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ABSTRACT Stroke is the second leading cause of death worldwide, and around 87 % of strokes are
ischemic strokes. Accurate and rapid prediction techniques for identifying ischemic regions, including dead
tissue (core) and potentially salvageable tissue (penumbra), in patients with acute ischemic stroke (AIS)
hold great clinical importance, as this can provide valuable information for diagnosis and treatment planning.
Computed Tomography Perfusion (CTP) is often used as a primary tool for assessing stroke location, severity,
and the volume of ischemic regions. Current automatic segmentation methods for CTP typically utilize pre-
processed 3D parametric maps, traditionally used for clinical interpretation by radiologists. An alternative
approach is to use the raw CTP data slice by slice as 2D+time input, where the spatial information over
the volume is overlooked. Additionally, these methods primarily focus on segmenting core regions, yet
predicting penumbra regions can be crucial for treatment planning. This paper investigates different methods
to utilize the entire raw 4D CTP as input to fully exploit the spatio-temporal information, leading us to
propose a 4D convolution layer in a 4D CNN network. Our comprehensive experiments on a local dataset
of 152 patients divided into three groups show that our proposed models generate more precise results than
other methods explored. Adopting the proposed 4D mJ-Net, a Dice Coefficient of 0.53 and 0.23 is achieved
for segmenting penumbra and core areas, respectively. Using the entire 4D CTP data for AIS segmentation
offers improved precision and potentially better treatment planning in patients suspected of this condition.

INDEX TERMS 4D convolution, acute ischemic stroke, computed tomography perfusion, deep neural
network, image segmentation.

I. INTRODUCTION
Neurological disorders are the primary contributor to
disability-adjusted life years and the second most prevalent
cause of death globally [1], with cerebral stroke as the leading
cause of these disorders. This study focuses on ischemic
stroke, which constitutes the majority of cerebral strokes [2].

The associate editor coordinating the review of this manuscript and

approving it for publication was Hengyong Yu .

A precise and fast comprehension of the brain tissue affected
by an ischemic stroke holds substantial value in guiding
decision-making and treatment planning. An acute ischemic
stroke (AIS) generally occurs if a segment of the supplying
arteries of the brain is occluded by a blood clot and prevents
the regular flow of oxygen-rich blood to the capillaries in the
brain tissue.

The ischemic area can roughly be divided into two different
types: 1) penumbra, areas where the tissue is still vital but
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FIGURE 1. Visual representation of the various regions that can be
defined after an IS: penumbra (in orange) and core (in red) can be
localized during the initial stage of the neurological conditions, while the
final infarct area (in dark gray) is determined during a follow-up study,
after treatment.

critically hypoperfused [3]; and 2) core, referring to non-
salvageable tissue. Fig. 1 represents a visual description of
penumbra, in orange, and core, in red, after a scan at hospital
admission. If blood flow is not restored timely, penumbra
regions may develop rapidly into irreversibly damaged core
regions. Therefore, a fast and accurate understanding of
ischemic areas to plan the treatment and tailor further
procedures to every single patient is fundamental.

The recommended modalities for diagnostic imaging in
AIS patients are Computed Tomography (CT) and Magnetic
Resonance Imaging (MRI) [4]. In the initial stages of an AIS,
CT Perfusion (CTP) has proven to be a fast and beneficial
tool for evaluating both diagnosis and prognosis [5]. MRI
with Diffusion-weighted imaging (DWI) or non-contrast CT
(NCCT) are commonly utilized after treatment to assess the
final infarct areas (FIAs) [6] (in dark gray color in Fig. 1).
These imaging modalities are obtained hours or days after the
patient’s treatment.

CTP is a four-dimensional (4D) spatio-temporal exam-
ination to assess the passage of blood in the brain. It is
performed by acquiring a series of three-dimensional (3D)
CT scans of a specific portion of the brain at time intervals
during contrast agent injection. By using an iodinated
contrast agent, density changes in the brain tissue over
time can be analyzed. The shape and height of the time
density curve depend on the brain tissue’s perfusion [7].
The abundance of images in the raw 4D CTP poses a
challenge for neuroradiologists in detecting ischemic strokes.
The 4D volume of CTP requires simultaneous evaluation of
the propagation of contrast fluid across all spatial regions
of the specific portion of the brain over time to identify
ischemic regions. However, this becomes impractical due to
the complexity and the sheer volume of images involved.
This complexity significantly prolongs the time required for
analyzing the CTP study, which is highly detrimental in

situations requiring accurate diagnosis and prompt treatment
decisions.

To overcome this challenge, medical doctors rely on soft-
ware estimating a set of clinically interpretable parameters
related to the propagation of the contrast fluid combining
all the temporal information for each pixel generated from
the 4D CTP scan. This gives a set of 3D parametric maps
(PMs) [7], [8]. Commonly used PMs are cerebral blood flow
(CBF), cerebral blood volume (CBV), time-to-maximum
(TMAX), and time-to-peak (TTP). CBF represents the blood
supply in the brain at a given time; CBV refers to the blood
volume present at a given time in a brain region; TMAX
is the flow-scaled residue function in the tissue, while TTP
shows the time until the contrast agent reaches the tissue
[7]. Maximum intensity projection (MIP) is also usually
generated. MIP images are calculated as the maximum
Hounsfield unit (HU) value over the time sequence of the
CTP, providing a 3D volume from the 4D acquisition of CTP.
Although PMs provide helpful information about ischemic
brain tissue, extracting them from the 4D CTP scans limits
the spatio-temporal information only to specific subsets of
information [9].

In this study, the objective is to develop a fully automated
method to segment the penumbra and core regions in
AIS patients based on the raw 4D CTP input. The main
contributions of this work can be summarized in three points:

1) We propose a 4D convolution layer and use that
to propose a DNN model, 4D mJ-Net, to segment
ischemic core and penumbra areas from 4D CTP scans.

2) We extend multiple existing methods for 3D CTP to
4D CTP to perform a comparison with the proposed
4D convolution solution.

3) To assess the results, we use manual annotations
obtained by two expert neuroradiologists from the
4D CTP data upon patients’ admission. We also
demonstrate the feasibility of our proposed methods
by comparing their performances with existing models
that rely on different inputs.

II. PREVIOUS WORK
Several methods [6], [10], [11], [12], [13] have used thresh-
olding techniques to predict the ischemic areas from the PMs.
However, simple thresholding approaches over-simplify the
complexity in AIS [14], [15].
In the past years, Deep Neural Networks (DNNs), and

especially Convolutional Neural Networks (CNNs), have
been successfully applied in numerous medical applications:
image classification tasks [16], [17], [18], [19], [20],
automatic video analysis [21], [22], and activity recognition
[23], [24], [25]. Automatic image segmentation adopting U-
Net structure [26] and its numerous variants have produced
innovative outcomes for several applications [27], [28], [29],
[30], [31].

Several DNNs have been proposed for AIS applications
to predict and segment only the FIAs using CT studies in
combination with PMs derived from CTP scans as input
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[32], [33], [34], [35], [36]. Other researchers have proposed
architectures to segment the ischemic lesion (i.e., the core)
from the images obtained at hospital admission. Kasasbeh
et al. [37] were the first to implement a CNN with a set of
PMs as input for ischemic core segmentation. Tomasetti et al.
[38] proposed a few-shot self-supervised architecture for
hypoperfused (core + penumbra) tissue segmentation using a
combination of PMs and raw scans as input of the model. The
work demonstrated the feasibility of using self-supervised
techniques to segment this tissue type. Werdiger et al.
[39] introduced a machine learning segmentation method to
delineate hypoperfused tissue, demonstrating the capabilities
of this methodology over classic thresholding approaches.
They used four PMs as input features for their model.
However, a general problem with all the methods mentioned
above is relying on commercial CTP software and using
heavily pre-processed information (i.e., PMs) rather than
taking advantage of the totality of the raw 4D CTP scans.

DNNs are more suitable for discovering information from
raw data. Nevertheless, relying on raw data (directly exploit-
ing the temporal and spatial dimensions) is scarcely explored
in the literature for AIS applications. The task is challenging
because of the low contrast and low signal-to-noise ratio in
the CTP scans. Relatively few studies proposed DNNmodels
with encouraging results, exploiting the temporal dimension
to assess acute stroke lesions using 4DCTP scans. Soltanpour
et al. [9] utilized CTP images to create 2D matrices in
which each row is a voxel, and each column is a time point.
The 2D matrices are used as input for a model that shows
encouraging results in differentiating healthy tissue from
FIAs. Vries et al. [40] promoted a 2D+time symmetry-aware
CNN-based architecture to segment FIAs using solely CTP
scans. Their work estimated the irreversibly damaged areas,
demonstrating the possibilities of using 4D CTP images for
this task. Bertels et al. [41] used a U-Net-like structure for
segmenting FIAs using CTP scans as an input plus contra-
lateral information. Results were promising, but further
research is needed due to their far-from-ideal registration of
the contra-lateral information. Rosa et al. [42] introduced
a two-step model for estimating FIAs using the 4D CTP
series as input. They first generate an arterial input function
and later deconvolve it with a singular value decomposition
approach to find the infarction. Amador et al. [43] designed
a framework based on the Temporal Convolution Network
to predict AIS FIAs from 4D CTP studies. Due to memory
constraints, they independently processed each 2D slice of
the 4D CTP dataset. In their recent work, Amador et al. [44]
also proposed an extension of their model where 3D+time
tensors of the ipsilateral stroke hemisphere are used as input
to predict FIAs. Robben et al. [45] proposed a DNN that
predicts the FIAs directly from 4D raw CTP plus patients
metadata. Their proposed architecture relied on a series of
3D Convolution layers; the input is a list of 4D CTP scans
sampled at different resolutions. Their method presented
promising segmentation results; however, their main target
was to estimate the final infarct volume, allowing clinicians

to simulate different treatments and gain insight into the
procedures. They were not taking into consideration the
penumbra in their study. Plus, the quality of the ground
truth images is debatable since they rely on NCCT follow-
up images acquired between 24 hours and five days after
patient’s admission. It has been reported that FIAs can grow
after 24 hours in NCCT measurements [46].

All the segmentation methods in the previous paragraph
rely on ground truth labels obtained from DWI and/or
NCCT hours or days after the patient’s admission since
they predict FIAs. Even though follow-up images (DWI and
NCCT) represent the gold standard for estimating core [6],
there are some limitations with these techniques [47], [48].
Follow-up images can only be used to assess FIAs but not
penumbra regions. Plus, some studies have demonstrated that
the detected FIAs can be partially reverse in DWI performed
in an early time window [48], [49], [50].
Previous studies have indicated the potential of 4D data

in AIS prediction [9], [40], [41], [42], [43], [44], [45],
with a critical gap as they only consider predicting FIAs.
An appropriate method is still required to simultaneously
handle the spatio-temporal information for segmenting the
ischemic core and penumbra regions. Understanding the
penumbra’s extension during the ischemic stroke’s first stages
is crucial for treatment decision [51], [52]. To the best of our
knowledge, our work in Tomasetti et al. [52] using machine
learning, and later in Tomasetti et al. [53], [54] using DNN,
were the first and only to segment both core and penumbra
areas. In [52] and [54], the PMs were used as input, and in
[53] 2D + time CTP images were segmented slice-by-slice.

Building upon our previous works [52], [53], [54] and
filling the critical gap left by previous studies [9], [40],
[41], [42], [43], [44], [45], in this paper, we present and
investigate three novel models to segment the two ischemic
regions (core and penumbra), where the input is the entire
4D CTP scans arranged in different ways to exploit the
spatio-temporal nature of the data. We compare all models
with previous work based on PMs [54] and slice-by-slice
CTP [53], and two methods from the literature proposed by
Amador et al. [43], [44].

III. DATA MATERIAL
A section of the brain is repeatedly scanned during the pas-
sage of 40 ml iodine-containing contrast agent (Omnipaque
350 mg/ml) and 40 ml isotonic saline in a cubital vein with
a flow rate of 6 ml/s to highlights changes in the tissue;
the scan delay was four seconds. Each brain slice contains
a fixed number of time points tmax representing the temporal
dimension. The width and height of each image are 512 ×
512 pixels with a resolution of 0.4258 mm/pixel and a slice
thickness of 5mm. The first twenty time points are acquired
every 1s, and the remaining ten images every 2s.

CTP scans from 152 patients collected between January
2014 and August 2020 formed the dataset. 137 of these
patients had an AIS with a visible perfusion deficit. During
the diagnostic workup, the remaining 15 patients were
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admitted with suspected strokes but were determined not
to have suffered from a stroke episode after the diagnostic
workup. The raw CTP studies are saved as DICOM files.
Raw perfusion data from the CTP examination was used
to generate PMs with the software ‘‘syngo.via’’ from
Siemens Healthineers, with manufacturer default settings.
The arterial input function was automatically selected, with
few exceptions where it was chosen manually (e.g., severe
cardiac failure).

The patients were divided into the following groups:
77 patients with large vessel occlusion (LVO), 60 patients
with non-large vessel occlusion (Non-LVO), and the remain-
ing 15 patients without ischemic stroke (WIS). Based on
CT angiography, LVO was defined as occlusion of any
of the following arteries: the internal carotid artery, M1
and proximal M2 segment of the middle cerebral artery,
A1 segment of the anterior cerebral artery, P1 segment of
the posterior cerebral artery, basilar artery, and vertebral
artery occlusion. Non-LVO was defined as patients with
perfusion deficit with more distal artery occlusion or with
perfusion deficit without visible artery occlusion. The dataset
is randomly split into a training, validation, and test set. The
percentage of the three subsets (LVO, Non-LVO, WIS) is
equally distributed among the sets, as shown in Table 1.

TABLE 1. Division in training, validation, and test dataset.

A. GROUND TRUTH
The manual annotations are based on the entire CT dataset,
including the PMs derived from CTP. MRI performed during
the first days after hospital admission was also utilized. Two
expert neuroradiologists manually annotated ground truth
images by utilizing the complete set of the CT examination
(NCCT, CT angiography, and CTP), which includes PMs
from the CTP (CBV, CBF, TTP, TMAX) and the MIP
images. The PMswere visually assessed. In general, ischemic
regions with increased TTP and TMAX and reduced CBF
but preserved CBV were considered as penumbra, while
areas with additionally reduced CBV were deemed as core.
Additionally, the MRI examination, including DWI, obtained
within 1 to 3 days after the CT examination, and clinical
information, was used to assist in generating the ground truth
images. The annotations were performed using an in-house
developed software in Matlab.1

1The code is publicly available at the following link https://github.com/
Biomedical-Data-Analysis-Laboratory/CTP-Matlab

IV. BACKGROUND THEORY
A. NOTATION
Table 2 presents the various formal notations adopted in the
remainder of the paper. Let the data obtained from a CTP scan
be defined as a 4D tensor V ∈ R(X×Y×Z×T ). After a series
of pre-processing steps (details in Sec. IV-B), we define the
4D tensor as Ṽ ∈ R(X×Y×Z×T ). The four dimensions of a
CTP scan are defined as width (X ), height (Y ), depth (Z ),
and time (T ). The list of time points in the time dimension is
given by t = [tj|∀j ∈ {1, 2, · · · , tmax}], where tmax is the last
time point of the list.We indicate how the notation superscript
adopts the time dimension in the various inputs. Furthermore,
we define z = [zi|∀i ∈ {1, 2, · · · , zmax}] as the list of brain
slices in the depth dimension, where zmax corresponds to the
last slice.We illustrate how the depth dimension is being used
in the inputs through the notation subscript. Fig. 3 displays the
input combination of all the techniques.

TABLE 2. List of formal notations used in the paper.

All methods return a 3D output, segmenting the images Pzi
slice-by-slice. The segmented 2D image Pzi corresponds to a
brain slice zi at index i. The predicted imagePzi contains brain
tissue segmented with the classes C (if any): healthy brain,
penumbra, and core.

B. PRE-PROCESSING STEPS
The 4D CTP dataset underwent a series of pre-processing
steps to extract brain tissue from the raw CTP scans.
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Algorithm 1 Pre-Processing Steps for One Single Patient
Study
Input: 4D CTP scan: V (x, y, z, t)
ref ← V (x, y, z, t1)HU {Get the 1st time point image as
frame of reference}
for j = 2 to tmax do
Co-register V (x, y, z, tj) using ref as frame of reference.

end for
V (x, y, z, t)HU← ConvertToHU(V (x, y, z, t))
V̇ (x, y, z, t) ← BrainExtraction(V (x, y, z, t)HU) {The
brain extraction function is designed by Najm et al. [55]}
V̈ (x, y, z, t)← GammaCorrection(V̇ (x, y, z, t))
zhigh← GetSliceWithHighestIntensityValue(V̈ (x, y, z, t))
bins← 216

Ṽ (x, y, zhigh, t), Tzhigh ← HistEq(V̈ (x, y, zhigh, t), bins)
{Tzhigh is the grayscale transformation for zhigh}

Ṽ (x, y, zhigh, t) ←
Ṽ (x,y,zhigh,t)−mean(Ṽ (x,y,zhigh,t))

σ (Ṽ (x,y,zhigh,t))
{Stan-

dardization of the data}
for i = 1 to zmax do
if i ̸= zhigh then
Ṽ (x, y, zi, t)← HistEq(V̈ (x, y, zi, t), Tzhigh )
Ṽ (x, y, zi, t)←

Ṽ (x,y,zi,t)−mean(Ṽ (x,y,zi,t))
σ (Ṽ (x,y,zi,t))

end if
end for
return Processed 4D CTP scan: Ṽ (x, y, z, t)

Algorithm 1 describes in detail the various steps for
pre-processing all the data in a patient study. Furthermore,
each step can be summarized as follows:

1) Co-registration of all the images in the 4D CTP scan
using the first time point image as the frame of
reference in order to correct possible motion artifacts.
An intensity-based image registration with similarity
transformation was used in this step.

2) All the registered CTP scans were encoded into
HU values to have a known quantitative scale to
describe radiodensity efficiently.We used the following
equation to calculate the HU value for a voxel V
with a rescale slope (RS) and a rescale intercept (RI)
extracted from the DICOM header: V (x, y, z, t)HU =
V (x, y, z, t) · RS+ RI

3) Brain extraction of CT studies plays an essential role in
stroke imaging research [55], [56]. An automatic brain
extraction method designed by Najm et al. [55] was
selected for this purpose due to its proven efficiency
with CT datasets and public availability.

4) Gamma correction (γ = 0.5) and histogram equaliza-
tion (HE) were also performed after step 3 to increase
contrast and visual interpretability on the CTP scans.

5) Finally, z-score (z) on the enhanced 4D tensor is applied
to normally distribute the data. Thus, every study has a
mean of 0 and a standard deviation of 1, ensuring that
all CTP studies have a similar scale.

The input for all the methods (except for the Multi-input
PMs’s approach) follows the same pre-processing steps.
These steps were performed to improve the quality of the
images by enhancing the contrast. For a detailed explanation
of the pre-processing steps, we refer the reader to [38] and
[53]. An additional re-sampling step for all the images was
performed to ensure uniform distribution in the temporal
dimension. The pre-processing steps and re-sampling effects
are examined in an ablation study in Sec. VI-C.

C. CONVOLUTION IN MANY DIMENSIONS
A handful of DNN methods have been proposed to exploit
4D data with a full 4D Convolution (4D-Conv) layer. Using
4D-Conv for 4D data produced better performances than
using multiple 3D Convolutions (3D-Conv) on the same data.
Gessert et al. [57] and Bengs et al. [58] proposed a 4D
spatio-temporal convolutional network to optical coherence
tomography force estimation. They demonstrated that using
the full 4D data information yields better performances
than 3D data. Myronenko et al. [59] introduced a 4D CNN
to segment cardiac volumetric sequences using CT scans,
showing the advantages of using their proposed architecture
compared to a classic 3D CNN.

In the remainder of this manuscript, let’s define
I (x, y, z, t) ∈ R4,H(w, h, d, p) ∈ R4 as a 4D tensor and a
4D kernel, respectively. The x and w indicate the width of
the 4D structures; y and h express the height dimension; z
and d define the depth dimension, while t and p represent
the time dimension of the 4D structures. Like a 3D-Conv
can be represented as the sum of multiple 2D Convolution
(2D-Conv) along the depth dimension, a 4D-Conv operation
can be described as the sum of numerous 3D-Conv along
the temporal dimension. The loop rearrangement to avoid
repeated 3D-Conv operations allows a true (non-separable)
4D convolution operation [59].
A 4D-Conv g′′′′(x, y, z, t) of a 4D input I (x, y, z, t) ∈

R4 and a 4D kernelH(w, h, d, p) ∈ R4 can be defined as:

g′′′′(x, y, z, t) = H(w, h, d, p) ⊛ I (x, y, z, t)

=

p−1∑
l=0

d−1∑
k=0

w−1∑
i=0

h−1∑
j=0

H(i, j, k, l)I (x̃, ỹ, z̃, t̃),

where x̃ ≡ x + w̃ − i, ỹ = y + h̃ − j, z̃ ≡ z + d̃ − k , and
t̃ ≡ t + p̃− l. For a detailed description of the 2D-Conv and
3D-Conv, we refer to the additional supplemental material
linked with the manuscript.

We define a 4D-Conv g′′′′(x, y, z, t) and a 4D kernel
H(w, h, d, p) as the sum of multiple 3D-Conv over a
specific dimension, i.e., the third dimension. The 4D kernel
H(w, h, d, p) can be seen as a list ofH(w, h, k, p)|∀k ∈ d−1,
whereH(w, h, k, p) is a 2D+time volume of the kth slice over
the entire p elements in the temporal dimension:

g′′′′(x, y, z, t) = H (w, h, d, p) ⊛ I (x, y, z, t)

=

d−1∑
k=0

H(w, h, k, p)I (x, y, z+ d̃ − k, t)
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FIGURE 2. Visual representation of a 4D-Conv layer. The input is
V̂ t

zI = ϕ(V̂ t
zi−1

, V̂ t
zi

, V̂ t
zi+1

) ∈ R(X×Y×Z×T ). A series of 3D-Conv
operations are calculated over a 4D input. Several groups (Gi−1, Gi , Gi+1)
are generated, one for each volume involved in the operation.

=

d−1∑
k=0

g′′′(x, y, z+ d̃ − k, t),

where I (x, y, z+ d̃−k, t) ∈ R3 is a 2D+time volume at slice
z+d̃−k over the totality t element in the temporal dimension,
and [z+ d̃ − k ∈ zm|∀m ∈ {1, . . . , zmax}]

Fig. 2 visually explains the proposed 4D-Conv layer. The
input for our 4D-Conv layer is a 4D tensor V̂ t

zI , where zI
is a set of neighboring slices {zi−1, zi, zi+1} (Table 2). The
2D+time volume of the ith brain slice V̂ t

zi over all the time
points t , and the two 2D+time volumes of the neighboring
brain slices (V̂ t

zi−1 and V̂
t
zi+1 ). The 4D-Conv layer uses a loop

rearrangement with three 3D-Conv groups (Gi−1,Gi,Gi+1),
one for each volume slice involved in the operation. In each
groupGi, several 3D-Conv layers are created. All convolution
layers in each group shared the weights. Each 3D-Conv layer
is used for a single input volume. The number of layers
depends on the legal subscript indexes, i.e., for the group
Gi−1, there are two 3D-Conv layers since the legal subscript
indexes are {i − 1, i}: the indexes are given by the current
volume slice zi−1 and the only neighboring volume slice zi.
The output of each group is a set of feature volumes summed
together. The resulting feature volumes are stacked together
to keep the same dimension as the input.

V. EXISTING METHODS AND PROPOSED 4D METHODS
This paper presents three novel deep learning (DL)
approaches that accommodate 4D input data. In the remainder
of the paper, they are called 3D-TCN (Sec. V-B1), 3D+time
mJ-Net (Sec. V-B2), and 4D mJ-Net (Sec. V-B3).
Together with the proposed approaches, we implemented

and compared the 2D-TCN [43] (Sec. V-A3), the 3D-TCN-SE
[44] (Sec. V-A4), and themJ-Net [53] (Sec. V-A2) to validate
the performances of our models. We also compare the models
with a method that uses a set of PMs as input [54]. In the

remainder of the paper, we call this architecture Multi-input
PMs (Sec. V-A1). Fig. 3 visually compares the input utilized
for the various approaches.

A. EXISTING METHODS
1) APPROACH 1: MULTI-INPUT PMS
The Multi-input PMs model was proposed in [54]. This
architecture was used as a baseline study because all the PMs
were input for themodel. The input for the architecture is a list
of PMs for each brain slice zi: PMszi , as shown in Table 3. The
loss function implemented is the Focal Tversky loss (FTL)
[60]; for a specific class c, the FTL is defined as:

FTL(x, y) =
C∑
c

(1− TIc)1/γ ,

where γ ≥ 1 is a hyper-parameter that forces the loss function
to focus more on less accurate predictions that have been
misclassified [60]. Denoting xi,c ∈ [0, 1] as the probability
of the ith predicted pixel to belong to class c; yi,c ∈ {0, 1}
as the pixel i with class c in a ground truth image, TIc is the
Tversky index (TI) for a class c defined as:

TIc =

∑M×N
i=1 xi,cyi,c∑M×N

i=1 xi,cyi,c + α
∑M×N

i=1 x̂i,cyi,c + β
∑M×N

i=1 xi,cŷi,c
,

where x̂i,c = 1 − xi,c is the probability that the ith pixel is
not of class c, and ŷi,c = 1− yi,c represents the complement
of pixel i in a ground truth image. The hyper-parameters
α and β control the trade-off between precision and recall.
We refer the reader to [54] for a more extensive explanation
and discussion about this approach.

2) APPROACH 2: MJ-NET
The mJ-Net approach was proposed in [53]. As presented in
Table 3, the input V̂ t

zi (x, y) for mJ-Net is a 2D+time volume
of the same brain slice zi at index i over all the time points t .
We define the dimension of this input as 2D+time; the first
dimension of the input is time.

The loss function used for this method is the soft Dice
Coefficient loss (SDCL) [61]. The SDCL is a modified
version of the Dice Coefficient score mainly used in medical
domains where the classes to predict are highly unbalanced
due to a small region of interest compared to the background
of the scans. The SDCL can be written as:

SDCL(x, y) =
C∑
c

(
1−

2
∑M×N

i xi,cyi,c∑M×N
i x2i,c +

∑M×N
i y2i,c

)
The first section of the model contains 3D-Conv layers to
extract information from the temporal dimension, while the
second part follows the classic U-Net structure [26]. For more
details about themJ-Net approach, we refer the reader to [53].

3) APPROACH 3: 2D TEMPORAL CONVOLUTIONAL
NETWORK
For comparison reasons, we implemented the method pro-
posed by Amador et al. [43]. We call this architecture
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FIGURE 3. Visual comparison of the input for each implemented approach. Every 4D CTP patient’s study V ∈ R(X×Y×Z×T )

undergoes a series of pre-processing steps to enhance each CTP scan. Approach 1 (Multi-input PMs) [54] accepts a list of PMs
generated from a CTP study in input. Approach 2 (mJ-Net) [53] use a 2D+time volume V̂ t

zi
(x, y ) as input. Approach 3 (2D-TCN) and

Approach 4 (3D-TCN-SE) follows the model proposed by Amador et al. [43] and Amador et al. [44], respectively. The resulting 4D
tensor is fed to one of the approaches. The proposed approach 5 (3D-TCN), approach 6 (3D+time mJ-Net), and approach 7
(4D mJ-Net) take in input the entire 4D CTP processed data Ṽ .
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2D-TCN in the remainder of the paper. Fig. 4a provides a
general architecture overview. They proposed a Temporal
Convolutional Network (TCN), which has been shown to
outperform conventional neural networks in different tasks
[62]. Moreover, a TCN has a lower memory requirement for
training than other Recurrent Neural Networks [62].

FIGURE 4. Visual comparison between (a) the 2D-TCN architecture [43]
and (b) the 3D-TCN-SE [44].

The 2D-TCN was trained with the exact implementation
as the original work (see Table 3 for more details). The
2D-TCN model receives the 4D CTP scans in input
re-sampled to 1 second per time point. The 4D input is
processed as a list of 2D brain slices zi for each time
point t . Thus, the actual input for the 2D-TCN is a list V̄ t

zi ,
as mentioned in Table 3. The list V̄ t

zi contains all the time
points of the brain slice zi. Every 2D input image of the list
Ĩ
tj
zi at time point tj is fed to a 2D encoder E

tj
2D-TCN to extract

features in the latent space. Each E
tj
2D-TCN encoder returns a

(4 × 4 × Ch) feature vector, where Ch corresponds to the
number of channels. The architecture merges the low-level
feature vectors across the different tj time points to capture
the spatio-temporal information. The merged feature vector
ETOT2D-TCN = [E

tj
2D-TCN|∀tj ∈ t] is used as input to

the TCN, which yields a one-dimensional vector O2D-TCN
of 64 elements. Finally, a decoder takes the O2D-TCN and
generates a final 2D image Pzi (x, y). The Dice Coefficient
loss (DCL), the same as the original paper, was implemented
as the loss function as follows:

DCL(x, y) =
C∑
c

(
1−

2
∑M×N

i xi,cyi,c∑M×N
i xi,c +

∑M×N
i yi,c

)

FIGURE 5. Visual comparison between the proposed architectures: (a) the
3D-TCN, (b) the 3D+time mJ-Net, and (c) 4D mJ-Net.

For more details about the 2D-TCN approach, we refer the
reader to [43].

4) APPROACH 4: 3D TEMPORAL CONVOLUTIONAL
NETWORK SINGLE ENCODER
We implemented a similar method from Amador et al.
[44]. We call this approach 3D-TCN-SE due to using a
single encoder (SE). Fig. 4b shows a simplified version of
the proposed architecture, emphasizing the input difference
between the 2D-TCN and this model.

The 3D-TCN-SE model receives the 4D CTP scans
re-sampled to 1 second per time point. The input is a list of
t 3D volumes V̄ t

zI (Table 3). Each 3D input volume in the
list V̂

tj
zI (x, y) corresponds to the concatenation of the ith brain

slice zi plus its neighbouring slices zi−1 and zi+1 over a
specific time point tj. The 3D-TCN-SE approach uses a single
encoder E3D-TCN for all the elements in the input list. It is
worth mentioning that the 3D-TCN-SE model is trained with
the entire brain images for comparison reasons and not with
just the ipsilateral hemisphere, as in the original paper [44].
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FIGURE 6. Illustration of the 3D+time mJ-Net model. The list of 2D+time input V̄ t
zI (x, y ) = [V̂zi−1 , V̂zi , V̂zi+1 ] is trained in parallel, where

zI = {zi−1, zi , zi+1}. The output is a 2D image Pzi (x, y ). The first max-pooling layer of each block in the convolution section has a pool
size of (2,1,1) to reduce the first dimension by a factor of 2. The second max-pooling layer uses a pool size of (3,1,1), while the third has a
pool size of (5,1,1). The selection of these pool sizes is due to reducing the time dimension. The remaining max-pooling layers have a pool
size of (2,1,1). The Attention layers utilize a kernel of dimension 3 and a Leaky ReLU activation function. The 2D Upsampling layers have an
upsampling factor of 2. The last convolution layer has a kernel of 1 and a Softmax activation function to produce a probability score for
every class.

B. PROPOSED 4D METHODS
The proposed methods2 adopt the entire 4D CTP scan as
input to segment the ischemic regions (core and penumbra)
in patients suspected of AIS. The main difference lies in
how the 4D input is processed. The 3D-TCN is based on a
2D-TCN [43], modified to receive a list of 3D input volumes.
The 3D+time mJ-Net inputs a list of 2D+time brain volumes
from a CTP dataset, while the 4D mJ-Net uses the entire 4D
structure of a CTP dataset as input. Fig. 5 compares these
architectures with their respective inputs.

1) APPROACH 5: 3D TEMPORAL CONVOLUTIONAL
NETWORK
We extend the architecture proposed by Amador et al. [43]
for our application to exploit further the information in the
depth dimension. In the remainder of the paper, we call
our architecture 3D-TCN. The main differences between the
proposed 3D-TCN and the 3D-TCN-SE (Sec. V-A4) rely on
the usage of a 3D encoder for each input element, instead of
a 3D single encoder, plus the possibility to segment both core
and penumbra regions, in comparison with segmenting only
the core areas.

2The code is publicly available at the following link https://github.com/
Biomedical-Data-Analysis-Laboratory/4D-mJ-Net

The 4D CTP scans for the 3D-TCN are all re-sampled
to 1 second per time point. As described in Sec. V-A3, the
3D-TCN architecture feeds each element of the input list
V̂
tj
zI at time point tj to a specific 3D encoder E

tj
3D-TCN to

extract low-level features. Each E
tj
3D-TCN encoder returns a

(4×4×C) feature vector, whereC corresponds to the number
of channels. Each feature vector is merged to create a single
input ETOT3D-TCN = [E

tj
3D-TCN|∀tj ∈ t]. The ETOT3D-TCN is

used in the TCN, which generates a one-dimensional vector
O3D-TCN of 64 elements. The TCN’s output O3D-TCN is then
given in input to the decoder to create the final predicted 2D
image Pzi (x, y) of a brain slice zi at index i

2) APPROACH 6: 3D+TIME MJ-NET
We propose a model called 3D+time mJ-Net, an extension of
the work of Tomasetti et al. [53]. The proposedmodel inputs a
list of 2D+timematrices; thus, the dimension of this input can
be defined as 3D+time. The input and output are presented in
Table 3, whereas a visual example of the input for the model
is given in Fig. 3. Each element of the input list coincides
with a possible input for the mJ-Net (details in Sec. V-A2).
V̄ t
zI consists of a list of 2D+time volumes, where zI =
{zi−1, zi, zi+1} is a set of brain slices containing the ith slice zi
analyzed and its neighboring slices zi−1 and zi+1. In case the
index i corresponds to the first (or last) brain slice, V̂ t

zi−1 (and
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equivalently V̂ t
zi+1) is set equal to V̂

t
zi . Every 2D+time volume

from the input list V̂ t
zi (x, y) is trained separately in the model

through a series of encoders (Ezi−1 ,Ezi ,Ezi+1 ) composed of
3D-Conv and 2D-Conv layers. Each section is independent
of the other: the convolution layers have no shared weights.

Fig. 6 illustrates the model’s architecture. Attention layers
[64] and 2D Upsampling layers were implemented in the
decoder section. Attention layers benefit the architecture
by focusing on target structures and help increase the
segmentation performances. With the sole exception of the
last convolution layer, each convolution layer uses a kernel
of dimension 3 and a Leaky ReLU activation function [65]
with α = 1/3.

3) APPROACH 7: 4D MJ-NET
We propose another model called 4D mJ-Net. We introduce
this method to avoid the three paths to process the 4D
data presented in the previous architecture (Sec. V-B2).
We still use a sliding window technique over the depth
dimension to limit the amount of input data fed to the model,
using three consecutive brain slices simultaneously. Using
a neighborhoods operation is a common image processing
technique to include, in the computation, information from a
additional dimension. Thus, adopting three consecutive brain
slices enhances the model’s ability to capture the information
from the depth dimension effectively. Like the 3D+time mJ-
Net model, also this approach is an extension of the work of
Tomasetti et al. [53]. Information on this approach is given
in Table 3. The 4D input tensor V̂ t

zI contains both the time
dimension and the neighboring slices of the ith brain slice.
The V̂ t

zI is a concatenation of a 2D+time volume V̂ t
zi of a brain

slice zi at index i over all the time points t together with its
neighbouring 2D+time volumes V̂ t

zi−1 , V̂
t
zi+1 . This model can

be considered an early-fusion approach since the 4D input
tensors V̂ t

zi−1 , V̂
t
zi , V̂

t
zi+1 are concatenated before being fed to

the encoder’s model.
The proposed 4D mJ-Net model is a combination of both

3D+time mJ-Net (Sec. V-B2) and mJ-Net (Sec. V-A2). The
proposed approach uses the same input type that the 3D+time
mJ-Net exploits. However, rather than a list of 2D+time
volumes, the model concatenates the input into a single 4D
tensor of dimensions (X × Y × Z × T ).

Unlike 1D, 2D, and 3D Convolution layers, 4D Convo-
lution layers are not available in public DL frameworks
(i.e., Keras3 or PyTorch4). Thus, for this model, we imple-
mented a novel 4D-Conv layer (details in Sec. IV-C), which
uses the convolutional layers defined in the public DL
frameworks to replicate a 4D convolution operation.

The architecture of the 4D mJ-Net is displayed in Fig. 7.
No Attention layers [64] were included in these models due
to a considerable performance decline. The output of the
4D-Conv layers is a tensor where the temporal dimension
has been squeezed and reduced; information are extrapolated

3https://keras.io/
4https://pytorch.org/

from the temporal dimension. Thus, the output resulting
from the 4D-Conv layers contains only three dimensions
(X ×Y ×Z ) plus the channel dimension. 3D-Conv layers are
implemented to reduce the depth dimension Z and produce a
2D vector (X × Y ) plus the channel dimension.
Aweighted categorical cross-entropy (WCC) loss [66] was

the loss function implemented for this method. The loss can
be written as:

WCC(x, y) =
C∑
c

M×N∑
i

(yi,c log xi,c) · (wi,cyi,c),

where wi,c corresponds to the weight of the ith pixel for a
class c ∈ C; xi,c is the ith predicted pixel, and yi,c is the
corresponding ground truth pixel.

TABLE 3. Summary of the approaches. C-Time stands for computational
time per brain slice in seconds. The C-Time values are expressed as mean
± standard deviation.

C. IMPLEMENTATION DETAILS
Table 3 provides information about all the methods. All the
methods mentioned in Sec. V-A and Sec. V-B utilize Adam
as the optimizer [67] with a learning rate of 0.0003 and a
step-based decay rate of 0.95 every ten epochs. The batch
size is set to 2. An early stopping function is called if there
is no decrement in the validation loss after 25 epochs. During
training, L1 and L2 regularizations are applied in the kernels,
plus a max norm constraint is also used in the kernel and bias
weights. The average computational time for all the brain
slices during inference phase is also highlighted in Table 3.
All experiments were implemented in Python using Keras
(2.3.1) with Tensorflow as the backend and trained using an
NVIDIA Tesla V100 GPU (32 GB memory).

VI. EXPERIMENTS AND RESULTS
We assess the proposed methods5 on a local dataset of
CTP scans from 152 patients (Sec. III). All experiments are
performed with the same training set and evaluated over the
validation set (details in Table 1). The test set is used only to
make predictions with the best models with CTP scans that
the methods have not seen before. Since the Non-LVO group
has smaller ischemic areas than the LVO patients, we set a

5The code is publicly available at the following link: https://github.com/
Biomedical-Data-Analysis-Laboratory/4D-mJ-Net
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FIGURE 7. Illustration of the 4D mJ-Net architecture. The 4D input V̂ t
zI = ϕ(V̂ t

zi−1
, V̂ t

zi
, V̂ t

zi+1
) is the concatenation of a 2D+time volume Ṽ t

zi
of a brain

slice zi at index i over all the time points t plus its neighbouring brain slice volumes (Ṽ t
zi−1

, Ṽ t
zi+1

). Two MonteCarlo dropout layers [63] are added at the
end of the 4D and 2D Convolution blocks. The rate was set to 50%. These layers were added to reduce uncertainties in the final predictions. Additional
details are given in the supplemental material. The last convolution layer has a kernel of (1 × 1) and a Softmax activation function to produce a
probability score for every class.

TABLE 4. Experiment results for the validation set. Values in bold exhibit the best results for each column and each class. Mean results plus standard
deviation for Dice Coefficient (DC), Hausdorff Distance (HD), and 1V are presented. Results are for the penumbra and core areas divided by the distinct
patient groups (LVO, Non-LVO, WIS, and All). Note that for the DC, higher values are better (⇑), while for HD and 1V , lower values are preferable (⇓).

higher penalty for every misclassification of penumbra and
core classes for this sub-group during training.

A. EVALUATION METRICS
Three evaluation metrics are used to assess the various
experiments’ models. The Dice Coefficient (DC), the Haus-
dorff Distance (HD) [68], and the absolute difference in the
volumes (1V ). We employ the DC to compare the model
predictions with the ground truth segmentations. The DC
between two segmentations x and y is given by the following
equation:

DC(x, y) = 2
|x ∩ y|
|x| + |y|

where the range for the DC is [0, 1]; thus a DC(x, y) = 1
corresponds to a perfect match between the prediction x and
ground truth y segmentations.
The HDmeasures how two subsets (A,B) are distant from

each other, and it is formulated as follows:

HD(A,B) = max { h(A,B), h(B,A) } ,

where h(A,B) = maxa∈Aminb∈B ||a− b||. The range value
for the HD is [0,∞].
The absolute difference in the volumes 1V between the

prediction volume Vx and the ground truth volume Vy can be
expressed as:

1V (Vy,Vx) = |Vy − Vx |
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The range for 1V is [0,∞], and 1V (Vy,Vx) = 0 represents
a perfect match between the two volumes. The 1V (Vy,Vx)
is an essential evaluation metric for the WIS group due to the
lack of ground truth segmentations in this group. The other
metrics are not suitable for understanding how the predictions
will be since the ground truth will always be empty.

The best scenario for a model is to produce high DC with
low HD and 1V : this implies a strong correlation between
the predicted areas and the ground truth regions. If the results
show high1V (or HD) with lowDC, an over-segmentation of
the ischemic areas is perceived. On the other hand, promising
outcomes of 1V (or HD) with mediocre DC results imply an
under-segmentation of the predicted regions.

TABLE 5. Ablation study for the 4D mJ-Net model showing how various
pre-processing steps (HE, γ , z) and re-sampling (⊎) affect the Dice
Coefficient (DC) for the validation results. Penumbra and core DC scores
are shown for all the classes together. Note that for the DC, higher values
are better (⇑).

B. COMPARISON WITH OTHER METHODS
The proposed 3D+time mJ-Net, 4D mJ-Net, and 3D-TCN
methods are compared with alternative models: the 2D-TCN
[43], the mJ-Net [53], the 3D-TCN-SE [44], and the Multi-
input PMs [54].
Table 4 presents the evaluation metrics’ results over

the validation set. Results are presented for each group
distinctly (LVO, Non-LVO, WIS, and all) to highlight the
strengths and weaknesses of each model over the various
groups composing the dataset. An extensive number of
experiments are performed for all the analyzed models.
However, to present a fair comparison among the various
models, we only introduce the methods with a combination
of parameters that yield the best results, omitting the
other combinations tested during experiments. Qualitative
comparison results of random brain slices extracted from the
validation set are provided in Fig. 8.

C. ABLATION STUDY
To demonstrate the effects of the pre-processing steps
(Sec. IV-B), we conduct an ablation study on the 4D mJ-
Net architecture. Moreover, we re-sampled the CTP scans

to handle the irregular temporal dimension and studied
the effect of using re-sampled scans during the model’s
training. Different CT scan vendors have different imaging
acquisition protocols; thus, re-sampling the scans to a fixed
time-sampling rate is a reasonable step to increase the
versatility and usability across hospitals. DC is illustrated
in Table 5, showing performances of the network for all
the groups trained with the datasets using different types
of pre-processing steps and re-sampled scans. The study
aims to systematically analyze the contribution of each
pre-processing step toward improving the overall results.
We begin by defining a baseline configuration consisting
of the raw input images without pre-processing (first row
in Table 5). Subsequently, we incrementally introduce and
evaluate individual pre-processing steps, such as histogram
equalization (HE), gamma correction (γ ), and z-score (z).

D. INTER-OBSERVER VARIABILITY
Two expert neuroradiologists (NR1, NR2) manually anno-
tated the scans of 33 randomly selected patients: 19 from
the LVO group, 11 from the Non-LVO, and 3 from the
WIS subset. The manual annotation images were generated
using the same criteria endorsed for creating the ground truth
images, as explained in Sec. III-A. An investigation of the
inter-observer variability between NR1, NR2, and the two
best-proposed models is presented in Table 6.

VII. DISCUSSION
Early detection and intervention in AIS patients are of
vital importance [69], [70], [71]. In this study, we have
proposed different architectures to utilize the 4D CTP
input to use the spatio-temporal information better than in
existing approaches. We suggest expanding the mJ-Net and
showing two ways of segmenting ischemic areas in patients
suspected of AIS. In addition, we expand another method
(3D-TCN) for comparison reasons. We use the entire raw
4D CTP data and feed different combinations as input to
our proposed approaches to prevent possible loss of spatio-
temporal information. Studying the data as an independent
volume and neglecting its spatio-temporal nature can lead
to the loss of relevant information. All proposed approaches
return a series of 2D segmented images as output, later
stacked together to produce a 3D volume. Returning a list of
2D images as output is less computationally expensive and
less memory intensive than directly returning 3D volumetric
data as output [72].

Few studies have adopted 4D datasets in DNN models to
detect ischemic lesions in patients affected by a stroke [9],
[43], [44], [45]. This is rooted in the high computational
complexity of 4D data and the lack of ground truth for the
whole set. The limitations that these approaches encounter
are as follows: 1) datasets used for the training and evaluation
take into account only a subset of the entire population;
2) segmentations are only performed on the core areas,
excluding penumbra regions; 3) ground truth images derived
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TABLE 6. Inter-observer variability results for test set. Values are presented for the two best-proposed architectures (3D+time mJ-Net, 4D mJ-Net) in
relation to manual annotations generated separately by two expert neuroradiologists (NR1, NR2) over the test set. An investigation of the inter-observer
variability between NR1 and NR2 is performed (last row or each class). Note that for the DC, higher values are better (⇑), while for HD and 1V , lower
values are preferable (⇓).

from follow-up DWI or NCCT present some limitations
[47], [48].

To our knowledge, this is the first study using 4D CTP data
to segment both the ischemic regions, penumbra and core.
Additionally, we include data from all patients, regardless of
stroke severity, to train our models. Rather than entrusting
ground truth images from follow-up DWI or NCCT studies
that are usually taken 24 hours or some days after stroke
onset, our proposed methods were trained with ground
truth images obtained from the CTP captured at admission,
including PMs, and follow-up scans (Sec. III-A).
We use three evaluation metrics to assess the models’ per-

formances: DC, HD, and 1V compared with our previously
developed algorithms and other state-of-the-art algorithms.
Results in Table 4 demonstrate that increasing the input
dimension benefits achieving more precise segmentation,
especially for theNon-LVO andWIS groups, regardless of the
class. Thus, when a smaller portion of the brain is affected,
the whole dataset’s usage helps achieve better segmentation
results. The ablation study (Table 5) shows how including
the pre-processing steps and not re-sampling the CTP scans
helped improve the overall segmentation performances. It is
possible to evince that by combining multiple pre-processing
steps, the overall segmentation performances increased,
regardless of whether using or not the re-sampling technique.
Adopting the HE step with other pre-processing steps is
beneficial for the AIS segmentations; the absence of the HE
step decreases the overall performance. It is worthmentioning
that using the pre-processing steps and re-sampled CTP scans
yields the second-best overall results (last row in Table 5),
establishing the validity of the pre-processing sequence.

Additionally, we evaluated the computational time for
predicting each brain slice (Table 3), highlighting how fast
each method performs. From the results in Table 3, it is
possible to notice that the Multi-input PMs architecture has
the lowest computational cost due to the usage of PMs instead
of CTP scans as input. Among the methods utilizing CTP
scans as input, the mJ-Net has the best computational time

since it consists of a more straightforward structure compared
to the other models.

Visual results of random validation brain slices are shown
in Fig. 8, where we can see that our proposed approaches
(3D+time mJ-Net, 4D mJ-Net) are less prone to over-
segment, especially in the Non-LVO and WIS groups. It is
reported that LVO cases are less common compared to Non-
LVO. On average, LVOs are estimated to represent around
30% of all AIS cases [73]. Thus, a neural network that can
accurately segment patients in the Non-LVO group can be
valuable in a real-life scenario. Nonetheless, patients with
LVO represent a clinically significant proportion of patients
presenting with AIS, especially considering the grim natural
course of the disease.

The results presented in Table 4 indicate that all mJ-
Net models have improved where the input data dimension
has increased, regardless of the patients’ group. Fig. 8
shows that using 2D+time input for the mJ-Net [53] led
to over-segmentation of penumbra class in separate brain
tissue sections, brain slice 4-6. The visual results for the
Non-LVO and WIS groups highlight the limitations of this
model: the over-segmentation of the penumbra regions might
affect the usage in a real-life scenario, and an overestimation
of the penumbra area can generate uncertainties for treatment
decisions.

Adding depth as an extra dimension to the input of
models (3D+time mJ-Net and 4D mJ-Net) determines an
increment in the performances for both classes in the three
patient groups. A significant increase is noticeable for the
DC metric in the Non-LVO group, regardless of the class.
An essential difference between these two architectures
is how they exploit their structures’ input. The 3D+time
mJ-Net is considered a late-fusion approach as the data
sources are used independently and fused close to decision-
making. Statistical results presented for the 3D+time mJ-Net
show promising general performances for the LVO group.
However, an underestimation of the core class, regardless of
the patient group, can be noticed from the visual results in
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FIGURE 8. Qualitative comparisons for the tested models. The brain slices are taken randomly from distinct patients from the validation set, divided by
group (left to right). Each row represents the results for each model involved in the study. The numbers on the bottom sides of every image represent the
DC for penumbra (in light blue) and core (in green).
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Fig. 8 and the low HD metric. Nevertheless, 3D+time mJ-
Net achieved the best HD for the core class in all the groups.
The 3D+time mJ-Net can precisely segment ischemic regions
with large areas, as shown by the first three slices in Fig. 8.
This can also be manifested in the high DC score achieved
for the LVO group for both classes (Table 4).

The 4D mJ-Net network has learned to precisely segment
the ischemic regions evenwithout re-sampling the CTP scans,
as shown in Table 5. The model fuses the data before they
are fed to the network. Visual results in Fig. 8 and values
in Table 4 indicate that the 4D mJ-Net model segments
the penumbra class more precisely compared to the other
approaches that use raw CTP as their input. This promising
performance follows in all patient groups. The 4D mJ-Net
achieved the highest DC metric for core and penumbra
regions in patients with Non-LVO. This approach gives the
best HD for penumbra in all the groups. The 4D mJ-Net
showed high precision in detecting small ischemic areas,
as shown in sample brain slices 3 to 5 in Fig. 8. Furthermore,
the 4D mJ-Net model can correctly predict no ischemic
regions in WIS patients, as demonstrated by the results for
the 1V in the WIS group. However, it over-segments the
core class in patients with LVO. This means that including
the complete spatio-temporal information of the data and
following an early fusion approach leads to better prediction
in Non-LVO and WIS groups, where small areas are of
interest.

Models based on TCN generally showed poor results
statistically in Table 4 and visually in Fig. 8. They extremely
over-segment the penumbra class and poorly segment the core
class. The original 2D-TCN and 3D-TCN-SE were designed
to segment only one class, the ischemic core. This can explain
the poor performance of segmenting the two classes. Besides,
in Amador et al. [44] (3D-TCN-SE), the model was trained to
use only the ipsilateral hemisphere. For a fair comparison, the
model’s training was done over both hemispheres, which can
cause over-segmentation in penumbra regions.

As the name indicates, the Multi-input PMs model [54]
takes parametric maps and pre-processed data obtained from
CTP scans. The experiment results of this model show a high
DC value for the penumbra class in the LVO group, as also
seen in the first three brain slices of Fig. 8. This highlights that
this method presents satisfactory results for large ischemic
areas. However, when the region’s volume is small or vacant,
the predictions are not optimal: see brain slices 4 and 6 in
Fig. 8. Although HD and 1V are encouraging, DC values
show under-segmentation in the core and penumbra classes
for the Non-LVO set. Using PMs derived from CTP scans
limits the machine to only learn from specific pre-processed
information.

The inter-observer variability results, highlighted in
Table 6, show promising outcomes for the proposed methods
with the results achieved by the two expert neuroradiologists
(NR1, NR2). Similar statistic values can be observed between
NR1 vs. NR2 and the 4D mJ-Net for the penumbra class

in connection with the LVO group. The same results as
the neuroradiologists were achieved by the 4D mJ-Net for
the 1V in the WIS group. The proposed 3D+time mJ-Net
model produces higher results for the DC compared to the
4D mJ-Net in association with the penumbra class. However,
the results for the core regions could be more satisfactory.
The inter-observer variability outcomes for the HD and
1V highlight substantial similarity among the proposed
approaches and the neuroradiologists, except for the core
class connected with the LVO group. The difference can be
due to an over-segmentation of this particular class, which
can be highly complex to detect for the models, considering
its small size.

To summarize the discussion, the proposed 3D+time mJ-
Net model can precisely segment large ischemic penumbra
regions while presenting an underestimation of the core
class. The proposed 4D mJ-Net network can segment small
ischemic areas with high precision and predict the absence of
ischemic regions; nevertheless, it presents an overestimation
of the core class in LVO patients.

A. COMMON LIMITATIONS
All the assessed approaches have faced general limitations.
The images used during the training of each model are from
CT scanners of the same vendor. This causes a lack of
diversity in the data. The annotations used as ground truth
surround the essential ischemic regions (penumbra and core)
but do not represent the areas perfectly. They might leave
out small parts of the core spread into the penumbra tissue
and details of the penumbra misclassified as healthy brain
tissue [53]. Additional qualitative results for all the methods,
showing their worst segmentation results, are presented in the
supplemental material.

VIII. CONCLUSION
Fast and precise diagnosis and treatment are of vital
importance in AIS patients. In this paper, we proposed to
use 4D CTP as input to extract spatio-temporal information
for segmenting core and penumbra areas in patients with
AIS. This is presented primarily by expanding the mJ-Net in
two ways (3D+time mJ-Net and 4D mJ-Net). Furthermore,
we introduced a novel 4D-Conv layer to exploit spatio-
temporal information. Two of our approaches (3D+time mJ-
Net and 4D mJ-Net) achieved promising results for all the
classes involved. The 3D+time mJ-Net can precisely delin-
eate large ischemic penumbra areas while underestimating
the core class. Our best network (4D mJ-Net) can correctly
segment penumbra regions, regardless of patient groups, with
a 0.53 DC score on average. However, with an average of 0.23
DC score, it overestimates the core class for the LVO group.

We used the entire 4D CTP dataset of all patients and com-
pared models using different input types. We demonstrated
that relying only on images derived from the CTP scans
(i.e., PMs) or on a restricted number of dimensions (i.e., 2D,
2D+time, 3D) limits the prediction accuracy in DNN-based
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approaches. Moreover, we segmented both penumbra and
core regions in ischemic brain tissue since an accurate and
fast understanding of both is essential for quick treatment
decisions in AIS.

Further studies with larger datasets, including images from
different vendors and various acquisition parameters, are
still needed to validate our methods. The ISLES18 dataset
[74] can be used in future work; the dataset uses FIAs
as ground truth labels, which is not in the scope of the
architectures mentioned above; thus, some changes must be
implemented for validating the methods. Due to complex and
time-consuming work for manual annotations, further work
on optimizing the segmentation using unsupervised neural
networks is encouraged.
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