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ABSTRACT Face recognition remains challenged by data limitations in both scale and diversity, coupled
with the ethical dilemmas of using images without the subjects’ consent. To address these issues, this paper
presents the SegTex framework, a cutting-edge method for generating synthetic face datasets by converting
Segmentation maps into Textured images. Using the CelebAHQ-Mask dataset for segmentation maps and
extracting facial features from the CelebAMask-HQ dataset, the SegTex method efficiently creates varied
synthetic facial characteristics. This approach not only sidesteps the need for real-world data collection but
also offers a rich and diverse dataset, essential for improving face recognition algorithm performance. In our
experiments, models trained on the SegTex-generated dataset displayed superior performance metrics when
compared to those trained on conventional datasets, underscoring the practical utility of our method. This
robust performance, combined with the ethical advantages of synthetic data generation, ensures our approach
holds significant importance in the field of face recognition.

INDEX TERMS Face synthesis, synthetic dataset, face recognition.

I. INTRODUCTION
Face recognition technology has become a crucial component
in a range of applications, from surveillance systems to
biometrics and social media platforms. As its use becomes
more widespread, there is an increasing need for systems that
are both efficient and ethically grounded. The success of any
face recognition system largely depends on the quality and
diversity of its training dataset. A robust and representative
dataset that captures a broad spectrum of human facial
features across different demographic and environmental
conditions is essential. Nevertheless, building such a dataset
requires a rigorous process, which involves collecting data
from varied sources and accurate labeling.

Conventional data collection methods for face recognition
often rely on web-based sources. These methods gather vast
amounts of images from websites, social media, and other
online platforms.While this approach collects diverse images
quickly, enhancing face recognition system performance,
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it raises ethical concerns. Collecting images without the
individuals’ knowledge or consent has implications beyond
individual privacy. It can lead to potential misuse in
surveillance or introduce bias into algorithms due to non-
representative data. Recognizing these issues, some studies,
referenced in [1] and [2], underline the importance of
obtaining clear permissions when using publicly accessi-
ble images. This situation emphasizes the need for data
collection methods that balance both efficiency and ethical
considerations [3].

In this context, synthetic data emerges as a notable
solution, offering an alternative to traditional data sources.
This method revolves around crafting artificial data that
replicates the intricacies and variety found in real-world
data, without utilizing actual images of individuals. Despite
significant advancements in synthetic data generation as
shown in Figure 1, they often hinge on pre-existing datasets
or demand excessive computational resources to generate a
considerable number of images, as highlighted in previous
works [4] and [5]. These issues limit their scalability and
practicality. In other words, ensuring that synthetic facial data
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FIGURE 1. A comparison of our proposed synthetic dataset with prior works utilizing synthetic data. While
previous studies [4] predominantly depend on existing datasets or require substantial computational resources to
produce numerous images [5], our approach stands out. We efficiently generate a vast number of images using
moderate computational power, requiring only segmented textures as prior knowledge. Additionally, our method
upholds data privacy.

is realistic, unbiased, and representative poses its own set of
challenges.

In this study, we address the critical challenge of devising
a synthetic dataset for face recognition that prioritizes both
privacy and diversity. Understanding the complexities asso-
ciated with synthetic data, such as potential lack of realism
or inadvertent biases due to algorithmic constraints, we have
pursued a distinctive synthesis approach. Our approach is
anchored by a combination of computational efficiency and
an innovative face-generation technique, allowing the swift
creation of diverse facial representations. By employing a
segmentation map and five textured images, we synthesize
faces with meticulously controlled geometry and texture.
This approach, reinforced by the fusion of the segmentation
map with textured regions, ensures the generation of lifelike
synthetic faces, presenting a naturally varied dataset ready for
face recognition tasks.

Our methodology goes further by addressing a princi-
pal challenge: the seamless integration of textures into a
segmentation map. We move away from the traditional
approach of using one-hot encoded labels. Instead, we dive
deep into understanding the foundational statistics and
essence of the segmentation mask. This approach allows
our model to create a large number of images, specifically
designed for face recognition datasets. Our method not only
produces realistic and fair synthetic data but also avoids
the ethical issues commonly faced with traditional data
collection.

Our proposed method represents a major advancement in
face recognition research. It naturally incorporates ethical
considerations into the main data collection and processing
steps and provides a flexible basis for future research in
various face recognition applications. The main contributions
of our study are:

• We introduce a synthesismechanism for a privacy-centric
synthetic face dataset. This approach addresses the eth-
ical concerns associated with traditional data collection
from web sources.

• Our method integrates textures into a segmentation
map, moving away from one-hot encoded labels.
Utilizing a segmentation map with five textured images,
we generate diverse synthetic faces ideal for recognition
tasks.

• We developed a privacy-centric dataset for face recog-
nition, capable of producing 1.8 million images in
48 hours with 30 thousand unique attribute combina-
tions. We extensively validate the utility of our dataset
through both quantitative and qualitative analyses.

II. RELATED WORK
A. IMAGE GENERATION TECHNIQUES
Generative adversarial networks (GANs), introduced by
Goodfellow et al. [6], changed the way we train models to
create images. These networks have been applied to tasks
such as creating new images, enhancing image resolution,
and altering the style of images [7], [8], [9]. Various
methods emerged for converting one type of image into
another. Examples include Pix2Pix [10], which changes
images using cGANs; CycleGAN [9], which can operate
without paired examples; and SPADE [11], which results in
higher-quality images. Recent advancements have focused
on generating diverse images [12], facilitating multi-domain
image transitions [13], and preserving identity during trans-
formations [14].

In this study, while we build upon the foundation of these
image-changing techniques, our approach differentiates itself
by presenting a novel method to synthesize detailed face
images using segmentation maps and textures. This refined
method demonstrates our distinct contribution to the field of
face image creation.

B. GENERATION OF FACIAL FEATURES
The synthesis of facial features has gained a lot of attention
because of its use in face recognition, animation, and virtual
reality. Many studies have focused on creating specific parts
of the face, such as hair [15], eyes [16], and mouth [17].
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Using GANs, these studies have shown success in making
realistic facial features while keeping the original identity of
the subject. Some other works, like Fader Networks [18] and
the Attribute2Image framework [19], have looked at creating
full-face images.

Different from these methods, our study uses detailed
information from segmentation maps and careful data
positioning during preprocessing. This method lets us create
and adjust specific features in the images more accurately.
This approach provides more flexibility and accuracy in
creating images compared to existing methods.

C. FACE RECOGNITION AND SYNTHETIC DATA
Face recognition has been significantly improved by deep
learning methods such as DeepFace [20], FaceNet [21],
and ArcFace [22]. These methods rely heavily on large
datasets of face images. To further increase the diversity
of these datasets, Generative Adversarial Networks (GANs)
have been used. A notable direction in recent research is
the attribute disentanglement technique, like what’s seen
in the DR-GAN framework [23], which can improve face
recognition results. In parallel, there’s a growing interest in
using synthetic data to further push the boundaries of face
recognition, both in terms of evaluating models and creating
novel datasets [24], [25]. Our research builds on these
advancements. We incorporate the leading face recognition
techniques to create and train on our synthetic dataset, aiming
to make it widely applicable in various scenarios.

Segmentation maps in image synthesis have led to
much finer control over generated images. Works like
CRN [26], pix2pixHD [27], and SPADE [11] highlight
their effectiveness in this domain. In the realm of face
synthesis and editing, techniques like the one proposed by
Gu et al. [28] emphasize the importance of these maps
in achieving detailed editing and realistic face generation.
Moreover, the introduction of techniques like collaborative
diffusion [29] has opened doors for leveraging segmentation
maps alongside textures, enhancing multi-modal control in
generative tasks. Our model, named SegTex, combines the
principles from GANs, image-to-image translation, and face
synthesis to craft distinct segmentation masks. We then
transform these masks into geometric shapes and merge them
with textures. Through this, we achieve a wide variety of
image generation while preserving the structural consistency,
providing a new angle to address face recognition tasks.

III. METHODOLOGY FOR DATASET GENERATION
Our image synthesis methodology primarily revolves around
two central processes: the generation of synthetic segmen-
tation maps and the texture application to these synthetic
outlines. Initially, we focus on the creation of synthetic
segmentation maps. By leveraging Adaptive Instance Nor-
malization (AdaIN) with data from the CelebAMask-HQ
dataset, these maps highlight critical regions in images, such
as distinguishing facial features. The prime aim here is to

clearly outline and differentiate areas of an image, ensuring
proper structure within the resultant synthetic depiction.
Once the segmentation map is established, our endeavor
shifts to enrich these outlines by infusing them with texture.
This intricate task is managed by our Texture Infusion
Network, denoted as SegTex. The SegTex network processes
the segmentation map and other requisite inputs, layering
realistic textures onto the marked segments. In essence, our
methodology integrates segmentation and texture application
to produce high-quality synthetic images.

A. SEGMENTATION MAP GENERATOR
Our dataset creation begins with the development of synthetic
segmentation maps. These maps give a structured view
of distinct image areas and are essential to our image
synthesis method. We separate the segmentation masks
from the CelebAMask-HQ dataset into three segments: skin,
hair, and mouth. Each segment is then merged to create a
unified representation, while keeping each category’s distinct
features.

The Adaptive Instance Normalization (AdaIN) method
is used in our synthesis framework. AdaIN is crucial for
effectively merging the feature maps from the segments. The
input x denotes the skin feature map, whereas the reference
style y is formed from the combined feature maps of hair
and mouth. Through AdaIN, the mean and variance of x are
aligned to those of y, leading to a smooth combination of
features.

AdaIN(x, y) = σ (y)
(
x − µ(x)

σ (x)

)
+ µ(y) (1)

This fusion, enabled by the AdaIN layer, produces images
that show realistic facial attributes in line with the original
segmentation maps.

During training, we use three main loss functions: L1 loss,
perceptual loss, and adversarial loss. The L1 loss measures
pixel differences between the created and target images. The
perceptual loss checks for variations in advanced features,
and the adversarial loss, using Binary Cross Entropy (BCE),
measures the discriminator’s ability to differentiate the
synthesized images. The total loss is a combination of the
following individual losses.

1) L1 LOSS
The L1 loss, also known as the mean absolute error, captures
the absolute difference between the reconstructed and target
images:

LL1 = mean(|recon − target|), (2)

pushing for pixel-wise consistency between the regenerated
and actual images.

2) PERCEPTUAL LOSS
This loss evaluates the distinction in high-level content and
structural information between the reconstructed and target
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FIGURE 2. Outline of the synthetic segmentation map creation. Distinct regions of the segmentation map–skin,
hair, and mouth–are processed by individual encoders, producing specialized feature maps. Concatenation fuses
the hair and mouth feature maps, which, when integrated with the skin feature map via the AdaIN operation,
results in a unified feature depiction. The synthesized feature map then undergoes decoding to produce the final
synthetic segmentation map.

images. It can be mathematically expressed as:

Lperceptual =
1

WiHi

Wi∑
w=1

Hi∑
h=1

(φi(recon)w,h − φi(target)w,h)2

(3)

In this equation, φi(·) indicates the feature map activations
from the ith layer of a pre-trained VGG network. The terms
Wi and Hi denote the width and height of these feature maps,
respectively. This loss measures the Mean Squared Error
(MSE) between the feature activations of the regenerated and
target images, ensuring both have similar high-level features.

3) ADVERSARIAL LOSS
This loss originates from the GAN framework, ensuring that
the synthesized images are indistinguishable from real ones.
Mathematically:

Ladv = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1 − D(G(z)))]

(4)

Here, D(x) gauges the probability of a real data sample x
being genuine. G(z) is the generator’s output for a given
input noise z, and D(G(z)) is the discriminator’s estimate
of that output being a real image. This loss encourages the
generator to produce images that the discriminator believes
to be genuine, while the discriminator tries to distinguish
between real and fake images.

4) TOTAL LOSS
The overall training objective is a weighted sum of the above
loss functions:

Ltotal = λL1LL1 + λpercLperceptual + λadvLadv, (5)

With the AdaIN method, we successfully merge skin,
mouth, and hair segmentation masks. This integration

produces synthetic images that faithfully represent realistic
facial attributes, yielding a diverse and high-quality dataset.

B. TEXTURE INFUSION NETWORK
We present SegTex, a distinctive architecture designed
for texture synthesis. SegTex ingests six diverse inputs:
a segmentation map, skin, hair, left eye, right eye, and
mouth. Each input undergoes its specialized encoder module,
and the processed results pass through subsequent fusion
layers and a blending layer to generate the final output
(see Figure 3).

1) ENCODER MODULES
Comprising two convolutional layers, batch normalization,
and a leakyReLU activation, thesemodules efficiently extract
features from the respective inputs.

2) FUSIONLAYER
Merges features extracted from the segmentation map and the
other facial features (excluding the mouth). These combined
features are further processed via a convolutional layer and a
gating mechanism, which uses a sigmoid activation.

3) MOUTHFUSIONLAYER
Exclusively for integrating mouth-related features. This
layer amalgamates the features of the mouth with those
of the segmentation, subsequently processed through
a 1 × 1 convolutional layer.

4) BLENDINGLAYER
This layer adeptly merges the outputs from the FusionLayer
and MouthFusionLayer.

5) SPADEGenerator
A pivotal component, the Spatially-Adaptive (De)Normaliza-
tion (SPADE) generator synthesizes the final image using the
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FIGURE 3. Overall flow of the SegTex Framework, aiming at transforming segmentation maps into textured images. The model
initiates by processing six distinct images: segmentation map, skin, hair, left eye, right eye, and mouth. Each undergoes
encoding, resulting in individualized feature maps. The feature maps from the segmentation map, skin, hair, left eye, and right
eye are channeled into a fusion layer for integration. In parallel, the mouth feature map collaborates with the segmentation
map feature map in the mouth fusion layer. These outputs are subsequently amalgamated through a blending layer. Finally, the
integrated feature map is directed to the SPADE generator, culminating in the generation of the textured image.

fused features and the segmentation map. The operation of
SPADE is:

SPADE(x, y) = γ (y) ⊙ x + β(y), (6)

where x represents the input feature map, y is the segmenta-
tion map, and γ (y) and β(y) are the learned parameters. The
⊙ represents element-wise multiplication.
During the training phase, a set of loss functions refine

the model’s outputs, ensuring the synthesis of high-quality,
realistic images:

6) STYLE LOSS LSTYLE
Assesses the disparity in Gram matrices of the synthesized
and target images:

Lstyle = mean((G(recon) − G(target))2), (7)

where G(·) calculates the Gram matrix.

7) SEGMENTATION LOSS LSEG
Evaluates differences between the reconstructed and target
images, taking into account the segmentation maps:

Lseg = mean
(
(recon ⊙ seg_maps − target ⊙ seg_maps)2

)
.

(8)

8) MULTISCALE DISCRIMINATOR LOSS LD
Promotes the synthesis of images that appear realistic across
varying scales, using multiple discriminators:

LD =

N∑
i=1

[
1
2
mean

(
(Di(recon) − 1)2

)
+

1
2
mean

(
Di(target)2

)
+ λfmL

(i)
fm

]
, (9)

with N signifying the number of scales, and L(i)fm being the
feature matching loss.

9) TOTAL LOSS LTOTAL
The complete objective, represented as a weighted sum of the
individual losses:

Ltotal = λstyleLstyle + λsegLseg
+ λpercLperc + λL1LL1 + λDLD, (10)

where the weights govern each loss term’s influence in the
overall optimization.

C. DATASET GENERATION PROCESS
Our dataset creation process is illustrated in Figure 4. It’s
a comprehensive approach designed for both quality and
diversity. Through seven detailed steps, we utilize various
techniques, from intricate pose modifications to detailed age
adjustments. As a result, we produce a dataset that is not only
robust and varied but also closely mirrors real-life human
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FIGURE 4. The procedure of our dataset generation during the inference
phase. Beginning with the synthetic segmentation network, randomized
hair and mouth images are utilized to craft a synthetic segmentation
map. This map is then augmented with random textures from the
CelebAMask-HQ dataset using SegTex, resulting in a detailed textured
representation.

attributes, thereby greatly optimizing the performance of
face recognition models. This approach ensures a robust,
diverse, and realistic dataset, showcasing our commitment
to capturing the complexities of human faces, enhancing the
performance of face recognition models.

1) SEGMENTATION MAPS GENERATION
Segmentation maps are the foundation of our synthetic
image pipeline. For every identity, we produce ten distinct
maps, each highlighting different hair and mouth features
but maintaining a consistent skin texture. This step ensures
the creation of varied facial structures, adding depth to our
synthetic dataset.

2) FEATURE RANDOMIZATION
With the segmentation maps ready, we proceed to randomize
the associated textures’ features, covering skin, hair, eyes, and
mouth. This enhancement introduces a new level of diversity
to individual facial attributes.

3) APPLYING TEXTURES TO MAPS
In this stage, we overlay the randomized textures onto the
generated segmentation maps. The combination of these two
elements results in diverse and realistic synthetic images.

4) POSE ADJUSTMENTS FOR TEXTURED IMAGES
This step emphasizes altering the pose of the textured images.
Using the facevid2vid [30] method, we craft 20 unique poses
for each image, showcasing a plethora of head orientations
and facial expressions, enriching the dataset’s versatility.

5) INTEGRATION OF THE StyleGAN INVERTER
The pipeline benefits from the inclusion of a StyleGAN
inverter, set at a truncation value of 0.6. This tool amplifies

TABLE 1. Model architecture of our encoder to generate segmentation
maps.

the visual fidelity and realism of the images while tapping
into StyleGAN’s generative power, further diversifying the
dataset.

6) AGE ADJUSTMENTS
A crucial step in the process is the use of the Age
transfer module through SAM [31]. This technique modifies
the perceived age of the synthetic faces, spanning from
ages 10 to 80. Incorporating such age diversity ensures a
comprehensive age spectrum in the dataset, improving its
authenticity and relevance.

7) IMAGE AUGMENTATIONS
Concluding our process, we apply various augmentations
using OpenCV. Adjustments in brightness, contrast, and color
balance, along with the application of Gaussian blur, ensure
the dataset’s resilience across varied conditions.

IV. EXPERIMENTAL RESULTS
A. IMPLEMENTATION DETAILS
Our approach relies on a proficient segmentation network
grounded in Adaptive Instance Normalization (AdaIN) [32],
complemented by a tailored SPADE generator designed
for advanced image segmentation endeavors [11]. The
subsequent sections provide a detailed exploration of these
fundamental components.

1) GENERATOR FOR SEGMENTATION NETWORKS
The AdaIN function is the linchpin of our segmentation
network, amalgamating data from the hair, mouth, and
skin regions. Specific encoders for hair and mouth convert
images into individual features, which are then merged.
Concurrently, the skin image is processed via its exclusive
encoder. The output size from the skin encoder is notably
twice that of the others (refer to Table 1). Subsequently,
the AdaIN function fuses the combined features of the hair
and mouth with those from the skin encoder. This forms a
composite feature map that incorporates data from all three
regions, which is then metamorphosed into a unified image.

2) GENERATOR FOR TEXTURE INFUSION
Our custom SPADE generator, a refined offshoot of the
original SPADE model, is tailored for specific image
segmentation challenges. It encompasses multiple encoders,
each tailored for processing distinct image regions like
the skin, hair, eyes (both left and right), mouth, and a
comprehensive segmentation map (details in Table 2).

Each encoder processes an RGB image of dimensions
(3, 256, 256) and yields a downscaled, feature-extracted
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TABLE 2. Model architecture of our encoder and inputs into the modified
SPADE generator.

TABLE 3. Main hyperparameter setting.

version with dimensions (256, 64, 64) using two convolu-
tional layers combined with leaky ReLU activations. The
convolution operations maintain kernel size k=4, stride
s=2, and padding p=1. Feature integration follows a two-
tiered approach. The ‘Fusion Layer’ consolidates features
of the skin, hair, eyes, and segmentation map, while the
‘Mouth Fusion Layer’ integrates the mouth’s features with
the segmentation map. Both layers harness concatenation
and convolution operations. Following fusion, the ‘Blending
Layer’ evaluates each source’s contribution via trainable
weights.

A pivotal element is the transformation applied to the
mouth encoder’s output before its integration through the
‘Mouth Fusion Layer’. This includes two convolutional
layers, augmented by batch normalization and leaky ReLU
activations. In essence, our custom SPADE generator boasts a
nuanced design adept at navigating intricate image segmenta-
tion challenges. Its structure combines region-centric feature
extraction (via encoders), feature consolidation (through
fusion layers), and feature selection (via the blending layer).
Training hyperparameters can be found in Table 3.
Our SegTex architecture undergoes training from scratch

on the CelebAMask-HQ dataset. It comprises a generator and
discriminator, leveraging the Adam optimizer with a learning
rate of 2 × 10−4 and a batch size of 32. Customizations
in the SPADE generator include three classes per channel,
differing from the region count in the segmentation map.
The network iterates across the dataset for 35 epochs. Both
the generator and discriminator compute and back-propagate
their losses during each epoch. This training phase spanned
approximately two days on an RTX A6000 GPU.

3) DATASET CONSTRUCTION
Our dataset construction heavily relies on a carefully
designed data pipeline. We ensure that textures align with

TABLE 4. Dataset generation comparison.

TABLE 5. Comparison of face recognition datasets.

TABLE 6. Ablation study for each module.

specific facial features in images, which optimizes our
network’s performance. This approach allows us to eliminate
the need for more complex layers, like attention layers,
resulting in a model that is both lighter and more efficient.
Due to the unique variations in the mouth area, such
as different shapes and expressions, we incorporated a
specialized fusion layer, which significantly improves the
mouth’s appearance and enhances the overall network’s
performance.

For our dataset generation, we employ 4 RTX 4090 GPUs,
with each GPU running two pipelines. This setup allows us to
operate eight pipelines concurrently. Collectively, they utilize
about 8.5 GB of VRAM per pipeline, producing approxi-
mately 38,400 images every hour or about 920,000 images
daily. The numbers, as indicated in Table 4, underscore the
effectiveness of our computational framework. Furthermore,
our synthetic dataset is expansive and diverse, encompassing
19,000 classes with a total of 3.8 million images. These
images have been enriched with various modifications like
different poses, ages, and lighting, as detailed in Table 5.
Notably, our dataset surpasses its predecessors in size, and by
leveraging CelebA-HQ, we guarantee a broad representation
of appearances and poses.

B. PERFORMANCE EVALUATION
1) FACE RECOGNITION ASSESSMENTS
To highlight the effectiveness of the synthetic dataset
produced by our approach, we conducted a face recognition
task. We used 50 images from each class within our synthetic
dataset for training, and the remainder were reserved for
validation. The training utilized the SoftMaxmethod, with the
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FIGURE 5. Dataset examples using the proposed technique. (a) a selection from our dataset showcasing a wide range of ages, ethnicities, and genders.
(b) variations of a single individual, highlighting changes in poses and age progression.

ResNet50 structure serving as the foundation of the model.
Throughout the training phase, a conventional cross-entropy
loss function was adopted, with a set learning rate of 0.01.

To assess the strengths and areas for enhancement of our
SegTex pipeline, we utilize both quantitative face recognition
metrics and qualitative evaluations for image realism and
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FIGURE 6. Qualitative visualization of attribute manipulation. (a) demonstration of SegTex’s proficiency in selectively modifying facial
attributes while preserving the underlying identity. (b) illustration of generating distinct personalities by randomizing facial attributes.

diversity. Initial evaluations reveal that the standalone SegTex
model achieved an FID score of 51.57. However, with
the integration of StyleGAN, the FID score was 113.71.
Subsequent refinements using the Age Module improved this
to 68.49, as detailed in Table 6.

Evaluation results in Table 7 indicate that our SegTex
Subset, comprising 7,018 classes, outperforms other datasets

by achieving a validation accuracy of 92.04%. Notably,
our dataset’s superior performance, even with fewer classes
compared to CASIA-WebFace, underscores our synthetic
data’s quality. The enhanced performance observed when
combining SegTex with other datasets further attests to the
benefits of integrating our synthetic data into face recognition
models.
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TABLE 7. Performance improvement with the proposed dataset.

FIGURE 7. Images after pose transfer but before applying a styleGAN
inverter to enhance the image. it is visible there are many artifacts if the
changes are large.

2) IN-DEPTH ANALYSIS
a: SYNTHESIZED SAMPLE IMAGES
Our model’s capability in generating a diverse range of
unique and identical individuals is displayed in Figures 5.
This highlights the potential for an infinite and varied dataset
creation.

b: ATTRIBUTE EDITING
Figure 6 (a) illustrates the flexibility of SegTex in altering
facial features by manipulating texture map segments. While
enabling minor attribute modifications, the model preserves
the original identity, thereby enriching the dataset with
variations such as simulated makeup.

c: RANDOM IDENTITY GENERATION
Figure 6 (b) demonstrates the generation of random identities
using different textures, emphasizing the model’s capac-
ity for vast diversity. Employing the CelebA-HQ dataset,
we generate images representing various ethnic groups. It’s
noteworthy that the focus on European American/White faces
in our results is a choice for demonstration and not a model
limitation.

d: ARTIFACTS BEFORE INVERSION
The success of our processing pipeline, comprising seven
unique modules, hinges on the optimal functioning of each
module. Discrepancies in any module can affect the final

image quality. Recognizing this, we incorporate a StyleGAN
inverter as both an image enhancer and a corrector for
potential artifacts. Notably, the most significant artifacts
emerge from the pose generator using FaceVid2Vid [30].
Extreme pose changes sometimes produce artifacts beyond
the capability of our texture infusion network. The StyleGAN
inverter mitigates these issues, ensuring the delivery of
pristine, high-quality images.

V. CONCLUSION
In this study, we emphasize the crucial role of synthetic
datasets in the field of face recognition. The lack of diverse
and extensive real-world data often poses challenges for
researchers, and our proposed SegTex framework presents an
innovative solution to address these issues. Using segmenta-
tion maps from the CelebAHQ-Mask dataset and extracting
facial features from the CelebAMask-HQ dataset, SegTex
effectively generates a wide range of facial characteristics.
By leveraging segmentation maps and various augmentation
techniques, we were able to create a dataset with 200 unique
images per identity, setting a new standard in synthetic
data generation. Our experimental results provide solid
evidence for our approach’s effectiveness.When tested with a
standard face recognition classifier, our dataset demonstrated
improved model performance, highlighting its potential in
face recognition tasks. As the domain of face recognition
continues to grow, it is essential to have innovative dataset
creation methods. Our research serves as a foundation for
future studies, underlining the importance of high-quality
data in advancing face-related tasks.
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