
Received 6 November 2023, accepted 20 November 2023, date of publication 23 November 2023,
date of current version 29 November 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3336562

Revolutionizing Agriculture: Real-Time Ripe
Tomato Detection With the Enhanced
Tomato-YOLOv7 System
JUN GUO1, YUE YANG 1, XINYAN LIN1, MUHAMMAD SOHAIL MEMON2,3, WEI LIU1,
MEIQI ZHANG1, AND ENHUI SUN1
1School of Automotive Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
2Department of Farm Power and Machinery, Faculty of Agricultural Engineering, Sindh Agriculture University, Tando Jam 70060, Pakistan
3School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China

Corresponding author: Yue Yang (ycit_yy@163.com)

This work was supported in part by the Yancheng Institute of Technology, Yancheng, Jiangsu, China, through the School-Level Research
Projects under Grant 154203635.

ABSTRACT Traditional agricultural practices of hand-picking ripe tomatoes are labor-intensive and
inefficient for large-scale harvesting. To address this, we propose an innovative approach using the YOLOv7
algorithm for ripe tomato detection, enabling robotic arms to perform the picking. However, the occlusion of
tomatoes in the field often leads to unclear target features, causing false or missed detections. So it is worth
studying and this paper proposes a tomato detection method based on improved YOLOv7. The novelty is
shown below. First, a new structure called ReplkDext is redesigned to increase the receptive field. ReplkDext
is introduced before the last layer of CBS in the backbone. Secondly, to overcome the problem of low
FLOPS caused by frequent access to memory in traditional neural networks, the head structure of YOLOv7
is redesigned. By using FasterNet to optimize the structure between Concat and CBS in the head, FasterNet
makes the model balance between running speed and detection accuracy. Finally, to improve the ability
of convolution, ODConv is added after the last ELANN-2 structure in the Head layer. ODConv improves
the feature extraction ability of small targets and obtains more feature information about ripe tomatoes.
Experiments show that compared with YOLOv7, Map@.5 of Tomato-YOLOv7 has increased by 1.3%. The
model is overall better than other models. The overall contribution of the Tomato-YOLOmodel is to provide
important insights into agricultural product detection and provide a theoretical basis for automated tomato
harvesting in orchards.

INDEX TERMS Tomato, improved YOLOv7, target detection, occlusion, missed detection, map.

I. INTRODUCTION
In orchards, picking ripe tomatoes is usually done by hand.
This way wastes a lot of time and human resources [1], [2].
To solve the problem about low efficiency of manual pick-
ing, this paper applies machine vision to picking tomatoes.
Machine vision is mature and used in traditional and modern
industries, such as express sorting [3] and road vehicle detec-
tion [4]. Machine vision is rarely used in agriculture, so it is
of great significance to apply machine vision to agriculture.

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhenhua Guo .

Object detection is an important task in machine vision. Tra-
ditional object detection has the problems of long detection
time and poor robustness [5]. On the contrary, object detec-
tion in deep learning has the advantages of short detection
time and high detection accuracy, which greatly meets the
requirements of real-time detection in complex environments.
Currently, the mainstream deep learning model is YOLOv5,
YOLOv6 [6], YOLOv7 [7], and YOLOv8. In ripe tomato
detection, due to mutual occlusion between tomatoes, the
detector is easily disturbed by occlusion, and a wrong pre-
diction frame is given. Since YOLOv7 has the advantages of
being balanced in speed and accuracy, this paper proposes
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an improved YOLOv7 to improve the ability of YOLOv7 to
detect ripe tomatoes. The improved algorithm has theoretical
guiding significance for detecting small targets or occlusions,
and has important practical significance for applying agricul-
tural target detection.

In tomato detection, the detection object has few effective
pixels, a small scale, and lack of feature expression ability due
to mutual occlusion or small targets [8], [9], [10]. Therefore,
some tomatoes may not be detected in actual tomato detec-
tion. To solve this problem, this paper optimizes the structure
of the YOLO model to improve the feature extraction capa-
bility and accuracy of the model. In experimental results,
certain indicators are commonly used to assess whether the
model’s performance has improved, such as precision (P),
recall (R), mean average precision (MAP), frames per second
(FPS), parameters (Params), and floating-point operations
(FLOPs) [11].

To sum up, the novelty of the current work in this paper is to
optimize the ELANB and ELANN structures in the YOLOv7
model. First, this paper redesigns a new structure called
ReplkDext to increase the receptive field of the model’s back-
bone network. Second, the FasterNet structure is added to
enable the model to strike a balance between speed and detec-
tion accuracy. Finally, adding ODConv to the last small target
detection part in the head layer can effectively improve the
model’s feature extraction ability for small targets, thereby
obtaining more tomato feature information. Multiple sets of
data are tested, and it is verified that the improved model
can effectively solve missed or false detection of tomatoes
in agricultural orchard environments. This test shows that
the experiment achieves the research purpose of improving
model detection accuracy.

The overall contribution of this paper is to combine those
techniques in ripe tomato detection and prove the feasibility
of this type of approach, providing technical support for
later research on robotic arm grabbing tomatoes. It is of
great significance to realize the development of agricultural
automation and fruit grabbing.

II. RELATED WORK
Many scholars have conducted much research on the prob-
lem of small target detection. Their research methods have
improved the accuracy of small target detection, but some
problems are worth solving. Zhang et al. [12] proposed a
multi-scale remote sensing small target detection method
based on cosSTR-YOLOv7 to solve the problem of low target
detection accuracy caused by too little feature information
of small targets in geospatial remote sensing images. Con-
structing a new feature fusion layer in Neck reduces the
loss of feature information. Adding a small target prediction
layer in the prediction part improves the model’s ability to
detect small targets. The Map of the improved model is
improved by 3.73%. However, when the target features are
not obvious, there are still certain false or missed detections.
Wang et al. [13] proposed a small target detection method
based on improved YOLOv3-Tiny to solve difficult detection

problems and low detection accuracy of small ship targets in
remote sensing images. Mosaic data enhances and enriches
the feature information of the target, and using the CBAM
attention mechanism in the feature extraction part increases
the feature extraction ability of the target. Experiments show
that the improved model improves the accuracy. However,
the problem of mutual occlusion between small targets in
complex environments such as clouds and fog are caused,
leading to themodel’s unsatisfactory detection effect. In order
to solve the problems of object size change and complex
background interference in the UAV aerial photography scene
of the general target detection model, Ai et.al [14] added a
neighborhood attention transformer in the last layer of the
feature extraction network to retain global context informa-
tion to extract more features. The CA attention mechanism
is added to Neck to obtain channel and position information.
Experiments show that the improved NATCA-Greater YOLO
model map has improved by 2.9%. However, the detection
effect is not good for objects with similar categories. In order
to solve the problem that the infrared small target detection
algorithm has noise influence in multiple scenes and the
features are not obvious, Ni [15] used co-occurrence filtering
as a trainable convolutional layer, and then designed it as a
co-occurrence residual block in combination with residual
ideas to improve the recognizability of infrared images during
training. Whereas, due to the large amount of calculation of
the model, the model’s training process is affected. Li and
Liu [16] conducted data enhancement based on open-source
datasets to solve the problems of YOLOv5’s poor detec-
tion of small targets. The channel attention ECA module is
introduced to improve the recognition ability of the model.
In order to improve the ability of the small target detection
model, a small target detection layer is added to the Neck of
the YOLOv5 model. The Map@.5 of the improved YOLOv5
model has been improved by 2.6%.

Xiao et al. [17] proposed an improved lightweight
YOLOv3 target detection model for obstacle detection in
the mine environment to reduce the occurrence of mine
cart collision accidents. The residual network structure is
added to the lightweight YOLOv3 model. Experiments show
that the improved lightweight YOLOv3 model improves
target detection accuracy. Wu et al. [18] replaced the back-
bone of YOLOv3 with Densenet for feature extraction.
The improved YOLOv3 model effectively solved the prob-
lems of multi-target and multi-target occlusion. Detection
accuracy was improved by 2.44%. Wang et al. [19] used
Complete_IOU to replace the IOU in the traditional YOLOv3
to improve the recall and solved the problem of positive and
negative samples by improving the confidence loss function.
Experiments show that the improved YOLOv3 algorithm has
better detection accuracy, an increase of 3.75%. Zhang et
al. [20] used the INCEPTION module to process the deep
features of the network to activate the multi-scale perception
field and the Map of the improved YOLOv3 was 81%. Liu
et al. [21] connected two ResNets to Resblock in the fea-
ture extraction network and optimized the network structure
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darknet-53 by adding convolutional layers. Liu proposed an
optimization training for UAV observation datasets for UAVs
Methods. Experiments show that UAV-YOLO improves the
detection accuracy by 0.33% than YOLOv3. Du et al. [22]
proposed an ERF-YOLO algorithm to solve the problem that
the detection effect of small targets cannot reach the expected
effect. The ERF-YOLO algorithm proposes expanding the
receptive field block to increase the range of informa-
tion acquisition and upsampling the high-level information
through deconvolution to obtain more feature information.
The experiments show that the improvement of the latter
YOLO has 4% higher Map than the original YOLOv2.
Xianbao et al. [23] replaced the two-step down-sampling con-
volutional network in the original network structure with an
image bi-segmented bi-linear up-sampling network to expand
the eigenvalues. Adding a size recognition module to the
input layer reduces the loss of morpheme features caused
by no feature value filling. The residual network element
is added to the output network layer to enhance the feature
channel of small target detection. The experimental results
show that the P is increased by 6.1%, and theMap is increased
by 1.8%. Lim et al. [24] extracted the multi-scale features
of the network’s final output by splicing features and adding
an attention mechanism. The experiments show that the Map
reaches 78.1% on the PASCAL VOC2007 dataset. Ku et al.
[25] added an ISR module to the network output layer to
improve the resolution of the input image and replaced the
remaining blocks in the backbone network with dense blocks
to reduce the network structure parameters. Ku not only com-
bined SPPnet and PANnet, but also added foreground to the
loss function part and the background balance loss function.
The experimental results show that the AP of the improved
YOLO model is increased by 7.8%.

Table 1 summarizes the current status of previous research.
To sum up, previous research has improved the detection

accuracy of the model to a certain extent, but there are
still problems. For example, targets may not be detected in
complex environments. The image features in the dataset are
single and cannot meet the target detection requirements in
the actual process. In addition, the model’s generalization
ability is insufficient. If the detection object is changed, the
results may not be ideal. Therefore, we will start research
from themodel’s structure and dataset to solve these problem.
This paper uses Opencv-python code to expand the dataset
by simulating the natural state of multi-feature targets under
normal circumstances so that the model learns more target
feature information. By optimizing the YOLO network struc-
ture, the feature extraction capability and detection accuracy
of the model are improved. In addition, the open-source
dataset called VOC2007 will be used to verify the general-
ization problem of the model.

YOLO is an end-to-end object detection method [26].
The YOLO series includes YOLOv1-YOLOv8 [27], but ver-
sions prior to YOLOv5 are too old to meet the experimental

TABLE 1. Research status.
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TABLE 1. (Continued.) Research status.

requirements. Before selecting the experimental model, this
paper conducts benchmark testing. The self-made dataset
is used to conduct experimental comparisons of YOLOv5,
YOLOv6, YOLOv7 and YOLOv8 models. According to
experimental results, Regardless of params, GFLOPs or
Map@.5, the performance of YOLOv5 and YOLOv6 series
is not as good as YOLOv7. In the YOLOv8 series, although
YOLOv8l and YOLOv8m can also achieve better Map@.5,
they bring higher GFLOPs. Compared with other models,
YOLOv7 can achieve high accuracy and achieve a balance
between Params and GFLOPs.YOLOv7 has good perfor-
mance So that YOLOv7 is selected as the experimental model
to solve the occlusion problem in tomato detection.

YOLOv7 balances speed and accuracy perfectly, which
makes itself favored by the industry [28]. It has faster detec-
tion speed and higher accuracy [29]. YOLOv7 consists of an
input, backbone and head. The image is preprocessed at the
input end and input to Backbone for feature extraction. The
backbone layer comprises CBS, MP1, and ELAN [30]. CBS
includes Conv, BN and SiLU. MP1 includes Maxpool and
CBS. ELAN includes multiple CBS. The part of the head
layer includes SPPCPC, Conv, ELAN, MPConv, and REP.
SPPCSPCmodule and ELANmodules implement the feature
extraction function [31]. The Head layer outputs feature maps
of different sizes on the 75th, 88th, and 101st layers, and out-
puts prediction results through the reparameterized structure
called REP layer.

The innovation of YOLOv7 lies in the use of module
reparameterization and dynamic label assignment strategy,
which has achieved high speed and accuracy. It achieves a bal-
ance between accuracy and reasoning performance. However,
YOLOv7 adopts a new ELAN structure, MP structure and
Silu activation function in the network structure. YOLOv7
proposes the E-ELAN structure [32] based on the ELAN
structure, which realizes the continuous increase of the net-
work learning ability without destroying the original gradient
path. The network can learn more features and has stronger
robustness. TheMPmodule has two branches, which are used
for downsampling. The first one goes through a maxpool,
which is the maximum pooling. The function of maximum
pooling is downsampling, and then a 1 × 1 convolution is

performed to change the number of channels. The second one
passes through a 1 × 1 convolution to change the number of
channels, and then passes through a convolution block with a
3×3 convolution kernel and a step size of 2. This convolution
block is used for downsampling. Finally, the results of the first
branch and the second branch are added together to improve
the feature extraction ability of the network. In addition, the
dynamic label refers to the compound scaling of the YOLOv7
model. The new soft label method matches the detection
frame with the prediction frame one by one.

YOLOV7 proposes a training method for the auxiliary
head. The main purpose is to increase the training cost
and improve accuracy without affecting the reasoning time,
because the auxiliary head will only appear during the train-
ing process. YOLOv7 is mainly divided into two versions
with and without auxiliary training heads. In the Python code,
train.py is used for model training with the model including
the auxiliary training head, and train_aux.py is used formodel
training without the auxiliary training head in the model.

III. IMPROVED MODEL
A. TOMATO-YOLOV7 MODEL
YOLOv7 is derived from the YOLOv4 and other model
architectures [33]. In order to solve the problems of small
tomatoes with few effective pixels, small scale, and lack of
feature expression ability, the network structure of YOLOv7
is optimized. The improved YOLOv7 is named Tomato-
YOLOv7, which is specially used for detecting tomatoes in
agricultural orchards. As shown in Figure 1, it is the structure
of the Tomato-YOLOv7. Because of the problem that the
characteristics of the Occlusion are not obvious, methods for
optimizing the network structure of YOLOv7 can improve
the detection accuracy of the network model for tomatoes,
and effectively reduce the false detection rate. The newmodel
has made significant progress. It reduces the false detection
rate of green plants around tomatoes and increases the feature
extraction of tomatoes ability.

B. THE INNOVATION OF TOMATO-YOLOV7
To improve the Map@.5 of the model, the structure previ-
ously known as RepLKNet [34] undergoes a redesign and
has been rebranded as ReplkDext. ReplkDext is used in
the model, as shown in Figure 2(a), which indicates that
ReplkDext is introduced into the backbone of YOLOv7.
ReplkDext owns more shape information than the traditional
CNN so that the model achieves a higher Map. Compared
with the conventional 3 × 3 CNN, it has a larger kernel and
obtains a larger effective receptive field and higher shape
deviation. It can improve CNN feature extraction capabilities.

In order to solve the problem of the running speed of the
network model, this paper redesigned the ELANN structure
of the head layer of YOLOv7. Using FasterNet [35] (The
location is shown in Figure 3) optimizes the structure between
the traditional Concat and CBS. FasterNet has the advantage
of reducing redundant computation and memory access to
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FIGURE 1. Structural of tomato-YOLOv7.

improve spatial feature extraction capabilities. The structure
of FasterNet is shown in Figure 4. FasterNet overcomes the
problem of low FLOPS caused by frequent access to memory
in traditional neural networks, and can achieve a balance
between running speed and detection accuracy. In view of
the fairness of the experiment and to ensure the consistency
of the experimental training parameters, the optimization of
the 4 ELANN structures in the head layer is changed to
the optimization of the last 2 ELANN structures, which can
ensure the detection accuracy while improving the running
speed. In Figure 4, Global Pook, Conv1× 1 and FC are used

for feature conversion and classification. The normalization
layer (BN) and activation layer (ReLU) are placed between
twoConv 1×1 tomaintain feature diversity and achieve lower
Delay. Compared with the base YOLOv7 model, the FPS of
the Toma-to-YOLOv7 model has increased by 25.

To improve the ability of convolution, ODConv [36] is
added after the last layer of ELANN-2 structure in the
YOLOv7 network structure Head to improve the feature
ex-traction ability of small targets and obtain more feature
information of tomatoes. As shown in Figure 5(a), The
improved ELANN-2 structure is named ELANN-3. As shown
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FIGURE 2. ReplkDext location information and structure of ReplkDext.

in Figure5(b), the ODConv structure has the advantage that
it can significantly enhance the feature extraction ability
of CNN’s basic convolution operation. ODConv utilizes a
multi-dimensional attention mechanism to learn four types of
attention for convolution kernels along all four dimensions of
the kernel space in a parallel manner, and These attentions are
gradually applied to the corresponding convolution kernels to
improve performance.

IV. MATERIALS AND METHODS
A. TOMATO DATASET
Tomatoes are classified according to the national standard
GH/T1193-2021.This paper collects ripe tomatoes in the

FIGURE 3. Structure location information of FasterNet.

FIGURE 4. An illustration of the architecture and design of the FasterNet
model structure.

natural environment of agricultural orchards by cameras [37].
Due to the presence of green plants around, the feature infor-
mation of the target tomato is not fully displayed. The original
dataset is expanded by Opencv on some of the images.
Methods such as cropping pictures and stitching pictures can
effectively simulate the state of tomatoes in the natural envi-
ronment so that model gets more information. In addition,
the Gaussian filter can effectively reduce the interference of
camera noise to the experiment during the shooting process.

However, labelImg software is used to label the dataset’s
images and generate XMLfiles. As shown in Figure 6, it is the
labeling process of the dataset. The data set has 2410 images
and 2410 XML files, which are divided into the training sets
and verification sets according to the ratio of 8:2. Moreover
the relevant configuration of the experimental environment is
shown in Table 2.
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FIGURE 5. Location information and structure of ODConv.

B. MODEL TRAINING
The dataset is divided in proportion. The training set is 1913,
and the verification set is 497. The training parameters of the
model are as follows. The batch- size of the model is 32.
Epochs is 200, and other parameters are the default param-
eters of the model. The default parameters include weights,

FIGURE 6. The labeling process of the tomato dataset.

TABLE 2. Experimental configuration of YOLOv7.

cfg, data, img-size and others. Model training does not load
pre-trained weights. Cfg represents the trained model. Data
contains the relevant information of dataset. Img-size is set
to 640× 640. This paper utilizes various models for training.
Mean average precision (Map)plays an important role in
the model [38]. In order to verify the effectiveness of the
improved model, an ablation experiment is carried out on the
improved model.

C. EXPERIMENTAL COMPARISON
1) IMPROVEMENT EXPERIMENT OF YOLOV7
In this paper, aiming at the problem of inconspicuous features
caused by the occlusion of tomatoes in agricultural orchards,
the network structure of the YOLOv7 model is improved.
The indicators of the improved model are shown in Table 3,
and the table contains ablation experiments for the improved
model.

2) COMPARATIVE EXPERIMENTS OF THE SAME DATASET
AND DIFFERENT MODELS
To verify the effectiveness of the improved model, the
Tomato-YOLOv7 model is compared with YOLOv5,
YOLOv6 and YOLOv8. YOLOv5 has different versions to
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TABLE 3. Experimental results of ablation experiments about YOLOv7 on the tomato dataset.

TABLE 4. Comparative analysis of various performance of different deep learning models.

adapt to different computing power and real-time require-
ments. Yolov5l, yolov5m, yolov5s and yolov5n only differ
in model depth (number of C3 modules) and width (number
of channels in the network), and everything else is the same.
The ‘‘l’’ in YOLOv5l stands for ‘‘large’’, and this model
is used on devices with strong computing capabilities. The
‘‘m’’ of YOLOv5m stands for ‘‘medium’’, and this model
is used on devices with certain computing capabilities. The
‘‘s’’ of YOLOv5s stands for ‘‘small’’, and this model is used
on mobile devices or edge devices. YOLOv5n is exclusively
used on Nano devices. The same is true for YOLOv6 and
YOLOv8.

As shown in Table 4, it is obvious that the Map@.5 of
the Tomato-YOLOv7 is 89.3, which is higher than that of
other models. Under the premise of ensuring the detection
accuracy of Tomato, the Params, and GFLOPs of the Tomato-
YOLOv7 are superior to other YOLO models. It verifies the
effectiveness of the improvement.

Whether a model is more effective than other contem-
porary deep learning methods is mainly judged through
some evaluation indicators. Among them, Map@.5 is the
main indicator for evaluating the YOLO model. As shown
in Table 4, Although YOLOv5 has similar Params and
GFLOPs, the main evaluation index Map@.5 is lower than
Tomato-YOLOv7’s Map@.5. Therefore, the performance of
Tomato-YOLOv7 is better than YOLOv5. Regardless of
Map@.5, Params and GFLOPs, the performance of YOLOv6

is not as good as Tomato-YOLOv7. Map@.5, Params and
GFLOPs of Tomato-YOLOv7 can outperform other models.
It is obvious from Table 4 that while theMap@.5 of YOLOv8
is improved, the GFLOPs quickly increase to 164.8. This
result is not good. In comparison, Tomato-YOLOv7 has bet-
ter performance.

3) GENERALIZATION OF TOMATO-YOLOV7 MODEL
The generalization of the model is an important indicator for
evaluating the mod-el. The generalization of the model is
judged according to the degree to which the same model uses
different datasets to improve the performance of the model.
This paper verifies the model’s generalization using the
open-source dataset called VOCtest_06-Nov-2007. As shown
in Table 5, the P and Map of the Tomato-YOLOv7 are better
than the YOLOv7, and the experimental results show the
model’s generalization. The improved model in this paper is
suitable for applications in related fields.

4) DETECTION RESULTS OF DIFFERENT MODELS
Figure 7 shows the detection results of different models.
Images on the left are the result of YOLOv7. Images on the
right are the result of Tomato-YOLOv7. The dataset collects
ripe tomatoes, so the green tomatoes in the picture cannot be
detected. There are missed detections in the image on the left.
On the contrary, the right image has a better detection effect.
It is obvious that the improvedmodel in this paper is effective.
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TABLE 5. Generalization experiments of the model.

FIGURE 7. Image detection through different models.

V. RESULTS AND DISCUSSION
A. COMPARISON OF DIFFERENT MODELS ON MAP
The epochs of the model proposed in the experiment is 300.
Since the training results show that the model tends to be sta-
ble when the epochs are around 200. So epochs of training are
200.The map is an important indicator of model evaluation
during the training, and its meaning is the average detection

accuracy of the model. TheMap formula is shown as follows:

Map =
1
n

n∑
i=1

APi (1)

As shown in Figure(a), they are the Map of YOLOv7 and
Tomato-YOLOv7 during the training. Whether it is Map@.5
or Map@.5: 0.95, the Tomato-YOLOv7 is higher than the
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FIGURE 8. Comparison of different maps curves of various models.

basic model YOLOv7.So it verifies the effectiveness of the
model improvement. As shown in Figure 8(b) and 8(c), It is
the comparison of other models on Map.

As shown in Figure(d), it compares Tomato-YOLOv7,
YOLOv7, YOLOv5l, YOLOv6s, and YOLOv8l. It is clear
that the Tomato-YOLOv7 model outperforms other models.
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In order to better improve the detection accuracy, the model
controls the stability of the model during training, which
promotes the slow growth of the model’s Map@.5. After
Epochs>=125, the growth rate of model accuracy increases
and is much higher than other models. Tomato-YOLOv7 adds
about 11M params and about 0.6 GFLOPs, in exchange for a
1.3% accuracy improvement.

B. COMPARISON OF DIFFERENT MODELS ON FPS
In target detection, FPS is an important indicator for real-time
detection. For example, 50FPS means there are 50 frames per
second. From the Table 3, the FPS of YOLOv7 is 45 while the
FPS of Tomato-YOLOv7 is 42. It meets the requirements of
real-time detection. From Table 4, it can be seen that although
other YOLO models have achieved good FPS, but ignoring
Map. the Map of the model is not as good as that of the
Tomato-YOLOv7 model.

C. COMPARISON OF DIFFERENT MODELS ON PARAMS
AND GFLOPS
In Table 3, the parameters of YOLOv7 and related models
in the ablation experiment are stable at 37 to 48, and the
GFLOPs are stable at 6.44 to 7.04. The Tomato-YOLOv7
increases the detection accuracy of Tomato by 1.3% based
on adding a small amount of param and GFLOPs.

In the comparative analysis of Tomato-YOLOv7 and
YOLOv5, YOLOv6, and YOLOv8, the performance of
Tomato-YOLOv7 has an advantage about Map@.5, params,
and GFLOPs. Because YOLO experimental research mainly
pursues Map. It is evident from Table 4 that although
YOLOv5m, YOLOv5s and YOLOv5n have very low params
and GFLOPs, the main Map@.5 is very bad and cannot reach
the expected value. The YOLOv6 series fail to achieve a
good balance on Map@.5, params and GFLOPs in this paper.
In addition, YOLOv8s and YOLOv8n also have very low
params and GFLOPs, but the main Map@.5 is not ideal.it is
far from the performance of Tomato-YOLOv7. No matter in
terms of Map@.5, params and GFLOPs, the performance of
the Tomato-YOLOv7 is obviously superior to other models.
Map@.5 is much higher than other models by at least 1.3%,
and params and GFLOPs can reach a balance. This reflects
the effectiveness of the model improvement.

D. TIME CONSUMED BY THE MODEL
From Table 3, it is obvious to draw a conclusion that the
improved Tomato-YOLOv7 model has a similar time to
YOLOv7. The entire time is 0.01 seconds. and the time
floats on this basis. By rounding the times in Table 4, it is
not difficult to find that the time for YOLOv5l, YOLOv6l,
YOLOv6m, YOLOv8l and YOLOv8m is 0.02 seconds, and
the other models are all 0.01 seconds. Compared with other
models, the detection accuracy is improved and Time will
increase at the same time. The model proposed in this
paper achieves a runtime of 0.01 seconds while maintaining
higher accuracy. Therefore, the improved model has more
advantages.

E. GENERALIZATION OF THE MODEL
In this paper, the experiment on YOLOv7 is carried out on the
self-made dataset Tomato, and the result shows that the detec-
tion accuracy of the Tomato-YOLOv7 is improved. However,
the generalization of the model is also an important indicator
for evaluating a model. The model’s generalization means
that other datasets can also improve the detection accuracy of
the Tomato-YOLOv7. The dataset is replaced with the public
dataset called VOCtest_06-Nov-2007. Previous experiment
is repeated. According to Table 5, the Map@.5:0.95 of the
Tomato-YOLOv7 has been steadily improved by 2.1%, and
Tomato-YOLOv7 has good generalization. Therefore, it can
be extended to other Target Detection and has good theoreti-
cal significance.

F. LIMITATION OF STUDY
The limitation of this study is the number of images about
tomatoes in different environments. For example, tomatoes
grow in rainy, foggy, snowy and other complex weather con-
ditions. Due to limited experimental conditions, the images
in the dataset were taken in a single environment. Next study
will expand the number of images in the dataset. Taking
more pictures in different complex environments is used to
increase the diversity of tomatoes under study and enhance
the generality of the improved model.

VI. CONCLUSION
In order to solve the problem of missed detection or false
detection in ripe tomato detection, this paper proposes a
model based on improved YOLOv7. This paper creates a
dataset about ripe tomatoes, and extracts some images from
the dataset for some image processing. Image processing
includes Gaussian filtering that reduces the image’s noise and
suppresses the external environment’s influence on the exper-
imental results. The model has been improved as follows.
ReplkDext is added to the backbone layer of the YOLOv7,
which obtains more shape information and enhances feature
extraction capabilities of model. It improves Map@.5 by
0.7%. Using FasterNet optimizes the structure of ELANN
in the Head layer, which reduces redundant calculation and
memory access to enhance the ability of spatial feature
extraction. The model achieves a balance between running
speed and detection accuracy. It improves Map@.5 by 0.9%.
ODConv uses a multi-dimensional attention mechanism and
a parallel method to learn the four types of attention of the
convolution kernel and apply it to the corresponding con-
volution kernel to improve the feature extraction ability of
the convolution and operation. It can get more characteristic
information about Tomato. It improves Map@.5 by 0.8%.
TheMap@.5 of Tomato-YOLOv7 is 1.3% higher than that of
YOLOv7. The improved model can effectively solve the false
or missed detection caused by occlusion in tomato detection.
In addition, the FPS of Tomato-YOLOv7 reaches 42, which
meets the requirements of real-time detection.
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The scenes where tomatoes are located in the data set of
this article are limited. Follow-up research can add tomato
data sets in multiple environments (such as rainy days, snowy
days and foggy days) to increase the quality of the data set.
In future research, research can be conducted towards tomato
target detection inmore complex environments. Object detec-
tion in complex situations is the next research goal.
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