = N/M . It must
satisfy a probability condition.

2∑
l=1

αl = 1, αl ∈ [0, 1] (20)

The main challenge of the Gaussian mixture distribution is
to solve for the parameters of each part distribution θ =[
α1, α2, µ1, µ2, σ

2
1 , σ 2

2

]T
. Hence, we can use the JMAP-ML

algorithm to achieve our needs.

V. PARAMETERS ESTIMATION BASED ON JMAP-ML
Based on the measure model in (15) and Gaussian mix-
ture distribution in (19), the cost function of θ =[
α1, α2, µ1, µ2, σ

2
1 , σ 2

2

]T
is given by

LI (θ;E) = ln [p (E; θ)]

= ln

[
M∏
i=1

K∏
k=1

p
(
ei,k , θ

)]

=

M∑
i=1

K∑
k=1

ln

[
2∑
l=1

αlp(l)
e

(
ei,k ; µl, σ

2
l

)]
(21)

The estimation of relevant parameters can be obtained by
solving the following question

argmax
θ

LI (θ;E)

subject to α1 ≥ 0, α2 ≥ 0,

α1 + α2 = 1

(22)

It is complicated for us to solve the cost function in (21),
essentially, the JMAP-ML algorithm is an approximation to
the maximum likelihood estimate (MLE). Therefore, to sim-
plify the complexity of the cost function, we introduce the
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latent variable h =
[
h1,1, . . . , h1,K , . . . , hM ,1, . . . , hM ,K

]T .
By the value of hi,k , we can know which mixture component
has generated the corresponding measurement error, with

hi,k =

{
1, ei,k ∈ p(1)e

(
e; µ1, σ

2
1

)
2, ei,k ∈ p(2)e

(
e; µ2, σ

2
2

) (23)

On the basis of the latent variable h, we set o = {h,E}.
To avoid ambiguity, we define {E; θ} as incomplete data and
{E,h; θ} as complete data. The complete data log-likelihood
function is easily expressed as:

LC (θ;E,h) = ln [p (h,E; θ)]

= ln

[
M∏
i=1

K∏
k=1

p
(
ei,k , hi,k , θ

)]

=

M∑
i=1

K∑
k=1

ln
(
αhi,kp

(hi,k)
e

(
ei,k ; µhi,k , σ

2
hi,k

))
(24)

the above equation holds provided that ei,k ’s are independent,
consequently, hi,k ’s which are similar to ei,k ’s are also
independent. It is obvious that the calculation method of the
complete data log-likelihood function LC (θ;h,E) is simpler.
The problem of solving MLE (22) becomes

argmax
θ

LC (θ;h,E)

subject to α1 ≥ 0, α2 ≥ 0,

α1 + α2 = 1 (25)

Because of introducing latent variable h, it is not difficult
to find that the complete data log-likelihood function has a
more solution-friendly form.

As the mean of approximating the MLE, we adopt the
idea of MLE to process the data, i.e., the complete data
log-likelihood function LC (θ;h,E) is maximized directly
with respect to both θ and h, that is,

argmax
θ ,h

LC (θ;h,E) = argmax
θ

{
argmax

h
LC (θ;h,E)

}
(26)

The JMAP-ML algorithm which is divided into two steps
is an iterative algorithm, the specific steps are as follows:

A. MAP STEP
The estimation of parameter h is the first step of JMAP-ML
algorithm. To facilitate the solution, we need to transform the
likelihood function as follows:

LC (θ;h,E) = ln p(h,E; θ ) = ln p(h|E; θ ) + ln p(E; θ )
(27)

where ln p(E; θ ) is independent of h. Therefore, the maxi-
mization of (27) can be replaced by maximization concerning
the front conditional probability function as shown as
follows:

argmax
h

ln p(h|E; θ ) (28)

Replacing θ with the ηth iteration θ (η), and solving the
MAP estimation of h, yields

h(η+1)
= argmax

h
ln p(h|E; θ (η)) (29)

which can be slashed into MK simpler pieces as follows:

hi,k (η+1)
= argmax

hi,k
ln p(hi,k |ei,k ; θ (η)) (30)

∀ (i, k) ∈ P 1
= {(1, 1) , · · · , (1,K ) , · · · , (1,M) , · · · ,

(M ,K )}. With p
(
hi,k = l

∣∣∣ei,k ; θ (η)
)
being calculated by the

following equation (31) which can be computed by means of
Bayes’rule as follows:

p
(
hi,k = l

∣∣∣ei,k , θ (η)
)

=

α
(η)
l p(l)e

(
ei,k ; µl, σ

2,(η)
l

)
p
(
ei,k ; θ (η)

) (31)

with

p
(
ei,k ; θ (η)

)
=

2∑
l=1

α
(η)
l p(l)e

(
ei,k ; µ

(η)
l , σ

2,(η)
l

)
(32)

Since hi,k is discrete-valued, the global optimal solution
to (30) must be the one among

{
hi,k = 1, 2

}
that maximizes

ln
[
p
(
hi,k

∣∣ei,k , θ (η)
)]
. By defining

0
(η)
i,k,l

1
= α

(η)
l p(l)e

(
ei,k ; µ

(η)
l , σ

2,(η)
l

)
, l = 1,2 (33)

Because ln (.) is a monotonic function, we need only to
compare the value of 0

(η)
i,k,l and give the MAP estimation as

follows:

h(η)
i,k =

{
1, 0

(η)
i,k,1 ≥ 0

(η)
i,k,2

2, 0
(η)
i,k,1 < 0

(η)
i,k,2

(34)

B. ML STEP
The estimation of parameter θ is the second step of JMAP-
ML algorithm. By substituting the estimated h(η+1) into the
complete log-likelihood function LC (θ;h,E), the complete
log-likelihood function can be reformulated as:

Lc
(
θ;E,h(η+1)

)
= ln

[
p
(
E,h(η+1)

; θ
)]

=

M∑
i=1

K∑
k=1

ln

(
αh(η+1)

i,k
p

(
h(η+1)
i,k

)
e

(
ei,k ; µl, σ

2
l

))

=

M∑
i=1

K∑
k=1

2∑
l=1

ln
(
αlp(l)

e

(
ei,k ; µl, σ

2
l

))
δ
(
l − h(η+1)

i,k

)
(35)

where

δ
(
l − h(η+1)

i,k

)
=

{
1, if l = h(η+1)

i,k
0, otherwise

(36)
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is impulse function. In the subsequent step, we maximize
Lc
(
θ;h(η+1),E

)
with respect to θ , and thus can obtain the

(η + 1)th iteration of the θ

θ (η+1)
= argmax

θ

LC (θ;h(η+1),E) (37)

To facilitate the calculation, we introduce the weighting
function ωi,k,l . Hence, the cost function (35) can be
transformed into another form as follows:

L(η)
c

(
θ;E,h(η+1)

)
= ln

[
p
(
E,h(η+1)

; θ
)]

=

M∑
i=1

K∑
k=1

2∑
l=1

ω
(η)
i,k,l ln

[
αlp(l)e

(
ei,k ; µl, σ

2
l

)]
=

M∑
i=1

K∑
k=1

(
ω

(η)
i,k,1 lnα1 + ω

(η)
i,k,2 lnα2

)
+

M∑
i=1

K∑
k=1

(ω(η)
i,k,1 ln p

(1)
e

(
ei,k ; µ1, σ

2
1

)
+

M∑
i=1

K∑
k=1

(ω(η)
i,k,2 ln p

(2)
e

(
ei,k ; µ2, σ

2
2

)
(38)

where the weighting function ω
(η)
i,k,l is defined by

ω
(η)
i,k,l = δ

(
l − h(η+1)

i,k

)
(39)

In (38), we can simplify this formula

L(η)
c

(
θ;E,h(η+1)

)
= L(η)

0 (α1, α2) +

2∑
l=1

L(η)
l

(
µl, σ

2
l

)
(40)

where

L(η)
0 (α1, α2)

1
=

M∑
i=1

K∑
k=1

(
ω

(η)
i,k,1 lnα1 + ω

(η)
i,k,2 lnα2

)
(41)

and for l = 1, 2,

L(η)
l

(
µl, σ

2
l

)
1
=

M∑
i=1

K∑
k=1

ln
(
p(l)
e

(
ei,k ; µl, σ

2
l

))
ω

(η)
i,k,l (42)

First, we maximize Lc (θ;E,h) concerning the mixture
model parameters by following the route shown in (38). More
precisely, we solve the following equations:

∂

∂αl

[
L(η)
0 (α1, α2) + λ

(
2∑
l=1

αl − 1

)]
= 0 (43)

∂

∂µl

[
L(η)
l

(
µl, σ

2
l

)]
= 0 (44)

∂

∂σ 2
l

[
L(η)
l

(
µ

(η+1)
l , σ 2

l

)]
= 0 (45)

where λ in (43) is the Lagrange multiplier. By solving the
above equations which are in closed form, the estimation of
αl , µl and σ 2

l are given by

α
(η+1)
l =

1
MK

M∑
i=1

K∑
k=1

ω
(η)
i,k,l (46)

µ
(η+1)
l =

M∑
i=1

K∑
k=1

(
yi,k − zi,k

)
ω

(η)
i,k,l

M∑
i=1

K∑
k=1

ω
(η)
i,k,l

(47)

σ
2,(η+1)
l =

M∑
i=1

K∑
k=1

(
yi,k − zi,k − µ

(η+1)
l

)2
ω

(η)
i,k,l

M∑
i=1

K∑
k=1

ω
(η)
i,k,l

(48)

Given the detailed estimation, we introduced the workflow
of the proposed JMAP-ML in algorithm 1. Then, to better
understand, a flow chart of detecting FDIAs which is shown
in Figure 2 is also introduced.

Algorithm 1 JMAP-ML Algorithm for Estimating Parame-
ters of GMM
Input: Y and Z . For each dataset with i = 1, 2, . . . ,N , k =

1, 2, . . . ,K .
Step1 Initialize:
Chose a convergence tolerance 1 and the maximum
number of iterations Nmax

itr ; Set the iteration index η = 0;
Chose an initial guess θ (0)

=
[
α1, α2, µ1, µ2, σ

2
1 , σ 2

2

]T
.

Step2 JMAP-ML algorithm loop:
In the (η + 1)th iteration (η > 0),
1: Compute h(η)

i,k according to Equation (34).

2: Compute ω
(η)
i,k,l according to Equation (39).

3: Find close form θ (0) in attempts to maximize
Equation (40).
Step3 Convergence Check:
If the increment of the log-likelihood value is less than1

or Nmax
itr has been reached, then terminate this algorithm;

otherwise set η → η + 1 and return to Step2.
Output:

{
E,h(η+1)} and θ (η+1).

VI. ALGORITHM ANALYSIS
A. CONVERGENCE ANALYSIS
As it is shown in Algorithm V-B, the JMAP-ML algorithm
is an iterative algorithm. Hence, it is necessary to ensure the
algorithm converges which means the JMAP-ML algorithm
converges monotonically to some stationary point LC∗ of the
complete data log-likelihood function at the end. To verify
this question, we conducted a correlation analysis.

In the first step of the JMAP-ML algorithm, we maximize
LC (θ;E,h) with respect to h for a given a priori parameter
estimate θ (η). Since h(η+1) is the global optimal solution, it is

133872 VOLUME 11, 2023



G. Zhang et al.: Detection and Localization of False Data Injection Attacks in Smart Grid

FIGURE 2. The flow chart of detecting FDIAs.

guaranteed that

LC
(
θ (η)

;h(η+1),E
)

≥ LC
(
θ (η)

;h(η),E
)

(49)

holds for any h(η) in its parameter space.
In the second step, we maximine LC

(
θ;h(η+1),E

)
with

respect to θ . Similar to the EM algorithm, here we need to
consider the Q function:

Q
(
θ , θ (η)

)
=

∑
h

ln [p (h,E; θ)]p
(
h |E ; θ (η)

)
(50)

then, we need to prove thatQ
(
θ (η+1), θ (η)

)
≥ Q

(
θ (η), θ (η)

)
holds for any θ (η) in its parameters space. In EM algorithm,
the E-step is θ (η+1)

= argmax
θ

Q(θ , θ (η)), so the above

relationship can be proven. For Gaussian distribution, [31]
and [32] show that the update parameters α

(η+1)
1 , α

(η+1)
2 ,

µ
(η+1)
1 , µ

(η+1)
2 , σ

2,(η+1)
1 , σ

2,(η+1)
2 are global optimal solu-

tions to the corresponding maximization problems. Based on
it, we can easily prove that

LC
(
θ (η+1)

;h(η+1),E
)

≥ LC
(
θ (η)

;h(η+1),E
)

(51)

which means that the value of LC (θ; h,E) increases
monotonically over iterations. Since LC (θ; h,E) is bounded
from above, the convergence to some stationary point L∗ is
ensured.

B. COMPLEXITY ANALYSIS
In the complexity analysis, we pay more attention to the
iterative process of the JMAP-ML algorithm, as it consumes
the most computational power. The complexity is evaluated

in terms of floating-point operations (FLOPs). We define the
FLOPs required for some elementary operations as follows:
(1) εadd : FLOPs for addition.
(2) εsub: FLOPs for subtraction.
(3) εmul : FLOPs for multiplication.
(4) εdiv: FLOPs for division.
(5) εexp: FLOPs for exponential.
(6) εpow: FLOPs for raising to real power.
(7) εcom: FLOPs for comparison.
Note that the actual FLOPs required for the above

operations may vary with processors.
Since the JMAP-ML algorithm is iterative in nature,

we spotlight the analysis in one JMAP-ML iteration, for
instance, the (η + 1)th. The estimation step starts with the
evaluations of ω

(η)
i,k,l = δ

(
l − h(η)

i,k

)
for i = 1, 2, · · · ,M , k =

1, 2, · · · ,K and l = 1, 2, given the prior parameter estimate
θ (η). This requires us to compute

ei,k = yi,k − zi,k (52)

for i = 1, 2, · · · ,M , k = 1, 2, · · · ,K .

0i,k,l =
α

(η)
l√

2πσ
2,(η)
l

. exp


(
ei,k − µ

(η)
l

)
−2σ 2,(η)

l

 (53)

for i = 1, 2, · · · ,M , k = 1, 2, · · · ,K , l = 1, 2.
It is clear that the equation (52) requires MKεsub FLOPs,

the equation (53) requires 2((MK +3)εmul + (MK +1)εpow+

MKεsub + MKεdiv + MKεexp) FLOPs. To get hi,k , we also
need MKεcom FLOPs.
Having δ

(
l − h(η)

i,k

)
’s, we then compute

α
(η+1)
l =

1
MK

M∑
i=1

K∑
k=1

ω
(η)
i,k,l (54)

µ
(η+1)
l =

M∑
i=1

K∑
k=1

(
yi,k − zi,k

)
ω

(η)
i,k,l

M∑
i=1

K∑
k=1

ω
(η)
i,k,l

(55)

σ
2,(η+1)
l =

M∑
i=1

K∑
k=1

(
yi,k − zi,k − µ

(η+1)
l

)2
ω

(η)
i,k,l

M∑
i=1

K∑
k=1

ω
(η)
i,k,l

(56)

for i = 1, 2, · · · ,M , k = 1, 2, · · · ,K , l = 1, 2.
It is easy to verify that Equation (54) requires

(MK − 1) εadd + 1εdiv + 1εsub FLOPs. Equation (55)
requires 2 (MKεmul + (MK − 1) εadd + εdiv) FLOPs, and
Equation (56) requires 2(MKεmul + (MK + 1)εpow + εsub +

εdiv + (MK − 1) εadd ) FLOPs. Let us define FL (θ) to be the
total number of FLOPs consumed for an estimate of θ in one
JMAP-ML iteration. It is straightforward that FL (θ) is equal
to the total FLOPs.

FL (θ) = (5MK − 5) εadd + (3MK + 3)εsub
+ (6NK + 6) εmul + (2MK + 5) εdiv
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+ 2MKεexp + (4MK + 4) εpow +MKεcom (57)

Finally, let N JMAP−ML
iter be the number of iterations used to

reach the convergence of the JMAP-ML algorithm. The total
FLOPs used to compute an ultimate JMAP-ML estimate is

FLJMAP−ML ≈ N JMAP−ML
iter FL(θ ) (58)

VII. SIMULATIONS
In this section, we verify the feasibility of the proposed
algorithm via the IEEE-14-bus and IEEE-30-bus power
systems. We conduct the simulation in MATLAB R2020b
software and use the MATPOWER 7.1 power simulation
package to calculate the routine power flow of the related
data. Based on it, the optimal tidal current is solved, and we
can obtain the true measurements. Then, the Gaussian white
noise is superimposed as the sensor measurements.

A. IEEE-14-BUS POWER SYSTEM
First, the power standard IEEE-14-bus systemwhich is shown
in Figure 3 is used for simulation analysis. A Gaussian mix-
ture model is utilized to fit the bus measurement sequences
for the grid system buses. The JMAP-ML algorithm is used
to estimate the parameter values of the model to which
the normal and attacked measurements belong, respectively.
Based on the obtained mixing model, the test data are fed
into the model for binary categorization of the measurements.
Thus, normal measurements are categorized with false
measurements.

FIGURE 3. IEEE-14-bus power system.

A summary of the simulation parameters used throughout
the process is provided in Table 1. The relevant parameters in
the table are explained as follows:M stands for the dimension
of the measurements; K represents the number of groups of
measurements; α1andα2 is component ratio; µ1 and µ2 is
the mean of the Gaussian distribution, respectively; σ1 and
σ2 represent the variance of the Gaussian distribution; 1

is convergence tolerance; Nmax
itr is the maximum number of

iterations.
We represent the errors of the 1640 normal measurements

as bar graphs, and the distribution characteristics of the

TABLE 1. Simulation parameters.

FIGURE 4. The normal distribution of measurement errors.

FIGURE 5. The actual distribution of measurement errors under FDIAs.

normal measurement errors are shown in Figure 4. After the
power system is subjected to the FDIAs, the measurements z
will change, the error in some of the measurements changes
from e to a + e. Figure 5 shows the actual distribution
characteristics of the mixed measurement errors. Then,
to verify the proposed algorithm, we use the JMAP-ML
algorithm to classify the measurement errors, and also fit the
error distribution, the final result is shown in Figure 6.

Next, it is necessary to verify the convergence of the pro-
posed algorithm. Utilizing the IEEE-14-bus power system,
we assume N = 8 and use the Monte Carlo method to
produce the measurements and perform 1200 independent
experiments. Meanwhile, we need to record the values of
incomplete data and complete data and parameter estimates
versus the number of iterations for the JMAP-ML algorithm.
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FIGURE 6. The distribution of measurement errors with JMAP-ML.

Then we compute the mean of the incomplete data, complete
data and parameter estimates. Figure 7 shows the relationship
between incomplete data and complete data and the number
of iterations. In Figure 8, Figure 9 and Figure 10, it can be
easily seen the relationship between the parameters α1, µ2,
σ 2
1 and the number of iterations. For better understanding,

we give their real values.

FIGURE 7. The change in the mean of the log-likelihood function value
under the JMAP-ML algorithm.

We explain some of the important conclusions in the above
figures as follows:

• From Figure 7, we can observe that the incomplete data
and complete data log-likelihoods increase monotoni-
cally iterations until the convergence condition has been
fulfilled, which coincides with our theoretical proofs.

• From Figure 8, Figure 9 and Figure 10, we can
conclude that the JMAP-ML algorithm generates a
biased estimator, it can estimate the relevant parameters
with high accuracy.

• The JMAP-ML algorithm is converged after 5 iterations.
In addition, we simulate different attack scenarios and esti-

mate the relevant parameters using the proposed algorithm.
Below, we explore the relationship between the accuracy of
the parameter estimates and the number of attacked buses.
Because of the limited space, we only give the parameter α2,

FIGURE 8. Mean of α1 estimates as the number of iterations increases.

FIGURE 9. Mean of µ2 estimates as the number of iterations increases.

FIGURE 10. Mean of σ2
1 estimates as the number of iterations increases.

µ2, σ 2
2 . From Figure 11, Figure 12 and Figure 13, we can

obviously see that as the attacked buses increase, the accuracy
of the parameters becomes higher and higher.

The receiver operating characteristic (ROC) curve is
adopted for analysis. The ROC curve is shown with true
positive rate (TPR) as the vertical coordinate and false
positive rate (FPR) as the horizontal coordinate. Here, the true
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FIGURE 11. The error variation of the parameter α2 as the number of
attacked buses varies.

FIGURE 12. The error variation of the parameter µ2 as the number of
attacked buses varies.

FIGURE 13. The error variation of the parameter σ2
2 as the number of

attacked buses varies.

positive rate is also called detection probability, and the false
positive rate is also called the false alarm rate. The specific
formulas for both are as follows:

TPR =
TP

TP+ FN
(59)

FIGURE 14. The relationship between detection probability and false
alarm rate.

FIGURE 15. IEEE-30-bus power system.

FPR =
FP

FP+ TN
(60)

where TP is the number of true positives, which stands for the
number of successful detection of false measurements; FN is
the number of false negatives, which stands for the number
of missed detection of false measurements; FP is the number
of false positives, which stands for the number of wrong
detection of false measurements; TN is the number of true
negatives, which stands for the number of correct detection
of normal measurements.

The ROC curves characterize the tradeoff between the
detection probability and the false alarm rate. We compare
the performance of the proposed JMAP-ML algorithm with
the previously proposed AR scheme, VAR scheme [21] and
EMalgorithm [33]. In the presence of FDIAs, the ROC curves
of all four methods are shown in Figure 14. Note that the
detection probability of the proposed JMAP-ML algorithm
is the highest among the four methods. Specifically, when
the false alarm rate is 5%, the detection probability is over
97%, implying a low false alarm rate and a high detection
probability.
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FIGURE 16. Detection of the false measurements.

FIGURE 17. Localization of the attacked bus.

B. IEEE-30-BUS POWER SYSTEM
For smart grid false data detection is done in terms of grid
buses. Based on the identified anomalies that are neighboring
and related to each other, the attacked bus will be detected
and localized. The detection performance of the algorithm
is further analyzed below using the IEEE-30-bus system as
an example. The IEEE-30-bus is shown in Figure 15, which
consists of 30 buses, 6 generation zones and 41 branch
circuits.

It is assumed that the attacker achieved the FDIA without
being detected by the BDD mechanism. Because of the
limited space, we only show the detection and localization
effect of Bus 2. It is supposed that there are some attacked
measurements which include P2, Q2, P2−4, P2−5, P2−6,
Q2−4, Q2−5, Q2−6. We conduct 1000 independent experi-
ments and use bar charts to count the performance of the four
methods in detecting tampered measurements. The relevant
result is shown in Figure 16. Compared with the other three
methods, the proposed algorithm has a better performance.
When the bus is attacked, all measurements associated with
it are tampered with. According to the detection result, we can

localize the attacked bus. The localization effect of bus 2 is
shown in Figure 17.

VIII. CONCLUSION
Given that false data injection attacks can largely affect the
normal operation of smart grid, we proposed a JMAP-ML
algorithm for detecting and localizing false data injection
attacks in power systems. In the algorithm design, we use a
Gaussian mixture model to model the measurement errors,
in the process of solving the model parameters, the idea
of iteration is essentially utilized. Meanwhile, with the
help of the latent variable, we can differentiate between
normal measurements and tampered measurements. When
the bus is attacked, all measurements associated with it
are tampered with. Using this knowledge, based on the
detection of the tampered measurements, we can localize
the attacked bus. Through a large number of simulations
on the IEEE-14-bus and IEEE-30-bus power systems, the
performance of the JMAP-ML algorithm on convergence
and estimation accuracy is researched in this paper. The
experimental results show that the JMAP-ML algorithm has
a better performance in detecting and localizing FDIAs than
the other algorithms.

In the future, integrating multiple models becomes a
promising direction, and we will combine Gaussian mixture
model (GMM) and deep learning models to form a more
comprehensive detection system. Meanwhile, we will work
on deploying false data injection attack detection models into
real-time systems to build real-time notification and response
mechanisms.
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